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Abstract
The lower Eocene-lower Miocene succession in the central part of the Al Jabal Al Akhdar, northeast Libya was investigated 
to determine its depositional environments and shed some light on diagenetic alterations. This succession is composed 
mainly of carbonate rocks and includes five formations from base to top; the Apollonia, Darnah, Al Bayda, Al Abraq, and 
Al Faidiyah. Relatively uniform shallow-marine carbonates were accumulated across northeast Libya, including the study 
area. Facies analysis of the studied carbonate rocks enables determination of four shallow-marine carbonate facies associa-
tions. These facies associations are: (1) restricted lagoon with limited circulation at/or below fair-weather wave base, (2) 
lagoon with open circulation below the fair-weather wave base, (3) platform-margin reefs, and (4) continental slope setting 
between the fair-weather and storm wave bases. The abundance of shallow marine carbonates indicates the presence of 
epeiric or epicontinental sea that covered the whole northern Africa. The depositional history in the studied area was con-
trolled primarily by tectonics and relative sea-level changes. Four unconformities (i.e., sequence boundaries) were observed 
and separating five depositional sequences in the studied succession. Each depositional sequence shows shallowing-upward 
trend. The recorded unconformities reflect episodes of non-deposition and/or erosion and are associated with major fall in 
eustatic sea level. The diagenetic processes of the studied carbonate rocks include; micritization, pyritization, compaction, 
cementation, aggrading neomorphism and partial dissolution.

Keywords Lower Eocene–lower Miocene succession · Facies analysis · Depositional environments · Diagenetic 
alterations · Sequence stratigraphy · The Al Jabal Al Akhdar · NE Libya

Introduction

Outcrops in the Al Jabal Al Akhdar, NE Libya, consist 
mainly of upper Cretaceous and Cenozoic marine sedi-
ments that were deposited along the southern border of the 
Tethys. Excellent exposures of lower Eocene–lower Miocene 
have allowed detailed sedimentological and stratigraphical 
investigations. The study area lies in the central part of the 
Al Jabal Al Akhdar between latitudes 32°30″ to 33°00″ N 
and longitudes 21°30″ to 22°00″ E along the Mediterra-
nean Sea coast of Libya (Fig. 1). The area extends for about 
50 km with 40 km width. The sedimentary succession has a 

maximum thickness of about 106 m; dominated by marine 
carbonate units ranging in age from the early Eocene to the 
early Miocene. The studied succession includes five rock 
units from bottom to top: the Apollonia, Darnah, Al Bayda, 
Al Abraq and Al Faidiyah formations.

Several authors studied and described the stratigraphy 
of the Al Jabal Al Akhdar. Gregory (1911) subdivided the 
Eocene succession into three lithostratighraphic units; Sal-
antah, Darnah, and Apollonia formations. Desio (1968) 
made review on the geological exploration in Cyrenaica (NE 
Libya) and gave a summary on the stratigraphy and struc-
tural history of the Al Jabal Al Akhdar. Barr and Hammuda 
(1971) studied the basal part of the Apollonia Formation and 
recorded the lower boundary of this formation, which uncon-
formably overlies the late Cretaceous Al Athrun Formation. 
Rohlich (1974, 1980) discussed the tectonic history of the Al 
Jabal Al Akhdar and defined three structural stages initiated 
in the late Cretaceous and ended in the middle Miocene.
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El Hawat and Shelmani (1993) published a booklet of 
short notes and guidebook on the geology of the Al Jabal 
Al Akhdar. Abdulsamad et al. (2009) studied the Eocene 
to Miocene rock units in the Al Jabal Al Akhdar and stated 
that the shallowing upward trend in the Apollonia Forma-
tion continued until the close of the Miocene time. They 
concluded that Nummulites are the dominant fossil during 
deposition of the middle Eocene, where they are missing in 
the late Eocene deposits. Abd El-Wahed and Kamh (2013) 
described the deformation in the central part of the Al Jabal 
Al Akhdar and concluded that this deformation is dominated 
by E–W right-lateral strike-slip fault zones that form a con-
jugate system with the N–S left-lateral strike-slip faulting. 
Muftah et al. (2017) recognized two disconformity surfaces 
at Tobruq-Burdi area. The first disconformity surface was 
observed at the basal part of the Oligo–Miocene Al Faidi-
yah Formation. The second disconformity surface exhibits 
an angular unconformity surface separating the Al Bayda 
Formation from the underneath Campanian Al Majahir 
Formation.

