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Abstract
Precise evaluations of climate model precipitation outputs are valuable for making decisions regarding agriculture, water re-
source, and ecosystem management. Many downscaling techniques have been developed in the past few years for projection of
weather variables. We need to apply dynamical and statistical downscaling (DD and SD) to bridge the gap between the coarse
resolution general circulation model (GCM) outputs and the need for high-resolution climate information over a semi-arid region.
We compare the requirements of DD (RegCM4) and SD (Delta) approaches, evaluate the historical run of NNRP1 data in
comparison with station data, and analyze the changes in wet days and precipitation values through both methods during 1990–
2010. In this study, we did not want to use prediction data under different scenarios of climate change, and we have just applied
observed data to assess the amount of precise of NNRP1 data, over the observed period. SD method requires less time and
computing power than DD. The DD approach performs better over the evaluation period according to efficiency criteria. In
general, the Pearson correlation in DD with observation data in evaluation period was higher than (r > 0.72 and R2 > 0.52) SD
(r > 0.65 and R2 > 0.41) over three study stations. Similarly, MAE and NSE show better results from DD relative to SD. SD
underestimates the number annual mean wet-days for all three stations examined. DD overestimates a number of annual mean
wet-days, but with less deviation from the observed mean.
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1 Introduction

The Fifth Assessment Report of the Intergovernmental Panel
on Climate Change describes the state of the science of cli-
mate change (IPCC AR5 2013). General circulation model
(GCM) outputs often have global coverage, they do not pro-
vide high spatial resolution outputs on proper scales for man-

agement decision-making (Meehl et al. 2007; Ullah et al.
2018). For transforming these coarse outputs to a finer reso-
lution, there are two broad fundamental approaches, namely
Statistical Downscaling (SD) and Dynamical Downscaling
(DD) (Abbasnia et al. 2016). Both approaches provide re-
searchers with access to fine-scale resolution projections of
drought, flood, and climate change impacts on hydrology,
water resources, air pollution, and crop yields.

SD uses equations to associate the variables simulated well
by GCMs (predictors) and surface climate variables based on
observed records (predictands). This method does not model
atmospheric dynamics (Ayar et al. 2016). The three most com-
monly used approaches for statistical downscaling are (1)
transfer functions (Imbert and Benestad 2005), (2) weather
typing (Huth et al. 2008), and (3) stochastic weather generator
(Buishand et al. 2003). Several variations on a fourth approach
Bias Correction (BC), have been developed to downscale cli-
mate variables from climate models (Li et al. 2010; Chen et al.
2011; Maraun 2016).
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Dynamic downscaling, nesting a fine scale climate model
in a coarse scale model to simulate higher spatial resolution by
solving equations of motion and thermodynamics, lateral
boundary conditions, parameterization, and physical process-
es (Giorgi et al. 2001). DD and SD approaches have their own
advantages and disadvantages, but there is no consensus that
one approach is superior in terms of reproducing the observed
variability of local climates (Mearns et al. 1999; Gutowski
et al. 2000). DD approaches have heavy computational costs,
long runtime, and require convection schemes and input data
(Benestad 2010; Kim et al. 2016a, b). SD approaches are
simple, require less computational demand, time, cost, and
are easily implemented, which explains their relative popular-
ity of SD approaches (Souvignet and Heinrich 2011;
Manzanas et al. 2017a, b; Nikulin et al. 2017).

