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Abstract
Permeability is one of the most important parameters of the rock reservoir. This parameter represents the ability of fluid pass 
through the porous medium without changing the structure of the rock which plays a main role in the production rate of a 
hydrocarbon reservoir. Permeability could be obtained through laboratory using core plugs, although the measurements is 
highly accurate, but these analyses are costly, time-consuming, and also the core data are not available for all wells. Therefore, 
permeability is usually predicted using well logs by regression techniques. In this study, support vector regression (SVR) 
based on radial basis function is developed to estimate permeability in South Pars gas field of Iran. For this purpose, first 
four electrofacies were identified using a method called multi-resolution graph-based clustering (MRGC), and thereafter the 
method applied for each facies. To evaluate the prediction model, the correlation coefficient between the real permeability 
(determined from core plugs) and the estimated was calculated for each electrofacies. The values for the four electrofacies 
designated obtained 88.2, 78.51, 84.73, and 77.54 percent, respectively. The high amount of obtained correlations for each 
electrofacies demonstrates the power of the regression model for a reliable permeability prediction of the reservoir.
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Introduction

One of the key issues in the evaluation of hydrocarbon res-
ervoirs is the use of well data to predict petrophysical prop-
erties, such as porosity, permeability, water saturation, etc. 
Also, facies analysis using seismic and well data is necessary 
for reservoir modeling (Bagheri et al. 2013, 2015). There-
fore, the main challenges of reservoir engineers are deter-
mining these components in the reservoir (Mohaghegh et al. 
1996). Reservoir permeability is one of the most important 
properties of oil and gas fields for reservoir characteriza-
tion. In fact, it is not possible to have accurate solutions 
to many petroleum engineering problems without having 
accurate permeability knowledge (Worden et al. 2018; Zhu 
et al. 2016).

Till now, the petroleum industry tried to acquire reliable 
permeability values via laboratory measurements on cores or 
well test interpretation. But these investigations are expen-
sive and take time, and also the core plugs are unreachable 
in all wells. Therefore, permeability regularly is estimated, 
using empirical equations or statistical (component and non-
component) regressions (Lee and Dutta-Gupta 1999) from 
well logs. In general, well logs provide valuable but indirect 
information on mineralogy, texture, sediment structure, fluid 
content and reservoir hydraulic properties and could be used 
for this purpose. Specific responds of the logs of the forma-
tion can represent electrofacies that are often correlated with 
the rocky facies (Bagheri and Riahi 2017).

In recent years, different methods such as artificial neural 
networks, hybrid intelligent, fuzzy logic, and other different 
machine learning techniques have been employed to over-
come the common constraints in multiple regression (Tao-
reed and Gondal 2018; Olatunji et al. 2015; Akande et al. 
2015). Artificial neural networks are gaining popularity as 
tools for estimating reservoir parameters such as permeabil-
ity from limited, common data suites. Neural networks are 
non-algorithmic, analog, distributive and parallel informa-
tion processing methods that have proven to be powerful 

 *	 Majid Bagheri 
	 majidbagheri@ut.ac.ir

	 Hadi Rezaei 
	 h.rezaei72@yahoo.com

1	 Institute of Geophysics, University of Tehran, PO 
Box 14115‑6466, Tehran, Iran

http://orcid.org/0000-0003-2059-0194
http://crossmark.crossref.org/dialog/?doi=10.1007/s13146-019-00493-4&domain=pdf


700	 Carbonates and Evaporites (2019) 34:699–707

1 3

pattern recognition tools. Since they process data and learn 
in a parallel and distributed fashion, they are able to discover 
highly complex relationships between several variables that 
are presented to the network. As a model-free function esti-
mator, neural networks can map input to output no matter 
how complex the relationship (Akande et al. 2014).

The purpose of this research was to develop a method-
ology using support vector machine (SVM) to predict the 
permeability for wells using the logs data. After clustering 
of well log data using multi-resolution graph-based cluster-
ing (MRGC) method and obtaining electrofacies, perme-
ability has estimated in each facies using support vector 
regression (SVR) based on radial basis function. Finally, 
the estimated permeability is compared with the real perme-
ability obtained from core plug to evaluate the technique. 
The method provides a very useful approach for predicting 
permeability from well log data where data are poor or rela-
tionships between inputs and desired outputs are not exactly 
known. Final results show the successful application of SVR 
as a powerful tool to predict permeability from well logs.

