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Abstract
Most infrared satellite remote sensors have a higher spatial resolution than microwave satellite sensors. Microwave satellite
remote sensing has proven successful for the retrieval of soil moisture (SM) information. In this study, we propose a SM retrieval
algorithm based on temperature vegetation dryness index (TVDI), a function of land surface temperature (LST), and the
normalized difference vegetative index (NDVI) provided by Moderate Resolution Imaging Spectroradiometer (MODIS) data.
We implemented the LST correction with elevation effect. Conversion relationships between TVDI and SM content for a variety
of land types were obtained from spatial and temporal collocation of TVDI and Global Land Data Assimilation System (GLDAS)
SM content for 2014. From the comparison with the GLDAS SM for 2015, the proposed TVDI-based SM algorithm showed
good performance with CC = 0.609, bias = −0.035 m3/m3, and root-mean-square-error (RMSE) = 0.047 m3/m3, while the Soil
Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) SMs present CC = 0.637 and 0.741, bias =
0.042 and 0.010 m3/m3, and RMSE = 0.152 and 0.103 m3/m3, respectively. For the in situ SMmeasurements of the Korea Rural
Development Administration (RDA), the proposed TVDI-based SM algorithm yielded CC = 0.556, bias = −0.039 m3/m3, and
RMSE = 0.051 m3/m3 excluding the winter season. Consequently, the proposed SM algorithm could contribute to
complementing the low spatial resolutions of microwave satellite SM products and low temporal resolutions of GLDAS SM
products.
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1 Introduction

Soil moisture (SM) is the water content of land surface soil
expressed as a ratio of the volume (or mass) of water
contained in a unit volume (or mass) of soil. SM quantity
plays a significant role in controlling the exchange of water
and heat energy between land surface and atmosphere. In ad-
dition, SM is an important geophysical variable in operational
applications such as agricultural activity, global floodmanage-
ment, numerical weather forecasting, and climate change
(e.g., GCOS, 2010).

Ground-based point measurements of SM quantity are
characterized by disadvantages such as high spatial and
temporal variability, a lack of data, variations in consis-
tency, integrity, and reliability of data quality, and others.
Satellites are useful for global SM estimation because
they provide accurate and consistent measurements. In
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general, microwave satellite remote sensing is widely
used for this purpose because of minimal dependence on
weather conditions and direct relation to SM (e.g., Wang
and Schumugge 1980; Dobson et al. 1985; Jackson 1993;
De Jeu et al. 2008; Hong and Shin 2011). However, it has
the disadvantage of relatively low spatial and temporal
resolution compared to optical and infrared (IR) satellite
remote sensing. In addition, strong radio-frequency inter-
ference (RFI) of microwave remote sensing (Ellingson
and Johnson 2006; Li et al. 2004) causes difficulties in
developing SM retrieval algorithms.

There have been many studies on visible and IR-based SM
retrieval (e.g., Bowers and Hanks 1965; Price 1977; Stoner
and Baumgardner 1981; Lobell and Asner 2002; Liu et al.
2003). However, these approaches have limitations due to

the impact of land type difference and soil texture on SM
(e.g., Stoner and Baumgardner 1981; Escadafal et al. 1989;
Mattikalli 1997) and the low transmittance of vegetation cover
layers.

In order to include the effect of vegetation on SM, the
temperature vegetation dryness index (TVDI) (e.g., Price
1990; Gillies et al. 1997) has been proposed as a combina-
tion of two factors of the normalized difference vegetative
index (NDVI) and land surface temperature (LST). It was
developed for the empirical interpretation of water stress
on vegetation (e.g., Sandholt et al. 2002; Wang et al. 2004;
Han et al. 2010; Chen et al. 2011), and satellite-derived
TVDI was found to have a negative linear relationship with
in situ SM measurements (e.g., Chen et al. 2015). Carlson
(2007) showed that TVDI could provide more complete