Over the last two decades, dynamical and statistical down-
scaling approaches have been compared in New Zealand
(Kidson and Thompson 1998), Europe (Murphy 1999;
Manzanas et al. 2017a, b), eastern Nebraska (Mearns et al.
1999), Colorado (Wilby et al. 2000), Japan (Oshima et al.
2002), Romania (Busuioc et al. 2006), UK (Haylock et al.
2006), North America (Wang and Zhang 2008), southeastern
United States (Lim et al., 2007), Philippines (Robertson et al.
2011), northeastern United States (Tryhorn and DeGaetano
2011), Spain (Casanueva et al. 2016), China (Su et al. 2017),
and Eastern Africa (Nikulin et al. 2017). Several researchers
point to the SD and DD differences in projected precipitation
changes. Jang et al. (2013) assessed the difference in 100-year
average precipitation changes over northern California region
outputs from SD (BCSD (Bias-Correction and Spatial
Downscaling)) vs DD (MM5 (the Fifth-Generation NCAR/
Penn State Mesoscale Model)). The BCSD method of Wood
et al. (2004) is an empirical statistical technique in which the
monthly precipitation and temperature output from aGCM are
downscaled. The MM5 model is a regional mesoscale model
used for creating weather forecasts and climate projections.
The most prominent features of the MM5 are multiple-
nesting capability, availability of four-dimensional data assim-
ilation (FDDA), and a large spectrum of physics options (Boo
et al. 2004). The precipitation change from MM5 simulations
and BCSD estimations show the opposite spatial patterns in
many places over the study region. The BCSD method has
limitations in projecting future precipitation values. Mehrotra
et al. (2013) saw SD as providing better simulations of point
rainfall, spell lengths, and amounts, but DD was well suited
where regionally averaged rainfall is of primary concern.

Schmidli et al. (2007) compared daily precipitation statis-
tics obtained by using six SD and three DD approaches over
the European Alps. Their result revealed that all SD
approaches underestimate the magnitude of the interannual
variations, but the DD approaches produce about the right
amount of interannual variability. Vrac et al. (2012) analyzed
the performance of SD and DD and compared the potential

benefit of applying a SD model to different DD approaches.
The evaluated the uncertainty in downscaling of wind, tem-
perature, and rainfall cumulative distribution functions for
eight stations in the French Mediterranean basin over 1991–
2000. They showed that SD approach produces accurate re-
sults. Gutmann et al. (2012) investigated the amount of winter
precipitation over complex terrain by SD and DD approaches.
The results showed that there are regions of significant
difference between the two methods. Ayar et al. (2016) com-
pared six SD and five RCM models are used in terms of
precipitation outputs. The stochastic and resampling-based
SD approaches better modeled marginal properties of rain
occurrence and intensity, while RCMs and resampling-based
SD approaches well reproduced spatial and temporal
variability.

The large year-to-year variation in precipitation amounts is
key for water resources planning, hydrological and agricultur-
al modeling, and environmental assessments, especially in
arid and semi-arid regions. In this work, we (1) compare the
requirements of DD (RegCM4) and SD (Delta) approaches,
(2) compare local predictions against observations, and (3)
evaluate the downscaled predictions results (obtained either
with SD or with DD) against observations, across yearly and
seasonal timescales.

2 Data and Methods

2.1 Downscaling Methods

In this study, we used both approaches for downscaling,
namely SD and DD. In the SD approach, the Delta method
was applied, and for DD, the RegCM4.1 model was run.
These methods were run on the data of the NNRP1
(NCEP/NCAR Reanalysis Product version 1) model. The fol-
lowing sections (2.1.1 and 2.1.2) provide more details of the
mentioned models and approaches. In addition, all the steps of
this research were presented in Fig. 1.

2.1.1 Statistical Downscaling

Statistical downscaling is based on the relationship between
the local climate surface variables and large-scale (typically
circulation) atmospheric variables. We utilize the Delta meth-
od of SD approaches, as it is the most widely used with RCM
outputs (Maraun et al. 2010; Themeßl et al. 2012; Kang et al.
2016; Kim et al. 2016a, b; Manzanas et al. 2017a, b), easy to
run, and it is a relatively simple method (Dessu and Melesse
2013). Wetterhall et al. (2012) called this method as a direct
method. Maraun et al. (2010) revealed that Delta approach is
not a bias correction of a climate model, but only employs the
model’s response to climate change tomodify observations, as
it is a useful benchmark for bias correction. Whereas in a large
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number of climate change impact assessment studies have
used a bias correction downscaling method which often re-
ferred as the delta change method (Eckhardt and Ulbrich
2003; Teutschbein and Seibert 2012; Sunyer et al. 2012;
Sachindra et al. 2014). The delta-approach, add only the cli-
mate change signal from GCMs to observations (Hay et al.
2000). Delta method has the advantage of simplicity and mod-
est data requirements. In this study, downscaled precipitation
is calculated as follows (Eq. 1):