Detailed facies analysis, depositional environments, and 
diagenetic alterations of the studied rock units have not been 
published as the authors are aware. The present work aims 
to determine depositional environments and diagenetic his-
tory of the studied lower Eocene–lower Miocene succession. 
Construction of a depositional model of the studied succes-
sion is another goal of the present work and it is the first 
attempt to draw such model in the studied area.

Material and methods

Two field expeditions were carried out to the Al Jabal Al 
Akhdar district for collecting the lower Eocene–lower Mio-
cene rock units. Thirty-four rock samples were obtained 
from three localities; Shahat, Wadi Al Kuf, and Omar Al 
Mukhtar. Collection of samples is based on the lithological 
variation; texture, color and fossil content. Thirty-four thin 

sections were prepared to determine depositional environ-
ments and diagenetic processes. Carbonate microfacies were 
determined following the classification of Dunham (1962) 
and its modifications after Embry and Klovan (1971). The 
paleo-environmental reconstructions of Wilson (1975) and 
Flügel (2010) were applied to the studied carbonate rocks.

Stratigraphy

The stratigraphic succession of the Al Jabal Al Akhdar is 
represented mainly by a thick succession of carbonate rocks, 
ranging in age from the late Cretaceous to the early Miocene. 
The present work focuses only on the lower Eocene–lower 
Miocene rock units that includes five formations; from bot-
tom to top: the Apollonia, Darnah, Al Bayda, Al Abraq, and 
Al Faidiyah (Fig. 2). A brief description of each formation 
is given below.

The Apollonia formation

This formation is composed of thick-bedded, creamy white 
limestone, which is sometimes dolomitic and/or siliceous. 
This limestone is alternating with thin, soft, chalky and 
marly limestone (Fig. 3A, B). Dark brown chert nodules are 
common in this formation. Abdulsamad and Barbieri (1999) 
determined the age of the lower part of the Apollonia For-
mation as early Eocene due to the presence of Nummulites 
globulus and globigerinids. El Khoudary (1980) determined 
the age of the Apollonia Formation as middle Eocene based 
on the planktonic and benthic foraminifera, whereas Muftah 
et al. (2017) assigned its age as early–middle Eocene.

The Darnah formation

The Darnah Formation was introduced for the first time 
by Pieterz (1968). The formation is composed mainly of 
thick-bedded, fine to coarse-grained limestone of yellowish 

Fig. 1  Location map of north-
east Libya including the three 
studied sections; the location 
of Libya and the study area is 
given in inset map
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white and yellowish gray colors (Fig. 3C). The limestone 
is hard and massive with intercalations of dolomitic lime-
stone. Nummulites of different sizes in addition to gastro-
pods, bivalves, corals and echinoderms are embedded in a 
carbonate mud matrix. Generally, the fossils are dominated 
by large-sized Nummulites spp, Orbitolites complanatus and 

few Discocyclinids (Abdulsamad and Barbieri 1999). Based 
on the planktonic foraminifera and ostracoda, Helmdach and 
El Khoudary (1980) determined the age of the Darnah For-
mation as late Eocene. Muftah et al. (2017) assigned the age 
of the Darnah Formation as middle Eocene based on the 
presence of Nummulites gizehensis.

Fig. 2  Correlation chart showing the lithostratigraphy of the three 
studied sections; Shahat, Wadi Al Kuf and Omar Al Mukhtar. Datum 
is the unconformity surface between the Al Bayda and Al Abraq for-

mations. Ages of the studied formations are based on the work of 
Abdulsamad and Tmalla (2009) and Muftah et al. (2017)
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The Al Bayda formation

The Al Bayda Formation was introduced for the first time 
by Rohlich (1974). It is marked by upper and lower discon-
formities with the underlying Darnah Formation (Fig. 3C) 
and the overlying Al Abraq Formation. The Al Bayda For-
mation is subdivided into two members; the Shahat Marl 
Member that is heavily bioturbated (Fig. 3 D) and the over-
lying Algal Limestone Member. Abdulsamad and Tmalla 
(2009) and Muftah et al. (2017) assigned the age of the Al 
Bayda Formation as early Oligocene based on the presence 
of Nummulites vascus and N. fichteli.

