
ORIGINAL ARTICLE

Downscaling of CMIP5 Models Output by Using Statistical
Models in a Data Scarce Mountain Environment (Mangla Dam
Watershed), Northern Pakistan

Naeem Saddique1,2
& Christian Bernhofer1 & Rico Kronenberg1

& Muhammad Usman2,3

Received: 30 October 2018 /Revised: 7 February 2019 /Accepted: 22 February 2019
# Korean Meteorological Society and Springer Nature B.V. 2019

Abstract
In this study, statistical downscaling models were used to project possible future patterns of precipitation and temperature in the
Jhelum River basin shared by Pakistan and India. In-situ meteorological data were used to downscale precipitation and temper-
ature using different General Circulation Models (i.e., CanESM2, BCC-CSM1–1, and MICROC5) relative to baseline (1961–
1990) under the Representative Concentration Pathway (RCP) scenarios RCP4.5 and RCP8.5. The downscaling models used
were the Statistical Downscaling Model (SDSM), which uses multiple linear regression and weather generator methods, and the
Long Ashton Research Station Weather Generator (LARS-WG), which uses weather generators. The results showed that the
SDSM performance was slightly better than that of LARS-WG during validation and that the representation of the simulated
mean monthly precipitation was more correct than that of monthly precipitation. The results also revealed that BCC-CSM1–1
performed better than CanESM2 and MICROC5 in the study region. The future annual mean temperature and precipitation are
expected to rise under both RCP scenarios. The changes in the annual mean temperature and precipitation with LARS-WG were
relatively higher than those with SDSM. Out of four seasons, winter and autumn are expected to be more diverse with regard to
precipitation changes. However, although both models yielded non-identical results, it is certain that the basin will face a hotter
climate in the future.
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1 Introduction

Global climate has undergone a significant warming during
the last five decades or so (Zhou and Yu 2006; Meehl et al.
2007). Different studies have determined that this global
warming can be mainly attributed to rising greenhouse gases,
particularly nitrous oxide, carbon dioxide, and ozone (Allen
et al. 2000; Huang et al. 2011; Anderson et al. 2016). The

Intergovernmental Panel on Climate Change (IPCC) Fifth
Scientific Assessment Report (AR5) stated that the mean
global surface temperature rose by 0.85 °C (i.e., 0.65 °C to
1.06 °C) during the period of 1800–2012, and it is believed
that a further increase will occur during the twenty-first cen-
tury depending on four Representative Concentration
Pathway (RCP) scenarios. This projected augmentation is pre-
dicted to be 0.30 °C - 1.70 °C under the RCP2.6 scenario,
1.10 °C- 2.60 °C under RCP4.5, 1.40 °C - 3.10 °C under
RCP6.0 and 2.60 °C - 4.80 °C under RCP8.5 by the end of
this century (IPCC 2013).

These changes in global mean temperature disturb environ-
ments, agriculture, food security, human health and ecosys-
tems. The change in climate causes the redistribution of water
resources and increases the frequency and intensity of floods
and droughts (Li et al. 2013). Rainfall and temperature are
more relevant parameters that directly influence the water cy-
cle as impacts of climate change. Changes in these parameters
can directly affect the amount of evapotranspiration and both
the quantity and quality of the flow component. The changes
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in upstream snow reserves are mostly affected by the changing
climate in South Asia (Immerzeel et al. 2010). Projection of
future climate change in South Asia is mandatory for explor-
ing sustainable development and for devising future adapta-
tion measurements to nature.

The trends of past, present and future climate change have
been explored by using General Circulation Models (GCMs).
These GCMs simulate the global climate on the bases of pos-
sible future greenhouse gas scenarios. The horizontal resolu-
tion of a current GCM is approximately 150 Km, and the
spatial resolution of one GCM varies with respect to another
(Taylor et al. 2012). Direct use of GCM for decision-making is
not recommended because their output lacks fine spatial res-
olution, which is necessary for local applications. To surmount
this gap, different downscaling techniques have been devel-
oped, including statistical approaches such as regression, sto-
chastic weather generators and relationships with weather pat-
terns. These downscaling techniques establish a relationship
among large-scale climate variables (predictors) such as rela-
tive humidity and wind speed to local-scale variables
(predictand) such as temperature and precipitation (Wilby
et al. 2002; Mahmood and Babel 2013; Pervez and Henebry
2014; Zhang et al. 2016). The statistical downscaling (SD)
approach does not depend on GCM boundaries, as with
Regional Climate Models (RCMs). In the SD approach the
biases in climatic models can be easily corrected (Wilby
et al. 2002; Maraun et al. 2010; Sachindra and Perera 2016).
RCMs are used in the dynamic downscaling (DD) of climatic
variables and are mostly found to be heavily biased for a
specific region (Turco et al. 2011), which thus necessitates
the use of SD for climate change projections.

Stochastic weather generators (WGs) are probabilistic
models that are used to simulate weather data at a particular
place by analyzing historical climatic data and then generating
a time series of weather variables with statistical properties
identical to the historical data (Wilks 1999). Daily weather data
generated by these models have been used in various climate
change studies in agriculture and hydrology (Semenov et al.
1998; Charles et al. 2017). First order Markov chain models
have been used in WGs that simulate the occurrence of rainy
and dry days and use a gamma distribution for precipitation
amount. Over time, second order (Mason 2004) and third order
(Dubrovský et al. 2004) Markov chain models have been de-
veloped that more effectively reproduce precipitation occur-
rences along with climate statistics.