PDelta
SD ¼ PMod;daily � PObs

PMod

 !
monthly

ð1Þ

where PDelta
SD is downscaled data of precipitation, PObs is the

mean observed precipitation, and PMod denotes the NNRP1
mean precipitation data over the control period (GCM histor-
ical run). If we want to use future data then we should apply
future period in the equation. In this study, we have developed
a tool (AgriMetSoft SD-GCM 2017) for running the Delta
technique. The SD-GCM (Statistical Downscaling of
General Circulation Models) software is a useful tool for
downscaling CMIP5 models under RCP Scenarios. In this
tool, the observation data and output data would be in Excel
format files and the order of data in the columns are not im-
portant, therefore user can easily load the input observation
data. This tool has an option for the verification metrics, in-
cluding Nash-Sutcliffe Efficiency (NSE), Spearman

Correlation, RMSE (Root Mean Squared Error), d (index of
agreement), and MAE (Mean Absolute Error). For further
details, refer to the help file of the SD-GCM tool.

2.1.2 Dynamical Downscaling

We used the Regional Climate Model (RCM) version 4.1,
RegCM4 (Giorgi et al. 2012), developed at the Abdus
Salam International Centre for Theoretical Physics
(ICTP). It is an improved version of RegCM3 (Pal et al.
2007), which is also an evolution of its previous version
RegCM2 (Giorgi et al. 1993a, b). The dynamical core of

NNRP1 Data

(historical run 

1990-2010)

Observation 

Data

(1990-2010)

Downscaling

SD method

(Delta)

DD method

(RegCM4)

Evaluation process through statistic criteria over 1990-2010

Output 

Result

Select the best method

Fig. 1 The flowchart of different
steps in this study

Table 1 The RegCM4 configuration used in this study

Contents Description

Resolution 20 km

Vertical layer (top) 18 sigma (50 hPa)

Map projection Lambert conformal

Horizontal grid 137 × 147 (iy × jx)

Cumulus convection
(Convection scheme)

Grell (Grell et al. 1994)

Model icbc data source NNRP1

Model SST data source OI_WK

Simulation period 1/ 1 /1988 to 12/ 31 /2010
(24 months spin up)
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the RegCM is essentially equivalent to the hydrostatic ver-
sion of the NCAR/Pennsylvania State University meso-
scale model MM5 (Grell et al. 1994). Lateral boundary
conditions were obtained from the NCEP/NCAR
Reanalysis 1 (NNRP1) dataset at 2.5° × 2.5° latitude-
longitude horizontal resolution over the observed period
of 1990–2010. NNRP1 data was produced by the
National Centers for Environmental prediction (NCEP) in
collaboration with the National Centre for Atmospheric
Research (NCAR) and it covers the period from 1948 to
present day. The data assimilation system uses a 3D-
variational analysis scheme, with 28 sigma levels in the
vertical and a triangular truncation of 62 waves that corre-
sponds to a horizontal resolution of approximately 200 km.
For more details refer to Kalnay et al. (1996).

Sea-surface temperature (SST) was taken from the
National Oceanic and Atmospheric Administration
(NOAA) Optimum Interpolation SST (OISST) dataset with
a weekly temporal resolution and 1° × 1° spatial resolution
(Reynolds et al. 2002). Global terrain 30 arc-seconds res-
olution global land cover characteristics (GLCC; Loveland
et al. (2000)) were used. For land use, we used GTOPO

topography data. Details of the model configuration are
presented in Table 1.

2.2 Verification Metrics Used and Used Graphs

We used three performance and evaluation metrics: MAE
(MacLean 2005), Pearson’s correlation coefficient (R), and
NSE (Nash and Sutcliffe 1970). MAE was used to determine
the average magnitude of the error. The R coefficient was used
to measure the degree of agreement between observation data
and simulation data. The NSE ranges fromminus infinity to 1,
with a value of 1 indicating perfect agreement between mea-
sured and model-estimated values. A value of 0 indicates that
the measuredmean is as good a predictor as the model, where-
as negative values indicate that the measured mean is a better
predictor than the model. These equations are defined as fol-

lowing, with O observed, O mean observed, S simulated
values, and N is the number of observations:

MAE ¼
∑
N

i¼1
jSi−Oij
N

; ð2Þ

Fig. 2 The study area location with three stations

Table 2 Physiographic details of
study locations, weather data during
the observation period (1990–
2010)