The Al Abraq formation

The Al Abraq Formation is defined for the first time by 
Rohlich (1974) after the village of Al Abraq. The forma-
tion is disconformably underlain by the Al Bayda Formation 
and overlain by the Al Faidiyah Formation. It is composed 
of yellowish white, soft to moderately hard limestone. The 
microfossils are represented by Nummulites fichteli, Lepi-
docyclina, and Operculina africanus (Muftah and Erhoma 
2002; Abdulsamad et  al. 2009). Muftah et  al. (2017) 
recorded the presence of macrofossils such as oysters and 
echinoderms. They assigned the age of the Al Abraq Forma-
tion as middle Oligocene.

The Al Faidiyah formation

The Al Faidiyah Formation is disconformably underlain 
by the Al Abraq Formation. The formation consists of thin 
glauconitic marl at the base and argillaceous limestone 
beds grading upward into yellowish, fossiliferous, mas-
sive and cross-bedded limestone forming a series of coars-
ening upward cycles (El Hawat and Abdulsamad 2004). 
Green glauconite grains occur at the contact between the 
Al Faidiyah Formation and the underlying Al Abraq For-
mation. Only the lower part of the Al Faidiyah Formation 
was observed in the studied area. Muftah et al. (2017) 
determined the age of the Al Faidiyah Formation as late 
Oligocene–early Miocene.

Microfacies analysis

This step is very important to determine texture, micro-
facies association, depositional environments and subse-
quent diagenetic processes that affected the studied suc-
cession. The recognized microfacies are lime-mudstone, 
wackestone, packstone, grainstone, floatstone, rudstone 
and boundstone. The description of each microfacies will 
be introduced hereinafter and in Table 1.

Fig. 3  Field photographs of the 
studied formations. a General 
view of Shahat section show-
ing the Apollonia Formation 
unconformably underlay the 
Darnah Formation. b Thick-
bedded creamy white limestone 
alternating with thin, soft, 
chalky and marly limestone, 
the Apollonia Formation of 
Shahat section, person for 
scale is 1.85 m. c General view 
showing unconformity surface 
between the Darnah and Al 
Bayda formations at Shahat sec-
tion, person for scale is 1.85 m. 
d Abundant trace fossils in a 
yellowish gray marly limestone, 
the Al Bayda Formation (the 
Shahat Marl Member) of Wadi 
Al Kuf section, geologic ham-
mer for scale is 32 cm long
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Lime‑mudstone microfacies

Lime-mudstone microfacies represent about 4% of the 
total thin sections of the studied rock units. They are 
encountered in the Al Bayda Formation of both Shahat 
and Wadi Al Kuf sections. One lime-mudstone microfacies 
was recognized in the studied succession (Table 1).

Wackestone microfacies

Wackestone microfacies in the studied carbonate rocks 
represent about 11% of the total thin sections of the stud-
ied limestone. Rocks of this microfacies are recognized 
mainly in the Apollonia, Darnah, and Al Bayda formations 
of Shahat section. One wackestone microfacies was identi-
fied and described (Table 1).

Packstone microfacies

Packstone microfacies represent about 33% of the total 
thin sections of the studied rock units. They are encoun-
tered in the Al Bayda, Al Abraq and Al Faidiyah forma-
tions. Two packstone microfacies were recorded in the 
studied succession (Table 1).

Grainstone microfacies

Grainstone microfacies represent about 7% of the total thin 
sections of the studied microfacies. They are encountered 
in the Al Abraq and Al Faidiyah formations of Shahat 
section. One grainstone microfacies was recognized in the 
studied succession (Table 1).

Floatstone microfacies

These rocks are highly fossiliferous, containing algae, 
benthic foraminifera, bivalve fragments and echinoderms. 
They represent about 11% of the total thin sections. One 
floatstone microfacies was encountered in Shahat and 
Omar Al Mukhtar sections (Table 1).