Regression-based downscaling methods involve establish-
ing an empirical relationship between large scale variables
(predictors) and the local past observational climate data
(predictands) (Wigley et al. 1990; Dibike and Coulibaly
2005). The success of this method is depend on the quality of
the data used for calibration, selection of the effective predic-
tors and choice of the transfer function. To date, different types
of regression methods, such as linear and nonlinear regression,

canonical correlation, principal component analysis and artifi-
cial neural networks, have been used to develop empirical re-
lationships between predictand and predictors (Conway et al.
1996; Huth 2002). The main strength of regression models is
that they are comparatively less difficult to apply.

The LARS-WG and SDSM are two famous statistical
downscaling models used for downscaling GCM outputs such
as temperature, precipitation and solar radiation. The SDSM
model is a hybrid of transfer functions andWGmethods. Both
models have been universally used for the assessment of cli-
mate change (Wilby et al. 2002; Huang et al. 2011; Somenov
and Barrow 2002; Mahmood and Babel 2013; Hassan et al.
2014; Meaurio et al. 2017; Gulacha and Mulungu 2017). The
main focus of current studies is the evaluation and comparison
of these models to simulate temperature and precipitation.
Several findings suggest that both models perform well for
simulating mean daily rainfall, although wet and dry spell
lengths were better estimated by LARS-WG compared with
SDSM. Similar patterns of maximum and minimum daily
temperatures were found for both statistical models during
calibration and validation. However, the two models did not
agree for future temperature and precipitation time series due
to different downscaling strategies (Dibike and Coulibaly
2005; Hassan et al. 2014).

Few recent studies have been conducted for downscaling
temperature and precipitation using multiple GCMs under
new RCPs scenarios for Pakistan, in particular for the
Jhelum River basin (Mahmood and Jia 2017; Mahmood
et al. 2018). The studies used the linear scaling method for
downscaling climatic variables. Moreover, no study has been
conducted using SDSM and LARS-WG under RCP scenarios
until now. The aim of this study is the evaluation of both
models for the study area and analysis of their output. For this
purpose, two RCPs (4.5 and 8.5) and three GCMs of Coupled
Model Inter-comparison Project 5 (CMIP5) were used with
SDSM and LARS-WG to downscale temperature and precip-
itation by the end of this century. The objective of this com-
parison was to select the statistical method to downscale cli-
mate data that could be further used for different environmen-
tal studies. The rest of manuscript is organized as follows:
section 2 states the study area and data, and section 3 gives
the detailed descriptions of the two downscaling methods.
Section 4 demonstrates results and discussions. The last sec-
tion (section 5) illustrates the conclusions of this study.

2 Study Area and Data

2.1 Description of the Study Area

The Jhelum River basin (JRB) extends from 73 °E and 75.62
°E and 33 °N and 35 °N (Fig. 1). The basin has an area
coverage of 33,397 km2. Its altitude ranges from 232 to
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6287 m. The upper Jhelum River is the largest tributary of the
Indus Basin after the Indus River. The Jhelum River drains its
water into the Mangla reservoir, the second largest reservoir in
Pakistan. The majority of water flows into the reservoir during
March to August, with a significant share during May due to
snowmelt. More than 75% of the total water enters the reser-
voir during March to August (Babur et al. 2016). The total
command area of theMangla dam is 6mha and the dam serves
two purposes: it provides water for irrigation and a 6% share
of the total electricity production in Pakistan (Archer and
Fowler 2008). Locations of precipitation and temperature sta-
tions are shown in Fig. 1.

The Jhelum River basin is mostly covered by mountains
whose altitude increases from south to north. In the southern
part of the watershed, the temperature changes from subtrop-
ical and falls below the freezing point in the northern parts of
the watershed during winter. The hottest months are June and
July, with an average temperature of 30.5 °C, whereas the
coldest months (Dec-Jan) have an average temperature of
0.3 °C. The entire JRB has a long-term mean annual rainfall
of approximately 1196 mm yr.−1 (Table 1). Two distinct peaks
can be observed based on the basin’s mean precipitation,

(Fig. 2a). The highest peak in the basin is in the month of
July, the result of the summer monsoon that occurs due to
the energetic southwestern winds moving from the Bay of
Bengal and across the Arabian Sea towards the Himalayas.
The next peak (March) in the watershed is due to Western
disturbances (WDs) that bring sudden winter rain (Ahmad
et al. 2015).

2.2 Data

2.2.1 Meteorological Data

Observed rainfall, maximum temperature (Tmax) and mini-
mum temperature (Tmin) data of 16 stations for the period of
1961–2012 were obtained from the Water and Power
Development authority (WAPDA), Pakistan Meteorological
Department (PMD), and the Indian Meteorological
Department (IMD). The temperature and rainfall data of
Gulmarg, Srinagar, Qaziqand, and Kupwara meteorological
stations were obtained from the IMD and the remaining data
from the PMD and the WAPDA.

Fig. 1 Location map of the study area and weather stations
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2.2.2 NCEP/NCAR Reanalysis Data

The daily reanalysis data for the time period of 1961–2005
were obtained from the National Centers for Environmental
Prediction/National Center for Atmospheric Research
(NCEP/NCAR); the data are available at a spatial coverage
of 2.5 degrees longitude and 2.5 degrees latitude and include
26 atmospheric variables such as relative humidity, zonal ve-
locity component, specific humidity, and vorticity.