Fig. 1 a Land cover and (b)
elevation information of the study
area. Land covers are: (1)
Evergreen Needleleaf Forests; (2)
Evergreen Broadleaf Forests; (3)
Deciduous Needleleaf Forests; (4)
Deciduous Broadleaf Forests; (5)
Mixed Forests; (6) Closed
Shrublands; (7) Open Shrublands;
(8) Woody Savannas; (9)
Savannas; (10) Grasslands; (11)
Permanent Wetlands; (12)
Croplands; (13) Urban and Built-
up Lands; (14) Cropland/Natural
Vegetation Mosaics; (15)
Permanent Snow Nd Ice; (16)
Barren
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information on SM monitoring based on the soil-
vegetation-atmosphere transfer (SVAT) model. Gillies and
Carlson (1995) described the NDVI-LST spatial distribu-
tion as a triangular distribution, interpreting it as TVDI.
Moran et al. (1996) hypothesized that LST difference and
NDVI space data are trapezoidal, and developed the water
deficit index (WDI), (e.g., Petropoulos et al. 2009).
Sandholt et al. (2002) found a high correlation coefficient
(CC) (CC = 0.70) between TVDI and SM through a study
of northern Senegal.

In this study, we present a TVDI-based SM retrieval
a lgo r i thm us ing Modera t e Reso lu t ion Imag ing
Spectroradiometer (MODIS) data to compensate for the
disadvantages of crude spatial resolution and limitation of
SM retrieval over dense vegetation region in passive mi-
crowave remote sensing.

2 Data and Method

2.1 Data

For this case study, we selected the Far East Asia region
including the Korean peninsula as the study area. For the
land cover information and elevation map, we used the
MODIS land cover product (MCD12Q1) and the
Advanced Space-borne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model
(GDEM) (version 2.0) product. Figure 1 shows land cover
information (Fig. 1a) and the elevation map (Fig. 1b) of the
study area. Figure 1a shows that four different land types
occupy most of study area including barren or sparsely
vegetated land (pink color), grassland (yellow color), crop-
land (orange color), and forest (green and dark green col-
or). The MCD12Q1 from the year 2014 were used to ob-
tain the different relationship coefficients between TVDI
and SM. The MCD12Q1 during 2015 were used to verify
our algorithm.

For estimating TVDI, we used MODIS LST (MOD11A2,
version 6) data and MODIS NDVI of vegetation index
(MOD13A2, version 6) data. The MODIS instruments

onboard the TERRA satellite (launched in 1999) have 36
spectral bands ranging from 0.4 μm to 14.4 μm. We used
the MODIS 16-day NDVI products and 8-day LST products
with 1 km resolution. Accordingly, we converted 8-day
MODIS LST into 16-day MODIS LST by calculating the
averages in order to coincide with the MODIS NDVI data.

Several parameters influence LST including solar inci-
dent radiation, angle of incidence of solar radiation, land
cover, and air temperature. Recently, Kwon et al. (2017)
and Khandelwal et al. (2017) studied the effect of changes
in elevation on LST. They found consistent inverse linear
trends between LST and elevation for all seasons.
Therefore, we applied an elevation effect on the MODIS
LST because the study area contains various types of land
cover and a wide elevation range from 0 to more than
8000 m. For the elevation map to correct for the elevation
effect on the LST product, we used the GDEM (version
2.0) product generated using stereo-pairs-collected by the
ASTER observation. The GDEM version 2.0 has 30-m
spatial resolution with 10–25 m accuracy in elevation
and coverage of land between 83°N - 83°S.

For SM retrieval based on TVDI values, we used the
Global Land Data Assimilation System (GLDAS) surface
SM product. It produces high quality and synthesized SM
data using a variety of observations and surface models.
GLDAS data has a spatial resolution of 0.25° and 1.0° at 3-
h intervals. Monthly-averaged GLDAS SM data is also
provided. The GLDAS provides four different types of
surface models including Mosaic, Noah, Community
Land Model (CLM) and Variable Infiltration Capacity
(VIC). In this study, we adapted the SM data from the
Noah model (Noah 2.7: GAS/Noah experiment 881). The
Noah model consists of four SM layers from the surface
(0–0.1 m) to the root zone (1–2 m) along the surface depth.
Our TVDI values were comparable with the surface SM
data from GLDAS because of the penetration depth of IR
bands. The GLDAS SM data were converted from kg/m2

into volumetric SM (m3/m3). In addition, GLDAS SM

Fig. 2 A conceptual diagram of TVDI in the space of LST and NDVI

Table 1 Summary of data

Variable type Input data Note

NDVI MODIS (MOD13A2) Input data

LST MODIS (MOD13A2) Input data

Land Cover MODIS (MOD13A2) Auxiliary (Static)