Rudstone microfacies

These rocks are characterized by the presence of benthic 
foraminifera, coralline red algae and echinoderms; up to 
granule and pebble-sizes. They represent about 29% of 
the total thin sections. Rocks of this microfacies are rec-
ognized mainly in the Al Bayda Formation of Shahat and 

Omar Al Mukhtar sections. Two microfacies were recog-
nized in the studied interval (Table 1).

Boundstone microfacies

These rocks represent about 5% of the total thin sections. 
They contain coralline red algae as the main fossil com-
ponent. Some bryozoa are recorded. One microfacies was 
recognized in the Algal Limestone Marl Member of the Al 
Bayda Formation in Shahat section (Table 1).

Depositional environments

Based on field relationships, fossil content and facies analy-
sis; depositional environments of the studied carbonate rocks 
are illustrated in Figs. 4, 5, 6. The recorded microfacies were 
accumulated in four different facies associations (Fig. 7). 
These facies associations are restricted lagoon, open marine 
lagoon, platform margin reef and slope. The first facies asso-
ciation, restricted lagoon, contains bioclastic packstone and 
foraminifera grainstone microfacies. Sediments of this asso-
ciation were accumulated in quiet water at/or below the fair-
weather wave base (Fig. 7). In addition, some microfacies of 
this association occur as sand shoals that are influenced by 
tidal currents. The second facies association of microfacies 
accumulated in open marine lagoon with open circulation 
below the fair-weather wave base. Microfacies of the second 
facies association include foraminifera lime-mudstone, echi-
noderm foraminifera wackestone, bioclastic packstone, and 
glauconitic foraminifera packstone. The third facies asso-
ciation was deposited in platform-margin reefs. This facies 
association includes algal boundstone. The fourth facies 
association comprises three submicrofacies; foraminifera 
floatstone, foraminifera rudstone, and oyster foraminifera 
rudstone. It was accumulated in slope setting (Fig. 7). The 
aforementioned associations reflect shallow marine carbon-
ate rocks that were accumulated in most of northeast Libya. 
This conclusion was recorded by Abdulsamad et al. (2009). 
These shallow settings reflect the occurrence of shallow sea 
(epicontinental sea) during the deposition of studied succes-
sion. The whole studied succession can be subdivided into 
five shallowing-upward depositional sequences that were 
separated by four unconformities.

Due to the scarcity of planktonic foraminifera, Abdul-
samad et al. (2009) determined the depositional environ-
ment of the Apollonia Formation as warm-water, shallow 
carbonate platform. However, they stated that the carbon-
ate sediments of the Apollonia Formation refer to Wilson’s 
facies SMF 3. In the present work, the Apollonia Forma-
tion microfacies resemble SMF9 and FZ7 (Wilson 1975; 
Flügel 2010). The Apollonia Formation contains benthic 
foraminifera such as Nummulites, Assilina, Triloculina. 
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Such species live in shallow inner ramp settings (protected 
open lagoon with moderate circulation). Also, ostracods 
(e.g., Bairdia and Paracypris) are recognized. Large-sized 
foraminifera (Nummulites) are observed in the middle and 

upper parts of the Darnah Formation. In addition, Assilina 
and Operculina were observed in thin sections. Operculina 
lives in an interval varying in depth between 80 and 100 m 
(Hottinger 1983). Deposition of the Darnah Formation took 

Fig. 4  The lithostratigraphy and 
depositional settings of the stud-
ied rock units at Shahat section. 
See legend in Fig. 2
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place in shallow warm-water carbonate platform. However, 
in the present work, the Darnah Formation includes echino-
derm foraminifera wackestone and foraminifera floatstone 
microfacies. Wackestones were deposited in SMF9 and FZ7, 
whereas floatstones are correlatable with SMF 5 and FZ4 
(Wilson 1975; Flügel 2010).

Several authors (e.g., Muftah and Erhoma 2002; Abdul-
samad et al. 2009) determined depositional environment of 
the Al Bayda Formation as a carbonate platform dominated 
by facies SMF 4, 5 and 6 (Wilson 1975). This interpreta-
tion is based on the dominance of small-sized Nummulites 
and abundant coralline red algae. The dominance of the cor-
alline red algae is an indication of shallow water environ-
ment (Hassan and Ghosh 2003). The Al Bayda Formation 
includes benthic foraminifera such as small-sized Nummu-
lites, Assilina, Operculina, Peneroplis, and Discocyclina. 
The recorded microfacies suggest depositional environments 
ranging from shallow or coastal settings, open shelf and nor-
mal marine (inner ramp to mid ramp environments).