2.2.3 RCP Scenario Data

Three GCM (i.e., BCC-CSM1.1, CanESM2 and MIROC5)
outputs with RCP4.5 and RCP8.5 scenarios were obtained
from the ESGF website (http://pcmdi9.llnl.gov/) for the

period of 1961–2100 and have the same number of predictors
for all the GCMs and period length. RCP4.5 illustrates a
medium-low RCP of radiative forcing rising to ~ 4.5 W.m−2

until 2070, and RCP8.5 is the highest-level RCP, which leads
to radiative forcing of 8.5 W.m−2 by the end of twenty-first
century (Moss et al. 2010). These GCMs were selected on the
basis of their good performance over South Asia. All the
models well captured the peaks of rainfall, specially
MICROC5 performance was outstanding in highly complex
climate system (Babar et al. 2015; Prasanna 2015). These
GCM data were interpolated at the same grid resolution (2.
5o × 2.5o) as the NCEP data to eliminate the biases that may
have occurred by contradictions present at this scale. Then, the
NCEP and all the GCM predictors were normalized with the
mean and standard deviation acquired from the historical

Table 1 Inventory of climate
stations Station Name Lat

(deg.)
Long
(deg.)

Elve
(m,MSL)

Tmax
(°C)

Tmin
(°C)

Precipitation (mm/
year)

Jhelum 32.94 73.74 287 30.59 16.45 854

Gujar khan 33.26 73.30 458 28.02 13.98 830

Kotli 33.50 73.90 614 28.44 15.63 1245

Plandri 33.72 73.71 1401 22.73 11.30 1443

Rawalkot 33.87 73.68 1676 21.87 10.25 1397

Bagh 33.97 73.79 1067 26.80 12.86 1422

Murree 33.91 73.38 2213 16..55 8.83 1779

Garidoptta 34.22 73.62 814 25.34 12.16 1567

Muzaffarabad 34.37 73.48 702 27.32 13.55 1423

Balakot 34.55 73.35 995 25.06 11.97 1701

Naran 34.90 73.65 2362 11.13 1.15 1154

Astore 35.34 74.90 2168 15.35 3.94 534

Kupwara 34.51 74.25 1609 20.04 6.29 1245

Gulmarg 34.00 74.33 2705 11.38 1.75 1543

Srinagar 34.08 74.83 1587 19.78 7.31 721

Qaziqund 33.58 75.08 1690 19.24 6.47 1345

Fig. 2 Monthly mean a
precipitation and rainy days and b
temperature Max and Min in the
Jhelum River basin
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period of 1961–1990. Table 2 provides the overview of each
GCM such as name, development institute and grid
resolution.

3 Methodology

3.1 SDSM Description

SDSM is a hybrid of transfer functions and WGs (Wilby et al.
2002; Wilby et al. 2006). SDSM is extensively used world-
wide to downscale weather parameters, such as temperature
and precipitation, to determine how climate change affects the
water cycle (Chu et al. 2010). Multiple linear regressions
(MLRs) establish empirical relationships between predictors
(such as geopotential height) and predictands (such as solar
radiations) and generate some parameters. Weather generators
use these parameters to simulate a number ensemble to create
a strong correlation with station data. Three different types of
sub-models can be constructed in SDSM such as monthly,
seasonal and annual sub-models. The current study employs
only the monthly model; 12 different regression models were
developed, one for each month of the year. A conditional
model was chosen for precipitation and an unconditional mod-
el for temperature (Wilby and Dawson 2004). In uncondition-
al models a direct link is assumed between the large scale
variables (predictors) and local scale variable (predictand)
(e.g., local wind speeds may be a function of regional airflow
indices). In conditional models, there is an intermediate pro-
cess between large scale forcing and local weather (e.g., local
precipitation amounts depend on the occurrence of wet–days,
which in turn depend on large–scale predictors such as humid-
ity and atmospheric pressure). A fourth order transformation
was applied to precipitation data before its subsequent appli-
cation in the regression analysis. For the optimization, the
ordinary least squares (OLS) method was used while default

values for bias correction and variance inflation were 1 and
12, respectively. Bias correction tunes the daily downscaled
temperature and precipitation, and variance inflation changes
the variance in downscaled climatic data to agree more closely
with observed data.

3.1.1 Screening of Predictors

The most essential component of statistical downscaling with
SDSM is the screening of predictors (Wilby et al. 2002). The
predictors selection method employed in the current study is
consistent with those of other similar studies (Wilby et al.
2002; Khan et al. 2006; Gulacha and Mulungu 2017). In
SDSM4.2, more appropriate predictors were screened based
on correlation coefficient, explained variance and the p value
among the individual predictors and predictand. The daily
data of 26 predictors were employed to investigate correlation
between predictors and predictand. The predictor with the
highest correlation was selected as the first predictor
(superpredictor), and the default values always had a signifi-
cance level of P < 0.05. After the selection of the first predic-
tor, the second and third predictors were ranked based on
highest correlation and explained variance. However, in the
case of precipitation, correlation between the predictand and
predictors was not high (Hashmi et al. 2011; Huang et al.
2011; Meaurio et al. 2017). The predictor variables selected
for precipitation and temperature in the present study are
shown in bold text in Table 3.

For the selected predictors, it was observed that for both
temperatures (Tmax and Tmin), temperature at 2-m height
was a superpredictor, whereas two superpredictors were found
for precipitation at 500 hpa, specific humidity (southwest part)
and meridional wind velocity (upper part). The predictors se-
lected in the current study are the same as in other similar
studies (Wilby et al. 2002; Huang et al. 2011; Mahmood and
Babel 2013).