Electrofacies identification using well data

The first step to estimate permeability is well log clustering 
and identifying electrofacies. Electrofacies are a set of well 
log responses which specify a layer and detect it from other 
layers (Nashawi and Malallah 2009). Determining these 
electrofacies in reservoir formations is one of the common 
studies in describing hydrocarbon reservoir properties. The 
abundant use of these electrofacies and their ability to deter-
mine specific reservoir parameters, according to the type of 
input data, have made this method one of the most powerful 
tools in reservoir studies. Also, the electrofacies are used in 
some cases such as separation of reservoir segments from 
non-reservoirs, replacing rock groups in reservoir models 
and matching structures in the field. The significance of 
these data is as if they were referred to as virtual cores (Khan 
Mohammadi and Sherkati 2010). In this study, the method of 
multi-resolution graph-based clustering (MRGC) has been 
used for electrofacies analysis. In this method, other disad-
vantages of clustering methods such as previous knowledge 
about the number of clusters and early parameters have been 
eliminated. The MRGC method is very suitable for complex 
structural analysis and clustering the data sets in different 
shapes, sizes and densities (Khoshbakht and Mohammadnia 
2012).

Multi‑resolution graph‑based clustering (MRGC) 
method

Introducing two parameters (NI and KRI) makes the MRGC 
to offer better results than other methods. The neighborhood 

index (NI) is a parameter that is defined by each sample 
weighted x relative to all y samples. Two points near each 
other can be easily separated if they have a high neighbor-
hood index (Ye and Rabiller 2000). As a result, the number 
of electrofacies is easily determined by the set of relations 
as follows:

N denotes the total number of samples, x denotes m-near-
est neighbor y, and a is a smoothing parameter that is larger 
than zero. The value of NI(x) varies between zero and one, 
so as with increasing NI(x), sample x approaches the center 
of the cluster. The kernel representative index (KRI) is a 
parameter that combines the neighborhood index NI(x), 
neighborhood function M (x, y) (number of neighbors), and 
the distance function D (x, y). NI(x) provides the ability to 
identify the kernel of a cluster. By combining the two factors 
M (x, y) and D (x, y), a good balance between the size (i.e., 
the number of samples per cluster) and the cluster volume 
is created and it increases the consistency of results. If NI(x) 
is the value of NI at the point x and y is the first neighbor of 
x with the condition NI(y)>NI(x), the KRI at the point x is 
estimated using Eq. 2:

where M (x, y) = m, y is mth neighbor of x, and D (x, y) is the 
distance between x and y. If the KRI value is sorted down 
and plotted, several important breakpoints can be observed. 
These breakpoints correspond to the number of optimum 
clusters in different segregations. Subsequently, using the 
K-nearest neighbor approach and the NI value, the main 
natural groups (absorbing groups) are formed. For this, at 
any point such as p from the k-nearest neighbors, a point 
such as q whose NI value is larger than p and the rest of the 
neighbors is chosen as the absorption point. If p absorbs all 
the points around it but is not absorbed by any point, then it 
is in the center of the cluster. But if both simultaneQuery-
ously is absorbed and absorbs points around it, then it is an 
inner point of the cluster, and if it does not absorb any point, 
but is absorbed by other points, it lies on the cluster bound-
ary. In this way, natural groups of data are called absorption 
groups. In the end, these absorption groups are merged into 
two. Provided that either or at least one of them is devoid of 
a nucleus previously selected at the KRI stage. In this way 
clusters (electrofacies) are formed. Provided that either or 

(1)

S(x) =

N−1∑
n=1

exp(−m∕a)

Smin = Min {S(xi)}

Smax = Max {S(xi)}

NI(x) =
S(x) − Smin

Smax − Smin

(2)KRI(x) = NI(x) ×M(x ⋅ y) × D(x ⋅ y)
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at least one of them is devoid of a kernel that previously 
selected at the KRI stage.