An environment with open circulation and muddy sub-
strates is suggested for deposition of the Al Abraq Forma-
tion (Wilson’s facies SMF7; Abdulsamad et al. 2009). In 
the present work, the Al Abraq Formation contains benthic 
foraminifera such as Discocyclina, Operculina, and Pen-
eroplis. Bioclastic packstone and foraminifera grainstone 
microfacies were recorded in this formation. Packstone 
microfacies were deposited in an agitated shoal environ-
ment, whereas grainstone microfacies occur as bars and 
channels and sand shoals.

Abdulsamad et al. (2009) determined depositional envi-
ronment of the Al Faidiyah Formation as open to restricted 
platform and it is correlated with Wilson’s facies SMF7 
and SMF8. In the current work, different microfacies 
were recognized; bioclastic packstone and foraminifera 
grainstone. These microfacies were deposited in shallow 
inner shelf bayment, agitated shoal environment and shelf 
lagoon with open circulation, respectively.

Fig. 5  The lithostratigraphy and 
depositional settings of the stud-
ied rock units at Wadi Al Kuf 
section. See legend in Fig. 2
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Diagenetic alterations

There are many diagenetic processes affected the lower 
Eocene–lower Miocene carbonates in the studied sections. 
These processes include micritization, pyritization, com-
paction, cementation, aggrading neomorphism and partial 
dissolution.

Micritization

Micritization is represented by micrite envelopes 
surrounding the skeletal bioclasts. Micritization is 

considered as a primary diagenetic process in origin and 
occurs shortly after deposition. Its occurrence is associ-
ated with algae and fungi which are responsible for form-
ing the voids that are filled later by micrite (Bathurst 
1975). The association of micritization with the occur-
rence of algae reveals that micritization usually occurs in 
shallow marine environments due to the need for sunlight 
(Flügel 2010). This process has been recorded in some of 
the studied carbonates especially in the bivalve fragments 
that were bored by the activity of algae and the pores were 
filled with the surrounding micritic matrix (Fig. 8A).

Fig. 6  The lithostratigraphy 
and depositional settings of the 
studied rock units at Omar Al 
Mokhtar section. See legend in 
Fig. 2
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Fig. 7  The proposed depo-
sitional environments of the 
microfacies recorded in the 
lower Eocene-lower Miocene 
succession. The interpreted 
facies associations are; (1) 
restricted lagoon, (2) lagoon 
with open circulation, (3) 
platform-margin reefs, and (4) 
continental slope

Fig. 8  Photomicrograph show-
ing: a micrite envelopes around 
a bivalve fragment (arrows). 
The bivalve fragments as a 
mold infilled with sparry calcite 
cement that increases in size 
towards the center of mold void, 
the Al Faidiyah Formation, Sha-
hat section, PPL. b Photomicro-
graph showing pyrite framboids 
inside shell fragments, the Al 
Bayda Formation, Shahat sec-
tion, PPL. c Photomicrograph 
showing compaction of two 
benthic foraminifera (arrow), 
the Darnah Formation, Shahat 
section, PPL. d Photomi-
crograph showing the clear 
syntaxial overgrowth cement 
enclosing echinoderm grains 
plates, the Al Bayda Formation, 
Shahat section, XPL. e Photo-
micrograph showing microspar 
due to aggrading neomorphism 
(arrow), the Al Faidiyah 
Formation, Shahat section, 
PPL. f Photomicrograph show-
ing partial dissolution of the 
micritic groundmass (arrow), 
the Al Bayda Formation, Shahat 
section, PPL
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Pyritization

Replacement by pyrite is recorded in the studied carbon-
ate rocks, whereby pyrite framboids are disseminated in 
the sparry calcite which filled molds of skeletal particles 
(Fig. 8B). Pyrite framboids are spheroidal or sub-spheroidal 
aggregates of equant, equidimensional pyrite microcrystals 
(Butler et al. 2000). The framboids in the studied rocks vary 
in size between 10 and 25 μm. According to Wilkin et al. 
(1996), this narrow size distribution of framboidal pyrite 
could reflect relatively short growth times, suggesting that 
most pyrite in the studied carbonates formed near the sedi-
ment/water interface under conditions of super-saturation 
with respect to pyrite. Cavalazzia et al. (2014) stated that 
the presence of pyrite points to deposition under anoxic 
conditions.