Table 2 Description of General
Circulation Models (GCMs), the
downscaling methods and the
Representative Concentration
Pathways (RCPs) used in this
study

Development institute GCM Grid resolution Downscaling
model

RCP

Beijing Climate Center, China BCC-CSM1–1 2.8125° × 2.8125° SDSM 4.5

LARS-WG 8.5

4.5

8.5

Atmosphere and Ocean Research
Institute, University of Tokyo, Japan

MIROC5 1.40625° × 1.40625° SDSM 4.5

LARS-WG 8.5

4.5

8.5

Canadian Centre for Climate
Modelling and Analysis, Canada

CanESM2 2.8125° × 2.8125° SDSM 4.5

LARS-WG 8.5

4.5

8.5
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3.2 Lars-WG

LARS-WG is a stochastic WG used to simulate daily time
series data used in studies of the impacts of climate change
(Wilks and Wilby 1999). The data simulation procedure in-
volves three steps (Semenov and Barrow 2002). First, the
LARS-WG examines the ground station parameters by
obtaining their statistical properties on a monthly basis to gen-
erate probability distribution parameters for that particular
site. Second, these parameters files are further used to synthe-
size data having the same statistical properties as the station
data. LARS-WG is evaluated based on observed and simulat-
ed average monthly weather statistical indices, and relative
change factors from the GCMs outputs for each month are
then calculated. Finally, the calibrated parameters and relative
change factors are used to project daily time series data (Wilks
and Wilby 1999; Al-Safi and Sarukkalige 2018; Sharma et al.
2018). For LARS-WG, one-year data are adequate to simulate
the synthetic time series of climatic variables but the use of

more than 20 years of climate data is recommended for cli-
mate change studies (Mehan et al. 2017). The semi-empirical
distribution (SED) approach is used for the length of wet and
dry day series as well as daily precipitation amount. SED is
normally a cumulative probability density function that has
constant numerical intervals of flexible length (Semenov and
Stratonovitch 2010).

In the current study, LARS-WG5.5 was used for downscal-
ing temperature and precipitation. The model has been used
with 23 intervals (ten in the old version) to illustrate the SED
shape (Chen et al. 2013; Hassan et al. 2014). Therefore, the
current version provides a broad range of distributions for the
more-correct simulation of precipitation statistics, and the sim-
ulation of daily maximum and minimum temperature is con-
trolled by the status of the day (i.e., whether it is wet or dry)
(Al-Safi and Sarukkalige 2018). In the present study, the
model-calibrated parameters were generated for each station
one by one by incorporating daily-observed data for 30 years
(1961–1990). For the model validation, a 10-years long daily
time series was generated using these calibrated parameters.
Each of these generated daily time series was then examined
to determine any statistically significant differences (at a 5%
level) between the ground station and simulated weather data.

For the projection of future changes of precipitation and
temperature for a weather station, the relative change factors
for each month were calculated from the GCM outputs by
taking differences between the data for future periods (i.e.,
2011–2040, 2041–2070 and 2071–2100) and the reference
period (i.e., 1961–1990). To obtain daily time series of future
periods for each weather station, the calculated relative change
factors were then employed for LARS-WG statistical param-
eters of the baseline observed data. A complete overview of
the different steps used in LARS-WG applications in the de-
velopment of climate change was presented in Semenov and
Stratonovitch (2010).

3.3 Climate Extreme Indices

The Expert Team (ET) on Climate Change Detection and
Indices (ETCCDI) jointly sponsored by the World
Meteorological Organization (WMO) Commission of
Climatology (CCI) and the Climate Variability and
Predictability (CLIVAR) project developed 27 indices for
monitoring the changes in climate extremes (Peterson 2005).
The computation of these indices requires daily precipitation
and temperature (minimum and maximum) dataset. In this
study, we considered only 4 indices for models evaluation
(listed in Table 4).

3.4 Model Performance

The performances of the SDSM and LARS-WG statistical
models were examined by comparing the downscaled and

Table 3 Overview of all NCEP variables (the one in bold text were
selected for the calibration of model)

Nr. Variable Description

1 ncepmslpgl Mean sea level pressure

2 ncepp1_fgl Surface airflow strength

3 ncepp1_ugl Surface zonal velocity

4 ncepp1_vgl Surface meridional velocity

5 ncepp1_zgl Surface vorticity

6 ncepp1_thgl Surface wind direction

7 ncepp1_
zhgl

Surface divergence

8 ncepp5_fgl 500 hpa air flow strength

9 ncepp5_ugl 500 hpa zonal velocity

10 ncepp5_vgl 500 hpa meridional velocity

11 ncepp5_zgl 500 hpa vorticity

12 ncepp5_thgl 500 hpa wind direction

13 ncepp5_
zhgl

500 hpa divergence

14 ncepp8_fgl 850 hpa air flow strength

15 ncepp8_ugl 850hpa zonal velocity

16 ncepp8_vgl 850 hpa meridional velocity

17 ncepp8_zgl 850 hpa vorticity

18 ncepp8_thgl 850 hpa wind direction

19 ncepp8_
zhgl

850 hpa divergence

20 ncepp500gl 500 hpa geopotential height

21 ncepprcpgl Precipitation

22 nceps500gl Specific humidity at 500 hpa

23 ncepshumgl Surface specific humidity

24 nceprhumgl Near surface relative humidity

25 ncepr500gl Relative humidity at 500hpa

26 nceptempgl Mean temperature at 2 m
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observed precipitation, Tmax and Tmin, by using different sta-
tistics: the correlation coefficient (R), Bias, Percent of bias
(Pbias), Root Mean Square Error (RMSE) and Normalized
Root Mean Square Error (NRMSE).