Support vector regression (SVR)

Assume that a training data set is given as 
{(x1 ⋅ y1) ⋅ ⋯ ⋅ (xl ⋅ yl)} ⊂ 𝜒 × R, where � refers to the input 
data space ( � = Rd ). In support vector regression method 
introduced by Vapnik and Golowich (1997), the goal is to find 
the function f(x) such that for each training point, the maxi-
mum deviation value � is obtained from the real yi value and 
simultaneously as uniform as possible (flat). In other words, 
errors less than � are ignored in this case, but errors larger than 
this value will not be accepted. The function f (x) is a standard 
linear form as follows:

where⟨.⟩ refers to an inner product in � space. Being uniform 
in relation (3) means w is small. Clearly, if w =0, then the 
simplest mode of the model is obtained. One way to achieve 
this is to minimize the Euclidean norm of w. We can call this 
issue a convex optimization problem in the form of relation 
(4).

The assumptions in (4) state that there exists a function such 
as f such that it approximates all points (xi.yi) with accuracy � . 
But sometimes this may not be the case, and you need to have 
the capacity to make an error. For this purpose, we introduce 
the slack variables ξ and ξ* for optimization in Eq. (4). Hence, 
we arrive at a relationship 5 that was presented by Vapnik:

The constant C  > 0 determines the balance between the 
flatness of f and the tolerable amount of error higher than the 
value of � . This is equivalent to dealing with a function called 
�-insensitive loss function |� |� , which is in the form of rela-
tion (6):

(3)f (x) = ⟨w ⋅ xi⟩ + b ;w ∈ � ⋅ b ∈ R,

(4)
Min

1

2
∥ w ∥2

Subject to

�
yi − ⟨w ⋅ xi⟩ − b ≤ �

⟨w ⋅ xi⟩ + b − yi ≤ �

(5)

Min
1

2
∥ w ∥2 +C

l�
i=1

�
�i + �∗

i

�

Subject to

⎧⎪⎨⎪⎩

yi−⟨w ⋅ xi⟩−b ≤ � + �i
⟨w ⋅ xi⟩ + b − yi ≤ � + �i
�i ⋅ �

∗
i
≥ 0

(6)|� |� = ||yi − f (x)|| =
{

0 if |� | ≤ �

|� | − � |� | − � otherwise

In Fig. 1, only training points outside the shaded area par-
ticipate as fine points in the linear model. It can be concluded 
that most of the optimization problems can be simply solved in 
the form of a dual formula. A dual formula can be considered 
as a way of extending support vector machines to nonlinear 
functions. Hence, a standard duality approach with Lagrange 
multipliers will help solve the problem (Fletcher 1989). The 
above problem relates to the linear mode of training data in 
input space. In regression problems with high-dimensional 
data (each dimension belongs to a measured quantity and the 
output variable is the same permeability measured from the 
core), the distribution of data is nonlinear, so in this case the 
kernel functions are used (Schölkopf and Smola 2002) and the 
data are transferred to a space, called Feature Space, in which 
case the training data will be regression similar to Fig. 1. The 
support vector regression method is a reliable method for esti-
mating the function due to its unique features such as math-
ematics and reasoned theory, non-convergence in the local 
minima, and generalizability (Akande et al. 2014).

Data

The selected data belong to a gas field which is located in 
the Persian Gulf and is one of the largest gas fields in the 
world. The reservoir is heterogen, the original poroperm 
heterogeneities in the Upper Dalan–Kangan reservoir are 
inherited from their palaeo-platform depositional setting 
but were modified subsequently during diagenetic pro-
cesses. Therefore, for precise characteri-zation of the res-
ervoir properties in such a heterogeneous carbonate reser-
voir, integration of sedimentary and diagenetic features is 

Fig. 1   A schematic view of the soft margin loss setting for a linear 
SVM
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essential (Rahimpour-Bonab and Rahimpour-Bonab 2009). 
The data consist of 4 wells which include core plug and dif-
ferent well logs such as gamma (GR), neutron (NPHI), den-
sity (RHOB), acoustic (DT), deep laterolog (LLD), shallow 
laterolog (LLS), and micro spherical focused log (MSFL), 
photoelectric absorption factor (PEF).

Permeability estimation

The permeability estimation steps are summarized as 
follows:

Step 1: Selecting the proper well log data.
Step 2: Electrofacies analysis using MRGC method.
Step 3: Permeability estimation by support vector regres-

sion based on the radial basis function.

Selecting the proper well logs

For electrofacies analysis and clustering, the wells photo-
electric absorption factor (PEF), acoustic (DT), neutron 
(NPHI), and density (RHOB) were used as more proper 
ones.