Elevation ASTER GDEM (V2) Auxiliary (Static)

Soil moisture GLDAS

Soil moisture RDA (in-situ measurement) For validation
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Fig. 3 Elevation effect on LST for different land types: (a) Evergreen
Needleleaf Forests; (b) Evergreen Broadleaf Forests; (c) Deciduous
Needleleaf Forests; (d) Deciduous Broadleaf Forests; (e) Mixed Forests;

(f) Closed Shrublands; (g) Open Shrublands; (h) Woody Savannas; (i)
Savannas; (j) Grasslands; (k) Croplands; (l) Cropland/Natural Vegetation
Mosaics; (m) Barren
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products were produced as 16-day averaged SM data to
coincide with the MODIS data.

To assess the remote sensing data, we used the in situ mea-
surements provided by the Korea Rural Development
Administration databases (RDA; http://weather.rda.go.kr/).
The RDA provides hourly ground SM data measured at
10 cm depth using Time Domain Reflectometry (TDR).
Most of the RDA stations used in this study were located in
croplands. Table 1 summarizes all input and auxiliary data
used for developing this IR-based SM algorithm. The RDA
SM is the point-based SM, while our IR-based SM and the
GLDAS SM have spatial resolutions of 1 km and 25 km,
respectively. Thus, three SMs should be compared

qualitatively on the basis of the spatial pattern and temporal
variation trends of each SM rather than quantitative SM
amounts.

2.2 Method

The TVDI is defined as follows (e.g., Sandholt et al. 2002):

TVDI ¼ Ts−Ts;min
� �
Ts;max−Ts;min
� � ð1Þ

where Ts is the observed LST. Ts, max and Ts, min are obtained
from distribution of observed Ts. TVDI values show a linear

Fig. 3 (continued).
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increase from 0 (wet edge) to 1 (dry edge).
In general, TVDI is 0 for saturated soil surfaces and 1

for completely dry soil. Therefore, TVDI values are es-
timated between 0 and 1 for general soil surfaces, from
bare soil to vegetation canopy. Previous studies have
demonstrated the TVDI-based SM retrieval is available
from top soil to dense forest (e.g., Capehart and Carlson
1997; Sandholt et al. 2002; Cho et al. 2016). This is one
advantage of using the TVDI; microwave satellite-based
SM retrievals are not available in area with dense vege-
tation, including forest regions (e.g., Wigneron et al.
2003).

In Equation (1), Ts, max and Ts, min are the maximum and
minimum LST as a function of NDVI, respectively. They are
described as follows:

Table 2 Regression coefficients between LST and elevation-corrected
LST for different land types

Land Type Offset Slope R

Evergreen Needleleaf 298.05 −2.5191 −0.591
Evergreen Broadleaf 302.1578 −3.9787 −0.548
Deciduous Needleleaf 296.9807 −1.3755 −0.213
Deciduous Broadleaf 296.9538 −1.2959 −0.267
Mixed forest 299.9467 −3.1703 −0.646
Croplands 302.0758 −1.0416 −0.166
Natural vegetation 299.6304 −1.7029 −0.282
Bare land 321.9556 −4.6212 −0.858
Closed shrublands 303.676 −2.5845 −0.558
Open shrublands 309.4261 −2.3973 −0.479
Woody savannas 302.528 −4.2973 −0.659
Savannas 299.4877 −2.1873 −0.552
Grasslands 310.4088 −3.3063 −0.679
mixed vegetation 299.6304 −1.7029 −0.282

Fig. 4 TVDI maps using (a)
MODIS LST and (b) elevation-
corrected LST on August 13,
2015
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Ts;min ¼ a1 þ b1 � NDVI ð2Þ
Ts;max ¼ a2 þ b2 � NDVI ð3Þ
where a1, a2, b1 and b2 are the slopes and offsets of the lower
and upper LST limit functions, which are linearly fitted and
determined empirically from the given data.