R ¼
∑N

i¼1 Pi−P
� �

: Oi−O
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Pi−P
� �2

r
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Oi−O
� �2

r ð1Þ

Bias ¼ ∑N
i¼1 Pi−Oið Þ

N
ð2Þ

Pbias ¼ ∑N
i¼1 Pi−Oið Þ
∑N

i¼1Oi
� 100 ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Oi−Pið Þ2
q

ffiffiffiffi
N

p ð4Þ

NRMSE ¼ RMSE

O
� 100 ð5Þ

where Oi and Pi are the observed and modeled values, respec-
tively, O̅ and P̅ are the means of the observed and modeled
values, respectively, and N is the number of data points. A
Taylor diagram (Taylor 2001) is used to quantify the statistical
relationship between observed and modeled data. In this dia-
gram, the relationship is explained by the Pearson correlation
coefficient (R), the standard deviation ( ) and the centered root
mean square difference (RMS).

4 Results and Discussion

4.1 Calibration of SDSM and LARS-WG

In this study the calibration period for both models was 30 years
(1961–1990). The downscaled mean monthly precipitation, tem-
perature maximum and minimum simulated by both models are
shown in Table 5. In the case of Tmax and Tmin, both models
behaved very close to the observed data, whereas the RMSE
value of SDSMwas lower than that of LARS-WG, which shows
the better performance of SDSM. However, the Pbias values for
SDSMandLARS-WGwere− 0.127%and 0.021%, respectively.
With respect to precipitation, SDSMproducedmuch better results
than LARS-WG. The simulated average monthly precipitation
values of SDSM and LARS-WG were approximately 2.35 mm
and 6.91mmhigher comparedwith themean (X̅) observed value.
The values of RMSE and R2 represents the satisfactory perfor-
mance of LARS-WG in downscaling the precipitation.

Although the SDSM performed better in the statistical
comparison, the predicted SDSM data were not fully able to
capture the observed mean monthly weather data (i.e., Fig. 3).
It is seen that both models overestimated the rainfall in almost
all months. However, LARS-WG overestimated more as com-
pared with SDSM in all months except February and
December. Two peaks can be observed in the trend, one in
March and the other in July. The March peak was well cap-
tured by LARS-WG and the other peak by SDSM. In term of
Tmax and Tmin, the LARS-WG and SDSM overestimated

Table 4 Core climate indices
calculated and analyzed in this
study

Sr.
No.

Index Index long name Index detail Units

1 SU Number of summer days Annual account of days when TX (daily maximum
temperature) >25 °C

Days

2 CWD Consecutive wet days Maximum number of consecutive days with
RR ≥ 1 mm

Days

3 CDD Consecutive dry days Maximum number of consecutive days with
RR< 1 mm

Days

4 R10 Number of heavy
precipitation days

Annual account of days when RR ≥ 10 mm Days

Table 5 Performance of the
models during the calibration
period

X̅ R2 RMSE Bias Pbias (%) SD

Precipitation (mm/month) OBSERVED 92.66 44.97

SDSM 95.01 0.994 3.86 2.31 2.50 44.70

LARS-WG 99.57 0.942 12.90 6.88 7.42 39.98

Tmax (°C/month) OBSERVED 21.856 7.515

SDSM 21.829 0.998 0.252 −0.027 −0.127 7.467

LARS-WG 21.861 0.995 0.721 0.004 0.021 7.271

Tmin (°C/month) OBSERVED 9.617 7.183

SDSM 9.659 0.998 0.260 0.041 0.442 7.157

LARS-WG 9.693 0.990 0.704 0.075 0.787 6.980
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temperatures in the months of January, October, November
and December and underestimated them in the months of
February, March, April, May and June.

4.2 Validation of Downscaling Models

Five datasets were generated for the historical period 1991–
2000 to validate the SDSM and LARS-WG models. For
SDSM forcing of NCEP, three GCM, BCC-CSM 1–1,
MIROC5 and CanESM2 variables were used, denoted as
SDSM-NCEP, SDSM-BCC, SDSM-MIROC and SDSM-

Can, respectively. To validate the LARS-WG model the same
statistical indicators of observed data in calibration were used
without any forcing applied.

4.2.1 Comparisons of Model Performance

In the validation period, the performances of both statistical
models were statistically assessed by using NRMSE and Pbias
between the observed and downscaled data for precipitation,
Tmax and Tmin. The results presented in Table 6 are the
calculated mean values of all meteorological stations. It can
be seen that daily precipitation simulated by SDSM and
LARS-WG show mean NRMSE values of 100.8 and
107.8%, respectively. In monthly precipitation by SDSM,
NRMSE and Pbias range from 66.3 to 73.0% and − 2.1 to
−9.1%, respectively. Conversely, LARS-WG has NRMSE
and Pbias values of 73.8% and − 5.7%, respectively. Higher
value of NRMSE show that LARS-WG underperformed for
downscaling both daily and monthly precipitation. With re-
gard to mean monthly precipitation, LARS-WG has an
NRMSE value again higher than SDSM, which indicates that
SDSM performed better in downscaling the precipitation in
the study area than LARS-WG. In the downscaling of month-
ly (10 years = 10 × 12 = 120 months) and mean monthly
(10 years = mean 12 months) precipitation, the NRMSE and
Pbias of SDSM-BCC were less than those of SDSM-
MICROC and SDSM-Can.