Electrofacies analysis using MRGC​

Lithofacies characterization is the best solution for over-
coming the problem of heterogeneity in determining the 
petrophysical properties of the reservoir rock, reservoir mod-
eling and identifying producing zones. However, coring as 
the most robust method of lithofacies identification is very 
expensive, time-consuming and limited to a few numbers 
of wells.

Considering the advantages of the MRGC clustering 
method compared with other clustering methods, this 
method has been used to determine the electrofacies. 
MRGC is a fast method that allows the geologist or petro-
physist to analyze and test different combinations of data 
in a short amount of time. It is also not limited by the 
dimensions of the data and number of the clusters. Using 

the Facimage module available in the Geolog software, the 
electrofacies of the reservoir can be acquired by import-
ing the selected logs. The imported well logs in all four 
wells SP-A, SP-B, SP-C and SP-D, include DT, NPHI, 
RHOB and PEF logs. Table 1 shows the number of facies 
clustered by MRGC along with their characteristics, as a 
result, four electrofacies have been identified.

Figure 2 shows the cross-plot of NPHI and RHOB logs, 
as well as PEF and RHOB, by virtue of the four electrical 
facies obtained using the MRGC method.

Electrofacies is named as Table 2 and thereafter perme-
ability will be estimated for each of them separately.

Table 3 shows the percentage of each identified facies 
in wells SP-A, SP-B, SP-C, and SP-D, using MRGC and 
Fig. 3 is a histogram of different obtained electrofacies 
distribution in the four wells.

Permeability estimation using SVR

The SVR as a machine learning needs a training dataset 
for permeability prediction. The dataset is provided using 
the clustered electrofacies samples in training wells SP-A, 
SP-B and SP-C. The samples in the well SP-D are consid-
ered unseen in the training process and used as a testing 
dataset to evaluate the accuracy of the SVR for estimating 
the permeability. The correlation coefficient (CC) criterion 
has been used to check the ability of the model. The CC 
calculates the statistical correlation between real perme-
ability and estimated permeability in the testing well SP-D 
as follows:

where yr and ye represent the actual values and the esti-
mated values, respectively, while y′

r
 and y′

e
 are the mean of 

the given values. In the following, the permeability will be 
predicted separately for each electrofacies to make the model 
more exact and reliable.

(7)CC =

∑
(yr − y�

r
)(ye − y�

e
)�∑

(yr − y�
r
)2(ye − y�

e
)2

Table 1   Electrofacies categorized in the studied sequence (COL = Color, PAT = Pattern)
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Permeability estimation of Electricfacies 1

To estimate the permeability of the group 1, the samples 
of facies number 1 in the three wells SP-A, SP-B and SP-C 
were used as learning dataset to train and create the SVR 
model. The radial basis kernel function is selected and 
optimized to build the model. To evaluate the method, the 
samples in the well SP-D related to electrofacies 1 is con-
sidered as an unseen dataset and correlation is calculated. 

The statistical correlation between actual and estimated per-
meability values for this electrofacies is determined 88.2%. 
Figure 4, shows the scattered plot of the real permeability 
(Pr) versus estimated permeability (Pe) using support vector 
regression based on radial basis function kernel in electrofa-
cies number 1.

Fig. 2   The cross-plot of NPHI and RHOB logs, as well as PEF and RHOB, by virtue of the four electrical facies obtained using the MRGC 
method

Table 2   Naming the 
Electrofacies

Electrofacies color Electro-
facies 
number

Blue 1
Orange 2
Green 3
Red 4

Table 3   The percentage of each identified electrofacies in different 
wells

Well Electrofa-
cies 1

Electrofa-
cies 2

Electrofa-
cies 3

Electrofacies 4

SP-A 22.54 21.5 16.9 39.06
SP-B 17.87 27.64 23.35 31.14
SP-C 17.37 15.6 39.66 27.37
SP-D 20.88 20.12 32 27

Fig. 3   The histogram of obtained electrofacies using MRGC in the 
wells of SP-A, SP-B, SP-C, and SP-D
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Permeability estimation of Electricfacies 2

Same as pervious section, for permeability prediction of the 
electrofacies group 2, learning dataset is gathered using the 
three wells SP-A, SP-B and SP-C to train the support vector 
machine. Different kinds of kernel functions of the machine 
are tested and radial basis is selected as the best for creat-
ing the model. To test the machine, testing data set the well 
SP-D is used to calculate the correlation. The correlation 
coefficient of real and predicted permeability is calculated 
as 78.51 percent for the second group. Figure 5 shows the 
actual permeability versus predicted permeability using SVR 
based on radial basis function for group 2 of electrofacies.