Location LA (°N) LN (°E) Elev. (m) Ave.
Tmax

Ave.
Tmin

Total
Precipitation(mm)

Climate
(De Martonne)

Mashhad 36°16′ 59°38′ 999.2 22 8.3 256 semi-arid

Sabzevar 36°12′ 57°43′ 972 24.8 11.8 198 arid

Torbat 35°16′ 59°13′ 1450.8 20.5 7.5 273 semi-arid

LA latitude, LN longitude, Elev. elevation, Tmax maximum temperature (°C), Tmin minimum temperature (°C).
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Box-Whisker plots presenting observation data versus
the downscaling methods over (1990–2010) were drawn.
In this graph, the horizontal line in the middle of the box
represents the median, the upper edge of the box repre-
sents the 75th percentile (upper quartile, UQ), while the
lower edge is the 25th percentile (lower quartile, LQ). The
boxes extend between the 25th to the 75th percentiles
refers to the Interquartile Range (IQR), and the whiskers
show the 5th and 95th percentiles, points are values out-
side this range.

In addition, the Cumulative Distribution Function plot
(CDF) was also depicted. In this graph, the horizontal axis is
the allowable domain for the given probability function. Since
the vertical axis is a probability, it must fall between zero and

one. We applied CDF for comparing the changes in precipita-
tion of observation, statistical, and dynamical total precipita-
tion during 1990–2010.

2.3 Study Area

This study area (Fig. 2) was comprised of three different
semi-arid locations: Mashhad, Sabzevar, and Torbat-e
Heydarieh (Torbat), all located in Khorasan-e Razavi prov-
ince, northeastern Iran. The study area province is located
between 33° 52′ S and 37° 42′ N latitude and 56°19′Wand
61°16′ E longitude, with an area of 118,851 km2. Daily
precipitation (mm) data were collected from the meteoro-
logical station at each location over 1990–2010 (Table 2).
Homogenization and quality control of weather data were
performed by the national meteorological organization of
Iran (www.weather.ir) before the release of such data to
users. The precipitation data in Table 2 refers to yearly
mean total precipitation amounts during 1990–2010.
Also, the number of wet days (#) were calculated from
precipitation data via MATLAB programming language
(R2017b, Version 9.1) for each day that the total precipi-
tation was >0 .1mm (Buishand et al. 2003).

3 Results and Discussion

3.1 Comparison of System Requirements

As seen in Table 3 and similar to other studies (Murphy
1999, 2000; Maurer and Hidalgo 2008), the DD method
required more RAM (32GB) and hard drive space
(150GB, due to precise settings such as boundary con-
ditions and convection scheme) than the SD Delta meth-
od (RAM 3GB and hard 3GB). RAM is an acronym for
Random Access Memory. The runtime for data loading
and extracting in NC format file, applying the desired
model for downscaling, and finally receive the down-
scaled weather data was also less intensive for SD
(shown in Table 3).

3.2 SD and DD Methods Evaluation

DDmethod outputs performed better than SD method outputs
overall for Mashhad and Torbat for all three efficiency metrics
(Table 4 and Fig. 3). SD had better results at Sabzevar when
performance was judged on NSE and MAE criteria. Figure 3
shows the relationships between monthly precipitation over
each station (Mashhad, Sabzevar, and Torbat) and the corre-
sponding values from the SD and DD precipitation. These
results reveal that there is an acceptable agreement between
the station-observed precipitation data and SD and DD pre-
cipitation data, with R2 > 0.52 for DD method and R2 > 0.41

Table 3 The system requirements and used runtime

Method Contents Description

DD RAM(GB) 32

Hard(GB) 150

Number of cores 16

Runtime 35 days

SD Ram(GB) 3

Hard(GB) 3

Number of cores 2

Runtime 10 min

Table 4 The results of statistical criteria between observed precipitation
data and SD, and DD methods during 1990–2010 (monthly)

NSE MAE R*

DD Mashhad 0.09 13.35 0.72

Sabzevar −0.26 12.96 0.74

Torbat 0.5 12.22 0.73

SD Mashhad −0.59 15.86 0.65

Sabzevar 0.18 10.47 0.70

Torbat −0.16 16.1 0.69

*: R at 95% confidence level and p value<0.05
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for SD method (at 95% confidence level and p value<0.05).
Overall, the SD method shows weaker correlations than the
DD for precipitation, but the difference in the results of

correlation in the two approaches is negligible. The highest
R2 among three stations is achieved at the Sabzevar station for
both SD and DD approaches.
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Fig. 3 Relationships of the monthly precipitation observed data vs. the SD and DD precipitation over the three stations