In the case of daily temperature (both Tmax and Tmin)
simulated by SDSM and LARS-WG, NRMSE ranged from
20.1 to 27.6% and 24.5 to 31.1%, respectively. In the simula-
tion of monthly temperature (both Tmax and Tmin), SDSM,
NRMSE and Pbias ranged from 8.5 to 18.8% and − 0.1 to
1.3%, respectively, and in LARS-WG these values ranged
from 12.3 to 16.2% and 0.1 to 3.1%, respectively. In addition,
for mean monthly Tmax and Tmin for SDSM-NCEP (includ-
ing SDSM-BCC, MICROC and Can), NRMSE ranged from
2.7 to 10.6% and LARS-WG presented a good simulation,
with NRMSE ranging from 7.5 to 7.9%. In the downscaling
of precipitation and temperature, BCC-CSM1–1 GCM perfor-
mance was better than that of the other GCMs. SDSM perfor-
mance was better with NCEP reanalysis data than from Can,
MICROC and BCC because NCEP data were used during
model calibration.

4.2.2 Taylor Diagram

The Taylor diagram provides a brief statistical summary of
standard deviation, correlation coefficient and root mean
square difference. Figure 4 shows the performance of SDSM
and LARS-WG for the downscaling of daily, monthly and
meanmonthly temperature and precipitation. For daily precip-
itation, SDSMwith NCEP has a correlation coefficient greater
than 0.2, whereas LARS-WG has a correlation coefficient less

Fig. 3 SDSM and LARS-WG calibration results for a Precipitation, b
Tmax and c Tmin in the Jhelum River basin
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Table 6 Models performance
during the validation period Precipitation Tmax Tmin

NRMSE (%) Pbias (%) NRMSE (%) Pbias (%) NRMSE (%) Pbias (%)

Daily
SDSM-NCEP 100.8 −5.1 27.6 0.6 20.1 6.4
LARS-WG 107.8 −3.4 31.2 1 24.5 8.4
Monthly
SDSM-NCEP 67.1 −7.3 12.9 0.2 8.5 1.3
LARS-WG 73.8 −5.7 16.2 0.5 12.3 3.1
SDSM-Can 71.6 −8.1 17.6 −0.3 12.8 −1.2
SDSM-MICROC 73.0 −9.1 18.8 −0.7 13.1 −0.4
SDSM-BCC 66.3 −2.1 16.7 −0.1 12.1 0.1
Mean Monthly
SDSM-NCEP 14.5 −0.1 3.6 0.2 2.7 0.6
LARS-WG 30.8 1.0 7.9 0.6 7.5 2.5
SDSM-CanESM2 28.6 −1.9 10.1 −0.3 9.1 −1.8
SDSM-MICROC5 28.4 −2.9 10.6 −0.6 7 −1
SDSM-BCC 26.9 −0.5 5.8 0.1 5.9 −0.7

Fig. 4 Taylor diagram for three GCMs during SDSM and LARS-WG validation for a Precipitation, b Tmax and c Tmin in the Jhelum River basin
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than 0.15. As usual, the downscaling of daily time series pre-
cipitation is not easy, and the simulation results for daily pre-
cipitation in this study are comparable with those of a few past
studies (Huang et al. 2011; Hassan et al. 2014). Simulation
results for monthly precipitation by SDSM show correlation
coefficient values in the range of 0.65 to 0.80, whereas these
values are less than 0.65 for LARS-WG. For mean monthly
precipitation, the SDSM-NCEP model result standard devia-
tionwas very close to the observed data. The normalized RMS

difference between simulated and observed data was less than
0.2 (i.e., 6.96 mm), and the correlation coefficients of all
SDSM models (BCC, Can, and MICROC) were in the range
of 0.95 to 0.99, which shows that the performance of SDSM is
relatively better than that of LARS-WG. For daily Tmax and
Tmin, SDSM and LARS-WG correlation coefficients were
greater than 0.95 and the normalized RMS differences were
less than 0.4. Mean monthly temperature is thus better
projected than monthly data.

Fig. 5 Scatter plot observed
versus simulated values during
SDSM and LARS-WG validation
for a Precipitation, b Tmax and c
Tmin in the Jhelum River basin
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4.2.3 Scatter Plot

Scatter plot between mean daily observed and simulated
values are shown in Fig. 5. It is seen that all the data sets
(LARS-WG, SDSM-NCEP, SDSM-BCC, SDSM-MIROC
and SDSM-Can) are not able to simulate the daily precipita-
tion time series very well. In the case of temperature (both

Tmax and Tmin), it can be observed that there is a satisfactory
agreement between the observed and simulated daily values.

4.2.4 Temporal Variation in Precipitation and Temperature

Figure 6 shows the comparison of monthly downscaled
and observed precipitation. It is obvious that both the

Fig. 6 Monthly results of SDSM
and LARS-WG during validation
for a precipitation, b Tmax and c
Tmin in the Jhelum River basin

Downscaling of CMIP5 Models Output by Using Statistical Models in a Data Scarce Mountain Environment...

Korean Meteorological Society

729



models fairly captured the precipitation peaks (though in
some years under estimation) and they well reproduce
temporal variation in precipitation. However, the other
three data sets of SDSM (i.e., BCC, MICROC and Can)
also display good overlapping with observed precipitation
with small under estimation. The trend of LARS-WG in
all months of the year was similar to the three data sets of
SDSM, with comparatively more deviation from observed
precipitation. The datasets of SDSM and LARS-WG are
displayed to emulate Tmax and Tmin, climatologies with
good precision, yet there are very small over estimated
and under estimated biases.

4.2.5 Observed and Simulated Climate Indices

Figure 7 shows the comparison of mean values of climate
indices of simulated temperature and precipitation with
observed data for the validation period. The summer days
(SU) and heavy precipitation days (R10) were well simu-
lated by SDSM and LARS-WG. It can be seen that

consecutive wet days (CWD) are overestimated by
SDSM-NCEP while SDSM with other datasets well sim-
ulate the CWD. Consecutive dry days (CDD) were slight-
ly overestimated by both the models.