In this study, we used the 16-day averagedNDVIwith a 1-km
resolution (MOD13A2.5). Fig. 2 shows a conceptual diagram of
the TVDI with a triangular or trapezoidal shape in the space of
vegetation index and LST (e.g., Sandholt et al. 2002; Cho et al.
2016). Previous studies (e.g., Sandholt et al. 2002; Patel et al.

2009) reported that there was a negative linear relationship be-
tween in situ measurements and satellite-derived TVDI.

In different circumstances, the TVDI depends on LST as
well as NDVI values. LST is influenced by several param-
eters including SM, solar incident radiation, angle of inci-
dence of solar radiation, land cover, and air temperature. In
general, air temperature decreases as altitude increases for
a stationary atmospheric model. Figure 3 shows that LST is
inversely proportional to elevation. The LST at high
elevation land could be coupled not only SM but also
with the low air temperature. Khandelwal et al. (2017)
reported that the elevation effect in the area caused a dif-
ference of 3.5 to 4.6 °C per/km in MODIS LST in the area
surrounding Jaipur, India. Thus, this study used the
elevation-corrected LST for the specific study area using
different simple linear relationships between LST and ele-
vation for different land types as follows:

Ts;corr ¼ Ts þ slopeð Þ � Elevation ð4Þ
where Ts, corr is the elevation-corrected LST.

We used Ts, corr in equation (1) to calculate TVDI. Thus, for
different land types, we calculated the Ts, corr corresponding to
0 m above sea level using equation (4). Table 2 summarizes
the conversion coefficients with slopes and offsets for differ-
ent land types between MODIS LST and Ts, corr, which were
estimated using the MODIS LST product and GDEM eleva-
tion data. Figure 4 shows the effect of the elevation correction
of the LST on the TVDI on August 13, 2015. MODIS LST
overestimates TVDI values at high elevation regions (Fig. 4a),
while the TVDI values obtained by the elevation-corrected
LST are more reasonable for the same regions (Fig. 4b). As
a result, the Tibetan Plateau region exhibits high TVDI values
(dry), while southern China region shows lower TVDI values
(wet).

Subsequently, we determined the upper (dry edge), and
lower (wet edge) lines in the Ts, corr-NDVI space to compute
TVDI using equations (1–4). The data points in Ts, corr-NDVI
space show a triangular distribution.

We then derived the SM conversion equation using pairs of
the calculated TVDI and GLDAS SM content with the follow-
ing linear regression equation:

Mv ¼ cþ d � TVDI ð5Þ
whereMv is the retrieved SM amount and c and d are the slope
and offset, respectively.

We calculated 16-day averaged TVDI using MODIS
elevation-corrected LST and NDVI products from January to
December 2014. We calculated the coefficients in equation (5)
separately for the different land types. The calculated TVDI
were then compared with GLDAS SM to derive the relation-
ship between TVDI and SM. Table 3 tabulates the offset (c)
and slope (d) in equation (5). These coefficients were

Table 3 Regression coefficients between TVDI and GLDAS soil
moisture for different land types

Land Type Offset Slope R

Evergreen Needleleaf −0.0296 0.2875 −0.065
Evergreen Broadleaf 0.1797 0.2311 0.423

Deciduous Needleleaf −0.2363 0.3338 −0.408
Deciduous Broadleaf −0.0909 0.3012 −0.228
Mixed forest 0.1182 0.2285 0.285

Open shrublands −0.0742 0.2543 −0.172
Woody savannas 0.2108 0.1819 0.366

Savannas 0.3386 0.1171 0.5

Grasslands −0.3221 0.3869 −0.534
Croplands −0.3336 0.4322 −0.45
mixed vegetation −0.0302 0.3672 −0.118
Bare land −0.2119 0.2882 −0.466
Evergreen Needleleaf −0.0296 0.2875 −0.065
Evergreen Broadleaf 0.1797 0.2311 0.423

Fig. 5 Flowchart of the proposed TVDI-based SM retrieval algorithm
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calculated using the collocation data of MODIS TVDI and
GLDAS SM data throughout 2014. Figure 5 shows the flow-
chart of our TVDI-based SM retrieval algorithm.