Table 5 The annual mean of wet
days, and total annual of
precipitation during 1990–2010,
with observation, statistical, and
dynamical data output, over three
locations

The annual mean of wet-days (#) Total annual of precipitation (mm)

Observation SD DD Observation SD DD

Mashhad 45 19 69 243 235 310

Sabzevar 36 28 53 187 179 283

Torbat 42 19 52 266 251 268
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3.3 Precipitation and Wet-Days

Total annual precipitation (mm) and annual mean of the num-
ber of wet days (#) observation and simulated downscaled
data over 1990–2010 are presented in Table 5. SD underesti-
mates annual mean wet days for all stations, while the DD
overestimates these values. Sabzevar is drier than the other
stations in this study. Similar to wet days, SD underestimates
total annual precipitation and DD overestimates these values
Table 5. Tryhorn and DeGaetano (2011) found a similar over-
estimation ofmean precipitation bias by the DD approach. DD
precipitation bias is larger than SD for all stations. Frost et al.
(2011) similarly found that SD approaches underestimated the
number of wet-days. Wang et al. (2016) also found that the

BC-based methods like our SD Delta method underestimated
the wet-day frequency and the precipitation intensity. Our
results confirm the findings of Maraun (2013) and Chen
et al. (2011).

For Mashhad station in winter, SD more closely matched
observed (1990–2010) median precipitation and DD showed a
bias toward overestimation (Fig. 4a). As you see in Fig. 4a
(Mashhad), Delta method showed a wider range (from mini-
mum to maximum) of the predicted precipitation values than
RegCM4, also the maximum values of precipitation by Delta
are greater than the RegCM4’s output, over winter and spring,
whereas the highest IQR happened by RegCM4 over spring,
summer, and autumn. Both downscaling approaches overesti-
mate precipitation in spring over Mashhad and Sabzevar. For

(a)Mashhad

(b)Sabzevar

(c)Torbat

Fig. 4 Box plots for seasonal total
precipitation (Pre.) values during
1990–2010 over three stations,
that the first character of the word
refers to W(Winter), S(Spring),
SU(Summer), A(Autumn), and
the second one refers to
S(Statistical), D(Dynamical), and
O(Observation)
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autumn, observation variability and median precipitation are
better represented by DD and slightly underestimated by SD.
In comparison with the median of observation and Delta
method, RegCM4 had the largest variation of the median,
and the highest median values predicted by the RegCM4 has
occurred in winter (WD) and spring (SD).

At Sabzevar (Fig. 4b) SD performed fairly well with
regard to the variability and median of precipitation in
winter. DD overestimated variability and median precipi-
tation in winter and spring, and strongly overestimates the
percentile above 75th. The upper quartile of the seasonal

precipitation distribution increases during winter and
spring, in compare to observation data. At Torbat
(Fig. 4c), both the SD and DD approaches underestimated
the values of precipitation, but adequately capture median
winter value. SD obtained the highest IQR in spring, and
DD did relatively well for IQR in spring and autumn.
Overall, in three stations, SD approach overestimated the
precipitation’s values over spring; also, DD has the same
behavior in spring, except for Torbat station. From the
analysis for all stations, SD presented lower values of pre-
cipitation than DD, at summer and autumn.
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Fig. 5 The average seasonal wet-
days during 1990–2010 of
observation, statistical, and
dynamical data output, in the
three locations
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At Mashhad station, the SD approach tends to underesti-
mate the number of wet days in winter, spring, and summer.
DD tends to overestimate wet days for these seasons (Fig. 5a).
As illustrated in Fig. 5b, Sabzevar station shows trends similar
to Mashhad: SD predictions are much closer to the observa-
tion station data and DD overestimates values for all seasons
except summer. This may be because Sabzevar station is an
arid area in contrast to the semi-arid climate of the other two
sites. Torbat (Fig. 5c) shows similar results as Mashhad sta-
tion; the SD approach underestimates wet days, and DD tends

to overestimate for all seasons except summer. Mashhad and
Torbat have similar climate and both of them are semi-arid. To
summarize, for the four seasons of three data outputs (station,
SD, and DD) in three locations, the number of wet days in a
historical run versus observation data, are almost well cap-
tured by DD at autumn. Generally, the SD method tends to
underestimate this value, while DD overestimates it, during
winter, spring, and summer.