Compaction

When carbonate sediments are buried under an overburden, 
grain come together and grain fractures occurs. In addition, 
porosity is lowered by a closer packing. This process is 
called mechanical compaction. The limestone in the studied 

rocks underwent mechanical compaction with different 
degrees. This is clear due to the presence of different types 
of contacts among allochems (Figs. 8C and 9B, C). This 
feature occurs mainly in floatstone and rudstone microfacies 
that underwent little or minor cementation prior to burial 
and overburden load.

Cementation

Cementation is an important process in all diagenetic realms. 
Cement forms in both primary and secondary pores and 
requires supersaturation of the pore fluid with respect to the 
cement mineral. Cementation process extensively affected 
the studied formations and represents the commonest one 
among other diagenetic processes. Two types of cement were 
recognized; drusy calcite cement and syntaxial overgrowth 
cement.

Drusy calcite cement

This kind of cement is characterized by pore-filling calcite 
crystal increasing in size towards the center of interparticle 
pores or voids (Fig. 8A, B). This is commonly interpreted to be 

Fig. 9  Photomicrographs showing a Foraminifera floatstone microfa-
cies. Larger benthic foraminifera and glauconite grains are abundant. 
Silt-sized quartz grains are recorded, the Al Faidiyah Formation, Sha-
hat section, PPL. b Foraminifera rudstone microfacies. Large benthic 
foraminifera are cemented by a sparry mosaic calcite. Compaction 
is indicated by the long contact between foraminifera (arrow), the 
Al Faidiyah Formation, Shahat section, PPL. c Oyster foraminifera 

rudstone microfacies. Oyster fragments and large benthic foraminif-
era (Nummulites) are the main components. The allochems are highly 
packed. Notice the long contacts among benthic foraminifera which 
suggest a phase of compaction (arrow), the Al Bayda Formation, Sha-
hat section, PPL. d Algal boundstone microfacies. This microfacies is 
characterized by abundance of coralline red algae. Minor bryozoa are 
recoded, the Al Bayda Formation, Shahat section, PPL
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of late diagenetic process (Flügel 2010). It is usually observed 
in most studied sections.

Syntaxial overgrowth cement

Syntaxial overgrowth occurs around a host grain made by 
a single crystal (especially high-Mg calcitic echinoderm 
plates). It is usually in crystallographic continuity with the 
host grain. There is a color difference between the syntaxial 
overgrowth and the skeletal grain (Fig. 8D). Syntaxial over-
growth cement forms in different settings; near-surface marine, 
vadose–marine, and meteoric–phreatic environments (Flügel 
2010). The origin of this type of cement is explained by dif-
ferent opinions. These are: (1) syntaxial overgrowth prior to 
the deposition of marine muds (Evamy and Shearman 1965), 
(2) syntaxial overgrowth as a secondary pore filling that is 
created by the selective dissolution of carbonate mud in the 
vicinity of echinoderm grains (Walkden and Berry 1984), (3) 
neomorphic replacement of carbonate mud (Orme and Brown 
1963), this model has been used in many studies and finally 
(4) syntaxial overgrowth into primary sheltered pore space 
beneath echinoderm fragments (Görur 1979).

Aggrading neomorphism

Aggrading neomorphism is produced as enlargement of mic-
rite crystals, a process by which crystals that measure only a 
few microns in diameter may enlarge to a size measuring tens 
of microns in diameter. This creates a neomorphism product 
similar to sparry cement in crystal size (Fig. 8E). Neomor-
phism of micrite matrix (< 4 μm) into microspar (4–10 μm) 
and pseudospar (10–50 μm) is observed in the studied carbon-
ates (Fig. 8E).

Partial dissolution

Carbonate sediments, skeletal particles and cements may 
undergo dissolution on a small or large scale when pore flu-
ids are undersaturated with respect to the carbonate mineral-
ogy (Tucker and Wright 1990). Dissolution may be active at 
any time in the burial history of the carbonates after mineral 
stabilization (Moore 1989). Depending on the size of pores, 
they are commonly called vugs, channels and caverns (Cho-
quette and Pray 1970). The partial dissolution process has been 
encountered in most of the studied carbonates that contain 
abundant algae and Nummulites (Fig. 8F).