Finally, the TVDI-based SM is validated with the 2015 in
situ RDA measured data. We used the root mean square error
(RMSE) (equation (6)) and Pearson correlation coefficient

(equation (7)) as validation indicators. The RMSE and CC
are defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
yi−xið Þ2

s
ð6Þ

Fig. 6 Scatterplots between NDVI and LST for various land types: (a)
Evergreen Needleleaf Forests; (b) Evergreen Broadleaf Forests; (c)
Deciduous Needleleaf Forests; (d) Deciduous Broadleaf Forests; (e)

Mixed Forests; (f) Closed Shrublands; (g) Open Shrublands; (h) Woody
Savannas; (i) Savannas; (j) Grasslands; (k) Croplands; (l) Cropland/
Natural Vegetation Mosaics; (m) Barren
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rx;y ¼
∑ xi−x
� �

∑ yi−y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ xi−x
� �2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ yi−y
� �2

r ð7Þ

where N is the number of data points, xi and yi are the i-th
TVDI-based SM and in situ RDA SM measurement data,
respectively. rX, Y is the CC between the TVDI-based SM (x)
and the in situ RDA SMmeasurement (y) data, respectively. x
and y are the means of the X and Y, respectively.

3 Results

Figure 6 shows scatterplot examples of NDVI and LST.
Subsequently, we compared the TVDI with GLDAS SM data.
We obtained a 16-day averaged TVDI in the study area using
the elevation-corrected MODIS LST and NDVI data in 2014.

TheMODIS TVDIwas spatially-averaged in the GLDAS grid
after collocation between MODIS TVDI and GLDAS SM
data.

Figure 7 shows an example of the relationship between
MODIS TVDI and GLDAS SM on August 21, 2014. Land
types such as deciduous needleleaf forests, deciduous broad-
leaf forests, open shrublands, grasslands, and croplands
(barren) show relatively strong negative correlations between
TVDI and SM (Fig. 7a), while land types such as evergreen
needleleaf forests, evergreen broadleaf forests, mixed forests,
woody savannas, savannas, and cropland/natural vegetation
mosaics show relatively weak positive correlation (Fig. 7b).
The land types with positive linear relationships between
TVDI and SM are evergreen broadleaf forests, mixed forests,
savannas, woody savannas, or cropland/natural vegetation
mosaics. The positive linear relationships may be due to mis-
classification of the land cover rather than to linear changes in
the SM. The data points with high TVDI (> 0.5) and high SM

Fig. 7 Relationship between
MODIS TVDI and GLDAS SMs
for land types of (a) land types
with a negative linear relationship
(Deciduous Needleleaf Forests,
Deciduous Broadleaf Forests,
Open Shrublands, Grasslands,
Croplands and Barren), (b) land
types with a positive linear
relationship (Evergreen
Needleleaf Forests, Evergreen
Broadleaf Forests, Mixed Forests,
Woody Savannas, Savannas and
Cropland/Natural Vegetation
Mosaics)
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Fig. 8 Distributions of (a) land cover type, (b) MODIS NDVI, (c) MODIS LST, (d) elevation-corrected LST, (e) TVDI, (f) estimated SM, (g) GLDAS
SM, (h) SMOS SM, and (i) SMAP SM
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(> 0.3 cm3/cm3) are distributed mainly in agricultural areas
around southern China. In this region, data may be contami-
nated by lakes or reservoirs.