4.3 Future Climate Change

In this study, the future period was divided into three periods:
2011–2040 (2020s), 2041–2070 (2050s), and 2071–2100 (2080s).

4.3.1 Changes in Seasonal and Annual Precipitation

Table 7 shows the projected change in mean annual precipita-
tion. All GCMs projected an increase in precipitation under
both downscalingmethods, two RCPs and three future periods
relative to the baseline. For SDSM the mean annual precipi-
tation changes for the three GCMs ranged from 4.4 to 8.3%,
7.3 to 10.6% and 6.4 to 12.9% under RCP4.5 during the
2020s, 2050s, and 2080s, respectively, whereas under
RCP8.5 these changes ranged from 4.5 to 8.7%, 7.9 to

Fig. 7 Mean values of extreme indices for the validation (1991–2000) climate

N. Saddique et al.

Korean Meteorological Society

730



12.3%, and 11.6 to 17.9% during the three future periods,
respectively. The mean annual precipitation predicted by
using LARS-WG showed a significant increase in precipita-
tion in all GCMs. The three GCMs generated increments rang-
ing from 11.6 to 16.4%, 16.4 to 21.6%, and 20.7 to 25.3%
under RCP4.5, whereas under RCP8.5 these changes ranged
from 13.1 to 16.6%, 22.1 to 23.5%, and 24.5 to 32.2%, re-
spectively, during the three future periods. Mean annual pre-
cipitation projected by the BCC-CSM1–1 GCM in RCP8.5
was slightly less in magnitude compared with RCP4.5 in both
downscaling methods for two future periods. Among the fu-
ture years, CanESM2, BCC-CSM1–1 and MICROC5 with
two downscaling methods and two RCPs showed the highest
change in values in the 2080s.

The changes in seasonal mean precipitation under two sce-
narios using SDSM and LARS-WG for the 2080s are shown
in Fig. 8. It is seen that under RCP4.5, the seasons in which
changes of mean precipitation would be extreme in the 2080s
were winter and autumn. During autumn, a dramatic increase
in precipitation was found using both downscaling methods.
This increment would shift the monsoon period in the study
area; similar findings are found under RCP8.5 but with differ-
ences in magnitude for the change. The magnitude of the

predicted change for the seasonal and annual mean precipita-
tion for the three GCMs and two scenarios using LARS-WG
were greater compared with SDSM.

4.3.2 Changes in Seasonal and Annual Tmax

Table 8 illustrates the changes in Tmax during three future
periods using RCP4.5 and RCP8.5 for both models relative
to a baseline (1961–1990). By using the SDSM and LARS-
WGmethods, the projected Tmax showed an increase ranging
between 0.40 and 1.38 °C, 0.81 and 2.27 °C, and 1.07 and
4.18 °C for the future periods, respectively (i.e., the 2020s,
2050s, and 2080s). A continuously increasing trend was
projected for Tmax by all GCMs, two RCPs and both down-
scaling methods in the future periods. The RCP8.5 scenarios
using SDSM and LARS-WG projected higher increases in
Tmax than the future RCP4.5 scenarios except during the
2020s by MICROC5 in SDSM. The highest positive change
in temperature was found in the 2080s and the change in
magnitude for Tmax was higher for LARS-WG compared
with SDSM for all GCMs.

The seasonal changes of Tmax in the 2080s under two
scenarios using SDSM and LARS-WG are shown in Fig. 9.

Fig. 8 Change in seasonal and
annual mean precipitation in
percentage (relative to baseline)
with SDSM and LARS-WG in
the 2080s under a RCP4.5 and b
RCP8.5

Table 7 Annual changes in
Precipitation (%) in three future
periods under three GCMs and
two scenarios (RCP4.5 and
RCP8.5) with two models

Periods SDSM LARS-WG

CanESM2 BCC-CSM1–
1

MICROC5 CanESM2 BCC-CSM1–
1

MICROC5

RCP4.5

2020s 8.3 6.9 4.4 14.6 16.4 11.6

2050s 10.6 8.6 7.3 17.9 21.6 16.4

2080s 12.9 6.4 8.3 22.5 25.3 20.7

RCP8.5

2020s 8.7 4.5 6.9 16.6 13.1 16.6

2050s 12.3 7.9 10.2 22.1 22.9 23.5

2080s 16.9 11.6 17.9 32.2 24.5 28.2
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It can be seen that under RCP4.5 three seasons showed incre-
ments in Tmax with different magnitudes but a decreasing
trend was found in spring with SDSM in all GCMs. Under
the RCP8.5 scenario for both downscaling models, the three
GCMs projected increased temperature in all seasons except
for summer by BCC-CSM1–1 GCM. Autumn showed maxi-
mum increases in Tmax under both RCPs.

4.3.3 Changes in Seasonal and Annual Tmin

Table 9 represents the changes in Tmin in three future time
periods relative to the baseline period using the SDSM and
LARS-WG models. The increase in projected Tmin ranged
between 0.3 and 1.5 °C, 0.9 and 2.3 °C and 1.1 and 4.2 °C
for the future periods, respectively (i.e., the 2020s, 2050s, and
2080s). For annual mean Tmin, the BCC-CSM1–1 showed
the largest increase during the 2080s under the two downscal-
ing methods and all scenarios.

The seasonal changes of Tmin in the period of the 2080s
using RCP4.5 and RCP8.5 with the SDSM and LARS-WG
models are shown in Fig. 10. Under RCP4.5, SDSM with all
the GCMs predicted decreases in Tmin in spring, and BCC-
CSM1–1 predicted more increases of temperature in all

seasons. Under RCP8.5, all seasons showed increments in
Tmin in the 2080s, although with different magnitudes.
SDSM and LARS-WG predicted that the most-warmed sea-
son in the 2080s would be autumn, with a rise of mean Tmin
between 4.11 and 4.66 °C.