Impact of diagenetic alterations 
on depositional facies

Diagenetic processes are effective at near-surface condi-
tions and during progressive burial and controlled by fluid 
flow and/or diffusion (Morad et al. 2012). Depositional 
carbonate facies tend to adjust to new physical and chemi-
cal conditions to reach equilibrium. The observed diage-
netic alterations, micritization, pyritization, compaction, 
cementation, aggrading neomorphism and partial dissolu-
tion, affected wackestone, packstone, grainstone, floatstone 
and rudstone microfacies. Compaction is the only physical 
process that affected the studied carbonate rocks, whereas 
physicochemical processes in the study area include 
dissolution, cementation, replacements, micritization, 
aggrading neomorphism. Compaction is observed in both 
grainstone (Fig. 10F) and floatstone/rudstone microfacies 
(Fig. 9C) that contain large allochems (> 2 mm).

Cementation is recorded in all of the studied micro-
facies (Figs. 9B and 10F). Syntaxial overgrowth occurs 
mainly in microfacies that contain echinoderm such as 
echinoderm foraminifera wackestone (Fig.  10B) and 
bioclastic packstone (Fig. 10C). Replacement by pyrite 
affected grainstones and rudstones as scattered pyrite 
framboids were replaced sparry calcite (Fig. 8B). Partial 
dissolution process has affected most of the studied car-
bonates that contain abundant Nummulites and algae. The 
grainstone, floatstone, rudstone and boundstone microfa-
cies contain variable amounts of moldic porosity that have 
resulted from partial dissolution (Figs. 8F and 9D).

Sequence stratigraphy

Based on the available data, sequence stratigraphic analy-
sis of the studied succession is considered as preliminary 
results. Four sequence boundaries (SB) were recognized 
(SB1–SB4) (Fig. 11). In Shahat section, the four sequence 
boundaries were observed, whereas SB3 is the only 
recorded sequence boundary in both Wadi Al Kuf, and 
Omar Al Mukhtar sections. According to the criteria of 
Vail et al. (1984), these boundaries are considered as Type 
1 boundaries. Type 1 sequence boundaries form during a 
stage of rapid eustatic sea-level fall. Five proposed depo-
sitional sequences (sequences 1–5) were observed in the 
studied succession (Fig. 11). The proposed depositional 
sequences show shallowing-upward trend.

During the Eocene, marine limestone was accumulated 
in the central and eastern parts of the Sahara (Swezey 
2009). In northeast Libya, changes in relative sea level 
through the Cenozoic are accompanied by a gradual fall 
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in eustatic sea level (Miller et al. 2005). In addition, dur-
ing the Cenozoic, global climate changes from late Cre-
taceous–early Eocene warm settings to late Eocene–Qua-
ternary cool settings (Frakes et al. 1992). The Eocene rock 
units in northeast Libya are capped by an unconformity 
that is called end-Eocene unconformity (Fig. 11). They 
overlain by the early Oligocene Al Bayda Formation that 
is composed of limestones and marl. This formation was 

deposited in open marine, shallow water platform. The Al 
Bayda Formation is covered by an unconformity that over-
lain by the late Oligocene Al Abraq Formation which is 
composed mainly of limestone and marl. It was deposited 
in open marine shelf to brackish settings. The Al Abraq 
Formation, in turn, is capped by an unconformity (Fig. 11) 
that overlain by the early Miocene Al Faydiyah Formation 
(Swezey 2009).