Permeability estimation of Electricfacies 3

To predict the permeability of the electrofacie group 3, the 
model is created using the training samples in the three 
wells SP-A, SP-B and SP-C using support vector regression 
method. To build the model radial-based kernel function 
is chosen as the optimized function. For investigating the 
machine, testing dataset which is gathered by samples in 
the well SP-D is used. The correlation between actual and 
estimated permeability ​​for this cluster resulted in 84.73%. 
The real permeability versus estimated is illustrated in Fig. 6 
of the electrofacies 3 in the well SP-D.

Permeability estimation of Electricfacies 4

Permeability of the cluster 4 is estimated using the support 
vector regression machine which is trained using learning 
dataset collected in wells SP-A, SP-B and SP-C. To create 
the machine for group 4, same as before, different kernel 
function is employed which radial basis function provide 
most powerful predictive model. To check the ability of the 
developed technique testing samples in well SP-D related to 
electrofacies 4 is used. The correlation coefficient of core 
and predicted permeability is calculated as the high amount 
77.54%. Figure 7, represents the scattering plot of the real 
and estimated permeability against each other for cluster 
number 4. As it is obvious from the figure most of samples 
are overlapped which proves the high correlation.

Estimated permeability log in well SP‑D

The predicted permeability for different electrofaice in the 
well SP-D in the sections before is merged together to create 

Fig. 4   Scattered plot of actual permeability values ver-
sus estimated for electrofacies number 1 in the well SP-D 
( Pe = estimated permeability;Pr = real permeability)

Fig. 5   The actual permeability versus predicted permeability using 
SVR based on radial basis function for group 2

Fig. 6   The real permeability versus estimated permeability plot of the 
electrofacies 3 in the well SP-D
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a permeability log. Figure 8, shows the real ( Pr ) and esti-
mated ( Pe ) permeability log in the well SP-D.

To compare the results better, a part of the logs is selected 
(depth from 3180 to 3270 m) and the graphs are plotted 
together in Fig. 9. From the figure, the similarity of the per-
meability which is estimated using support vector regres-
sion models and real permeability log is obvious. The high 
matching of the plots in Fig. 9 confirms the ability of created 
model for permeability prediction using SVR based on radial 
basis kernel function algorithm.

Conclusion

Study of reservoir properties such as porosity, water satura-
tion, permeability, and volume of shale is really helpful to 
reduce the risk of producing wells drilling. Permeability is 
one of the most important parts of reservoir studies in which 

Fig. 7   The scattering plot of the real and estimated permeability 
against each other for cluster number 4

Fig. 8   The real (left) and the 
estimated (right) permeability 
logs in the well SP-D
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various methods with different levels of efficiency have been 
introduced till now. In this study the support vector regres-
sion method is employed for permeability prediction using 
well logs in South-Pars gas field. SVR is a reliable method 
for estimating the function due to its unique features such as 
mathematics and reasoned theory, non-convergence in the 
local minima and generalizability.

To estimate the permeability using well logs, first by the 
multi-resolution graph-based clustering method, the number 
of four electrofacies in the reservoir sequence was obtained 
in the wells SP-A, SP-B, SP-C, and SP-D. The samples in 
the wells SP-A, SP-B, and SP-C were considered as learning 
dataset to train the SVR and the samples in the well SP-D 

were unseen to test and evaluate the method. The radial basis 
kernel function was developed to create more powerful sup-
port vector machine. The trained model was used to estimate 
the permeability in well SP-D for different electrofacies, 
separately. The correlation coefficient criteria, calculated 
between real and estimated permeability were used to inves-
tigate the accuracy and efficiency of the created models.

The correlation coefficient for the four facies in the well 
SP-D determined 88.2, 78.51, 84.73, and 77.54, respectively. 
The high amounts of correlation coefficient in the hidden 
well SP-D refer to the prediction strength of SVR regression 
model based on radial basis function kernel regarding the 
heterogeneity of the South Pars gas field reservoir. Accord-
ing to the final results, it could be concluded that SVR based 
on radial basis function is a powerful algorithm which pre-
dicts permeability using well logs reliably.
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