Figure 8 shows the results of our proposed SM retrieval
algorithm applied in Far East Asia including the Korean
Peninsula on August 13, 2015. Figures 8a-i show the distri-
bution of land cover type, MODIS NDVI, MODIS LST,
elevation-corrected LST, TVDI, and estimated SM, GLDAS
SM, SMOS SM, and SMAP SM. In this study, we did not
calculate the TVDI for urban areas, permanent waters, or
lakes. In addition, cloudy and frozen land (LST less than
273.15 K) areas were excluded, as shown in Fig. 8. The
TVDI map in Fig. 8(e) was generated using NDVI and
elevation-corrected LST (Fig. 8d). The NDVI and elevation-

corrected LST show details of the dryness of the topography
of the Korean Peninsula. The TVDI-based SM map (Fig. 8f)
also describes a typical summer pattern of SM in the Korean
Peninsula, which is similar to the GLDAS SM (Fig. 8g).
However, the SMOS SM (Fig. 8h) showed relatively low
SM in theManchuria region. The SMAP SM (Fig. 8i) showed
high SM along the coastlines of the Korean Peninsula and
Southern China. The SMOS and SMAP SMs displayed dif-
ferent SM amounts and distributions in the Korean Peninsula
and Manchuria regions.

Figure 9 shows an example of a validation result with a
time series assessment compared with station 2711 of the
RDA (Yeongwol: longitude = 128.4618°E, latitude =
37.1836°N) among 73 RDA stations. Figure 9a shows the

Fig. 8 (continued).

Korean Meteorological Society

Infrared Soil Moisture Retrieval Algorithm Using Temperature-Vegetation Dryness Index and Moderate... 285



location of the RDA 2711 station. Figure 9b shows the time
series of 16-day averaged retrieved SM, GLDAS SM, and
RDA SM amounts. GLDAS SM values are relatively high,
from 0.25 m3/m3 to 0.38 m3/m3 in January to February 2015
(winter season), and our TVDI-based SM and RDA SM show
good agreement in the same period. From spring to autumn
seasons, the three SM products show better agreements.
Generally, RDA SM shows higher SM content. The GLDAS
and TVDI-based SMs tend to underestimate RDA SM. The
large discrepancy among the three SMs occurs in November
andDecember 2015. The RDASMvalues decrease to approx-
imately 0.1 m3/m3. The GLDAS and TVDI-based SMs with
small variations tend to overestimate RDA SM. Figures 9c, d
(d) show the statistical results of TVDI-based SM and
GLDAS SM compared with in situ RDA measurements dur-
ing 2015. If the winter season is included (Fig. 9c), the
GLDAS and TVDI-based algorithm shows a very low

performance in estimating the SM. If the winter season is
excluded because the land surface is frozen during this period,
TVDI-based SMs show reasonable agreement with the RDA
SM, with CC = 0.556, bias = −0.039 m3/m3 and RMSE =
0.051 m3/m3. The performance of the TVDI-based SMs is
very similar to the GLDAS SMs with CC = 0.609, bias =
−0.035 m3/m3, and RMSE = 0.047 m3/m3.

Figure 10 shows the spatial distribution of RMSE and CC
between the TVDI based SM and the in situ RDA SM mea-
surements during nine months fromMarch to September 2015.
The RMSE values are less than 0.1 m3/m3 for all study areas,
except for several stations. The CC values are generally low.

Figure 11 displays the comparison results between GLDAS
SM and passive microwave satellite as well as SMAP and
SMOS-provided SMs during September 2015. The statistical
results between SMAP-provided SM and GLDAS present
CC = 0.637, bias = 0.042 m3/m3, and RMSE = 0.152 m3/m3.

Fig. 9 a location of RDA 2711 station, (b) time series of 16-day averaged
retrieved MODIS TVDI-based, GLDAS and RDA SMs. Scatterplots
between MODIS TVDI-based SM vs. RDA SM, and GLDAS SM vs.