Figure 6 shows CDFs for observed versus SD and DD
precipitation at three locations. For the observed precipitation

(a)Mashhad

(b)Sabzevar

(c)Torbat

Fig. 6 Cumulative distribution
functions (CDF) of observed,
statistical, and dynamical total
precipitation in three locations
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at Mashhad (Fig. 6a), the probability of more than 40 mm of
total precipitation is 20% ((1–0.80)*100 = 20%), but the
values from SD and DD using historical data are 30% and
32%, respectively. At Mashhad, DD and SD show similar
outputs of precipitation values greater than 50 mm of 20%
probability. At Sabzevar DD significantly overestimates the
probability of precipitation over 20 mm; SD only slightly
overestimates this (Fig. 6b). The probability of total precipita-
tion of more than 50 mm is 20% from DD, but this value is
10% from SD and 10% from observed data. DD outputs sug-
gest a 60% probability of total precipitation less than or equal
to 30 mm, but this value is 75% for SD and 80% for historical
data. The historical probability for more than 25 mm of total

precipitation at Torbat is 45% from the SD approach and 40%
for DD. All three cases (observed, SD, and DD) agree on the
probability of 120 mm or more of total precipitation (Fig. 6c).
Overall, the DD approach more closely matches observed
than SD at Torbat.

Average daily precipitation from 1990 to the end of
2010 from the dynamic simulation of the RegCM4 mod-
el in northeastern Iran is shown in Fig. 7. Precipitation
simulations of the dynamic model in Sabzevar were 0.5–
0.6, Torbat 0.7–0.8, and Mashhad, 0.8–0.9 mm / day,
while observed values at these three stations have been
reported 0.52, 0.73, and 0.67 mm / day, respectively.
The simulated precipitation values in Torbat and

Fig. 7 The result of average daily precipitation through DD method during 1990–2010
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Sabzevar are fully matched with observational values,
but at Mashhad station, the dynamic model has a near
2 mm overestimate.

Both SD and DD approaches reproduced precipitation
and wet days of the case study, but both represented
biases with respect to observations as well. The statisti-
cal criteria show that the DD approach yielded better
results than SD. This finding agrees with the results of
Mearns et al. (1999), Gutowski et al. (2000), and Yarnal
et al. (2001).

4 Conclusion

This analysis has focused on the performance of SD and
DD approaches over NNRP1 precipitation historical data
(1990–2010). We assessed their accuracy vs. observation
data on precipitation amount and number of wet days, on
annual and seasonal scales. DD is more complex and
needs high frequency (6 hourly) GCM outputs and is as-
sociated with a heavy computational cost of RCMs. SD is
computationally efficient, require less computational de-
mand, time, cost, and are easily implemented. For this
semi-arid area, the SD approach underestimates annual
mean precipitation and number of wet days in all stations,
whereas the DD overestimates these values. In all stations,
the Pearson correlation coefficients for DD were greater
than 0.72; for SD coefficients were more than 0.65 (p
value<0.001). MAE results of DD for Mashhad and
Torbat were 13.35 and 12.22, respectively; for SD they
were 15.86 and 16.1. For Sabzevar station, MAE of DD
was 12.96, whereas for SD it was 10.47. The Pearson
correlation, NSE, and MAE values all point to the DD
approach as more efficient. This finding agrees with other
downscaling studies of precipitation and highlights the ad-
vantages of considering different downscaling methods
(Hayhoe et al., 2006; Haylock et al. 2006; Maurer and
Hidalgo 2008; Wang et al. 2016).

One of the limitations of this study was that it has been
applied over a not very big region over the northeast of Iran.
Better results may be obtained in different climates, with a
further number of stations. Finally, according to the results
of this research, we emphasize that the choice of most appro-
priate downscaling method depends on the user’s require-
ments (time and expense), time scale (seasonally, monthly or
daily scale), and the climate of regions of interest.
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