5 Conclusions

The performances of a multi-regression model called
SDSM, a weather generator called LARS-WG and three
GCMs (CanESM2, BCC-CSM1–1 and MICROC5) were
evaluated with respect to their ability to downscale pre-
cipitation, Tmax and Tmin for two RCPs (RCP4.5 and
RCP8.5) for the Jhelum River basin. The screening of
the most suitable predictors of SDSM was very challeng-
ing in the study area due to complex topography. There is
little accordance of opinions on the best method of
selecting predictors for climatic variables, especially for
rainfall. The meridional velocity (at 500 hpa) was found
to be a superpredictor for rainfall for most weather sta-
tions in the Jhelum River basin.

Fig. 9 Change in seasonal and
annual mean Tmax (relative to
baseline) with SDSM and LARS-
WG in the 2080s under a RCP4.5
and b RCP8.5

Table 9 Annual changes in Tmin (°C) using three GCMs and two
scenarios (RCP4.5 and RCP 8.5) with two models

Periods SDSM LARS-WG

CanESM2 BCC MICROC5 CanESM2 BCC MICROC5

RCP4.5

2020s 0.5 0.7 0.3 0.7 0.9 0.8

2050s 0.9 1.2 0.9 0.9 1.5 1.5

2080s 1.1 1.4 1.1 1.9 2.2 1.9

RCP8.5

2020s 0.6 0.8 0.5 0.9 1.5 1.4

2050s 1.2 1.6 1.2 1.5 2.3 2.3

2080s 1.9 1.9 1.9 3.0 4.2 3.6

Table 8 Annual changes in Tmax (°C) using three GCMs and two
scenarios (RCP4.5 and RCP 8.5) with two models

Periods SDSM LARS-WG

CanESM2 BCC MICROC5 CanESM2 BCC MICROC5

RCP4.5

2020s 0.40 0.49 0.64 0.69 0.67 0.70

2050s 0.83 0.81 1.08 1.02 1.29 1.38

2080s 1.07 1.09 1.32 1.98 2.18 1.77

RCP8.5

2020s 0.72 0.52 0.52 0.97 0.92 1.38

2050s 1.32 0.88 1.29 1.56 2.21 2.27

2080s 2.09 1.16 2.02 3.31 4.18 3.54
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The results showed that during calibration, the simula-
tion of mean monthly precipitation SDSM performance was
better than that of LARS-WG, although, graphically, both
models slightly overestimated the rainfall with different
magnitudes. However, for Tmax and Tmin the simulated
results for both models were very close to observations.
During validation, the precipitation downscaled by SDSM
with NCEP data was good compared with the results of
LARS-WG, especially in modelling the mean monthly pre-
cipitation, for which the correlation value was higher than
0.98. A good performance of the BCC-CMS1–1 global cli-
mate model was found in downscaling of the monthly and
mean monthly precipitation. Overall, the validation results
show that SDSM and LARS-WG could be used for future
projection using all three GCM outputs.

The data were divided into three periods (the 2020s,
2050s and 2080s) to observe the changes in future simu-
lated data. The results of the three future periods showed
that annual mean basin precipitation increased with both
statistical downscaling approaches, three GCMs and with
RCP4.5 and RCP8.5. The predicted change in precipita-
tion with LARS-WG was higher in magnitude than that of
SDSM. In the 2080s, the annual mean precipitation of the
Jhelum River basin under RCP4.5 and RCP8.5 would
increase by 12.7% and 17.9%, respectively, with SDSM,
which were higher than the simulation results presented in
another study (Mahmood and Babel 2013) for the same
region. Significant seasonal variations in precipitation
change would be observed when compared with the base-
line period; all the seasons except winter showed incre-
ments in precipitation in the 2080s under both RCPs,
three GCMs with SDSM and LARS-WG. Autumn
showed a higher percentage increase in precipitation com-
pared with spring and summer. The BCC-CSM1–1 GCM
projected less percentage increase under both RCPs with
SDSM compared with the other two GCMs, and the re-
verse was the case for LARS-WG. The AR5 (models

average) also reported an increase in precipitation in the
study area for the future time period (IPCC 2013).

For temperature (Tmax and Tmin), both downscaling ap-
proaches showed annual increases in temperature in the study
area with RCP4.5 and RCP8.5. However, the results showed
that the magnitudes of temperature changes using both ap-
proaches were significantly different from each other. The
results on a seasonal basis also showed increments in temper-
ature in all seasons under RCP8.5; however, the temperature
in spring would be decreased with both approaches and the
three GCMs under RCP4.5. The results showed a maximum
increment in temperature in the study area of 4.7 °C (autumn).

In general, the SDSM and LARS-WG models well simu-
lated the present day temperature, although the precipitation
results of SDSM were reasonably better than those from
LARS-WG. Future results for both the models were signifi-
cantly different from each other due to their different down-
scaling strategies and concepts. The BCC-CSM1–1 GCM
model performed better than the other GCMs. From the down-
scale results, it is concluded that the Jhelum basin will face
more rainfall in the future. All the GCMs also showed incre-
ments in Tmax and Tmin, which will most likely result in a
hotter climate of the region in the future with respect to the
current climate. These results contribute to later scientific
work such as water resources planning and in the agriculture
sector. However much more research is needed with maxi-
mum number of GCMs to understand the uncertainties related
to these climate models.
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