RDA SM (c) including winter season and (d) excluding winter season at
RDA 2711 station during 2015
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The SMOS-derived SM displays CC = 0.741, bias =
0.010 m3/m3, and RMSE = 0.103 m3/m3. Moreover, our
TVDI-based SM showed CC = 0.609, bias = −0.035 m3/m3,
and RMSE = 0.047 m3/m3. This discrepancy may arise from
the land type classification, because the in situ RDA SM data
were mainly measured for agricultural croplands. In addition,
the presence of rivers or lakes around the measurement area
within MODIS pixel size (1 km × 1 km) can lead to a differ-
ence between TVDI-based SM and in situ RDA SM.
Therefore, our SM algorithms showed good agreement with
the GLDAS SM similar to the SMAP or SMOS SMs.
Accordingly, the proposed approach is sufficient for effective
SM retrieval.

4 Discussion

In general, the IR-based SM retrieval approach has physical
shortcomings such as no direct response to the SM and shal-
low penetration depth compared tomicrowave satellite remote
sensing. In addition, the IR-based SM retrieval approach has
physical limitations because of the low transmittance of the
vegetation layer and the impacts of land type dependence and
soil texture on SM. This study presents an IR-based SM re-
trieval algorithm using the relationship between SM and
TVDI. Our TVDI-based SM retrieval algorithm showed sim-
ilar physical limitations to the previously investigated IR-
based SM retrieval approaches in that the CC values were

Fig. 10 a Spatial distribution of RMSE and (b) correlation coefficient between the TVDI based SM and the in situ RDA SM measurements over the
course of 9 months, from March to September 2015

Fig. 11 GLDAS SM vs. (a) SMAP SM and (b) SMOS SM during September 2015
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generally low in comparison to the RDA SM amounts in the
Korean Peninsula.

However, this study has the advantage of explainable geo-
physical variables such as LST and NDVI, which, in particu-
lar, can be estimated via the IR satellite observations. Our
TVDI-based SM showed similar amounts and distributions
to the GLDAS SM because the latter was used to obtain the
relationship between TVDI and SM. However, our TVDI-
based SM retrieval algorithm has the advantage of higher
spatial resolution than GLDAS SM. In addition, our TVDI-
based SM showed good agreement with the ground observa-
tions (RDA SMs) but tended to underestimate RDA SM, ex-
cept for the frozen season. Notably, the SMOS and SMAP
SMs showed different SM amounts and distributions in the
Korean Peninsula and Manchuria regions (Fig. 8).

This paper presents a land type dependence of the TVDI-SM
relationship; in other words, the LST and vegetation type
dependence of SM. A previous study by Chen et al. (2015)
showed that satellite-derived TVDI has a negative linear relation-
shipwith insituSMmeasurements;negative relationshipbetween
TVDI and SM were observed for land types such as deciduous
needleleaf forests, deciduous broadleaf forests, open shrublands,
grasslands, and croplands. It was also revealed that the land types
such as evergreen broadleaf forests, mixed forests, savannas,
woody savannas, or cropland/natural vegetationmosaics showed
a weak positive relationship between TVDI and SM.

5 Concluding Remarks

This study presented a TVDI-based SM retrieval algorithm
using MODIS data including elevation-corrected LST, to
complement the disadvantages of crude spatial resolution
and limitations of SM retrieval over dense vegetation regions
in passive microwave remote sensing. The TVDI is estimated
using LSTand NDVI information from optical satellite obser-
vations. MODIS LST, NDVI products, and GLDAS SM data
were used to develop the 16-day averaged TVDI and SM
estimates. The LST dependence on elevation was also ana-
lyzed. The in situ RDA SM data were used for the validation
of the proposed algorithm. As evident from the validation
results, the TVDI-based SM algorithm produces a similar ac-
curacy to GLDAS SM products, with reasonable agreement
with RDA SM within 0.1 m3/m3 of RMSE in the Korean
Peninsula, excluding the winter season.

The proposed TVDI-based SM retrieval algorithm could be
effective at a relatively higher spatial resolution from micro-
wave satellites, such as the SMOS and SMAP satellites, in
addition to overcoming the temporal limitations of models
such as GLDAS SM.
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