Fig. 10  Photomicrographs showing a Foraminifera lime-mudstone 
microfacies. Notice the presence of benthic foraminifera, the Al Faid-
iyah Formation of Shahat section, PPL. b Echinoderm foraminifera 
wackestone microfacies. Benthic foraminifera (Assilina, arrow), echi-
noderms, and undifferentiated shell fragments represent the dominant 
allochems, the Al Bayda Formation of Shahat section, PPL. c Bio-
clastic packstone microfacies. Benthic foraminifera (Nummulites, 
arrow), echinoderms, coralline algae, bivalve fragments, and undiffer-
entiated shell debris are recorded, the Al Bayda Formation, Wadi Al 
Kuf section, PPL. d Glauconitic foraminifera packstone microfacies. 
Benthic foraminifera (Nummulites), undifferentiated shell debris, and 

glauconite grains are encountered as the main allochems. Notice the 
effect of compaction of two benthic foraminifera (arrow), the Darnah 
Formation, Shahat section, PPL. e Glauconitic foraminifera packstone 
microfacies. Notice the presence of benthic foraminifera (Discocy-
clina, arrow) and green glauconite grains, the Al Bayda Formation, 
Omar Al Mukhtar section, PPL. f Foraminifera grainstone microfa-
cies. Benthic foraminifera (arrow), miliolids, and micritized shell 
fragments. Green glauconite grains are common. Silt-sized quartz 
grains are also recorded. Notice the presence of pyrite framboids in 
bivalve fragment (red arrow), the Abraq Formation, Shahat section, 
PPL
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Regional unconformities (proposed sequence bounda-
ries, Fig. 11) in northeast Libya are associated with major 
fall in eustatic sea level. Such fall was caused due to ice 
buildup at one or both poles. A regional unconformity that 
has resulted from eustatic sea level fall may point to tec-
tonic component to its origin (Swezey 2002). Compres-
sional tectonic activity has prevailed during the Eocene 
time (Swezey 2009). The mid-Oligocene and the end-Oli-
gocene unconformities were resulted from falls in eustatic 
sea level. These events were recorded by Haq et al. (1987) 
and Miller et al. (2005).

Conclusions

The lower Eocene–lower Miocene succession in northeast 
Libya comprises five formations from bottom to top: the 
Apollonia, Darnah, Al Bayda, Al Abraq, and Al Faidiyah 
formations. The studied interval is represented by a thick 
succession of carbonate rocks.

• Nummulites are the dominant fossil group in the studied 
middle Eocene shallow water carbonates, whereas, they 
are missing in the upper Eocene rocks.

Fig. 11  Sequence boundaries 
and depositional sequences 
of the lower Eocene-lower 
Miocene succession in Shahat 
section. The sea level curve is 
derived from Gradstein et al. 
(2004). Climate of the northeast 
Libya after Frakes et al. (1992). 
See legend in Fig. 2



Carbonates and Evaporites (2021) 36:50 

1 3

Page 17 of 18 50

• Five transgressive/regressive cycles were recognized 
during the early Eocene–early Miocene times and sep-
arated by four unconformities that are considered as 
sequence boundaries.

• Facies analysis has revealed four depositional facies asso-
ciations. These associations are restricted lagoonal set-
tings with limited circulation, open marine lagoon with 
open circulation, platform-margin reefs and slope setting.

• The first association includes bioclastic packstone and 
foraminifera grainstone microfacies, whereas, the second 
facies association comprises foraminifera lime-mudstone, 
echinoderm foraminifera wackestone, and glauconitic 
foraminifera packstone. The third facies association 
includes algal boundstone, while the fourth facies asso-
ciation comprises foraminifera floatstone and rudstone.

• Benthic foraminifera such as Nummulites, Assilina, 
Triloculina were recognized in the Apollonia Forma-
tion. Large-sized benthic foraminifera (Nummulites, 
Assilina and Operculina) were observed in the Darnah 
Formation. The Al Bayda Formation contains small-
sized Nummulites, Assilina, Peneroplis, and Discocy-
clina. The Al Abraq Formation includes Discocyclina, 
Operculina, and Peneroplis. These benthic foraminifera 
live in inner ramp to mid ramp settings. These shallow 
conditions point to the presence of epicontinental or 
epeiric sea that covered north Africa.

• The main diagenetic alterations affected the studied 
carbonates (particularly wackestones, packstones, 
grainstones, floatstones and rudstones) include micriti-
zation, pyritization, compaction, cementation, aggrad-
ing neomorphism and partial dissolution.

• Four sequence stratigraphic boundaries were observed 
in the lower Eocene–lower Miocene succession. 
Accordingly, five depositional sequences were 
recorded. The recorded depositional sequences show 
shallowing-upward trend.

• Regional unconformities in the studied area are associ-
ated with major fall in eustatic sea level.
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