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Abstract: This study introduces the operational data assimilation

(DA) system at the Korea Institute of Atmospheric Prediction

Systems (KIAPS) to the numerical weather prediction community.

Its development history and performance are addressed with experi-

mental illustrations and the authors’ previously published studies.

Milestones in skill improvements include the initial operational

implementation of three-dimensional variational data assimilation

(3DVar), the ingestion of additional satellite observations, and

changing the DA scheme to a hybrid four-dimensional ensemble-

variational DA using forecasts from an ensemble based on the local

ensemble transform Kalman filter (LETKF). In the hybrid system,

determining the relative contribution of the ensemble-based covari-

ance to the resultant analysis is crucial, particularly for moisture

variables including a variety of horizontal scale spectra. Modifi-

cations to the humidity control variable, partial rather than full

recentering of the ensemble for humidity further improves moisture

analysis, and the inclusion of more radiance observations with

higher-level peaking channels have significant impacts on stratos-

phere temperature and wind performance. Recent update of the

operational hybrid DA system relative to the previous 3DVar system

is described for detailed improvements with interpretation.

Key words: Numerical weather prediction, operational data assimi-

lation, ensemble-variational hybridization, satellite observation as-

similation, coupling strategy for hybrid systems

1. Introduction

Most numerical weather prediction (NWP) centers have

implemented or are pursuing hybrid data assimilation (DA)

systems that combine existing variational DA and ensemble

forecasts to improve analysis and forecast performance (Kwon

et al., 2018). The European Centre for Medium-range Weather

Forecasts (ECMWF) employed flow-dependent ensemble fore-

cast error estimations in deterministic four-dimensional vari-

ational DA (4DVar) (Bonavita et al., 2016) and the Met Office

has modified their global operational 4DVar into a hybrid-

4DVar (Clayton et al., 2013) and developed a hybrid four-

dimensional ensemble-variation DA (4DEnVar) (Lorenc et al.,

2015). The National Centers for Environmental Prediction

(NCEP) replaced their operational three-dimensional vari-

ational DA (3DVar) with a 4DEnVar (Kleist and Ide, 2015).

Recently, Environment Canada has improved their analysis

and forecast accuracy by replacing 4DVar with 4DEnVar for

an operational global DA (Buehner et al., 2013; Buehner et al.,

2015). 

One considerable issue to be resolved in next-generation DA

system developments is optimizing the advantages of ensemble-

based representations of the background error. Unlike hybrid-

4DVar, which uses the ensemble data only at the beginning of

the data assimilation window, hybrid-4DEnVar (hereafter

H4DEV) makes use of the ensemble trajectories at multiple

times within the window. Thus, H4DEV does not require the

development or maintenance of tangent linear and adjoint

models for a nonlinear NWP model (Song et al., 2009).

Considering the continuous evolution of the NWP model’s

sophistication and the requirements for coupled models that

incorporate ocean, sea ice, etc., for the earth simulation frame-

work, and the consequent difficulty of developing and main-

taining adjoint models, this gives a clear advantage to H4DEV

(Penny and Hamill, 2017).

The Korea Institute of Atmospheric Prediction Systems

(KIAPS) was established in 2011 to develop a global NWP

model and DA system funded by the Korea Meteorological

Administration (KMA) and has developed the Korean Inte-

grated Model (KIM), a non-hydrostatic global model based on

a cubed sphere grid. The KIAPS decided to target H4DEV

rather than 4DVar for two main reasons:

1. KIM was not completely developed in 2011, so it was

impossible to develop tangent linear and adjoint models. 

2. We expected that H4DEV could get maximum advantage

from the ensemble forecast trajectories with a relatively

low computational cost.

As part of the KIM development, we developed 3DVar on

the cubed sphere grid and implemented a local ensemble

transform Kalman filter (LETKF; Hunt et al., 2007; Shin et al.,

2016) as an ensemble DA system that was modified to run

within the KIM grid structure. Subsequently, 3DVar and

LETKF were combined into an H4DEV (Song et al., 2017c).

The KIM and DA systems have had many updates and

significant improvements. KIM recently increased its vertical

resolution from 50 to 91 levels and the model upper bound

from approximately 60 to 80 km. The upper stratosphere and

mesosphere dynamics are key links between short- and
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extended-range weather forecasts and between separate density

layers in the atmosphere, hence DA in the upper atmosphere is

important to improve forecast performance. As the model top

was increased, more radiances with higher peaking channels

are available for consideration in the DA. This study intro-

duces the result of sensitivity tests for microwave radiance

upper channels.

As the KIM resolution has increased, the accurate represen-

tation of humidity, clouds, and other small-scale features have

become even more critical. Humidity information should be

correctly handled and should incorporate assumed background

probability distributions and efficient strategies that consider

the DA scheme’s relative strengths and weaknesses. The

LETKF component of the KIAPS hybrid DA system provides

the ensemble initial conditions that can be used for background

error covariance (BEC) hybridization. H4DEV improves the

moisture field performance through several additional methods

that we introduce in this paper. 

This study introduces an operationally implemented KIAPS

hybrid system that combines Variational DA and LETKF.

Critical changes from the 3DVar- to H4DEV-based system are

investigated while focusing on analysis quality and attribution

as much as possible for each component in the development

history. Section 2 describes the operational DA cycling system.

The impacts of key changes within the development history

are discussed in Section 3; Section 4 discusses the overall

outcomes and concludes the paper.

2. Data assimilation at the KIAPS

The KIAPS developed 3DVar on the KIM native grid (Song

and Kwon, 2015; Song et al., 2017a; Song et al., 2017b), and

the system has been operational in semi-real time on KMA’s

Cray Supercomputer since July 2015. Subsequently, the 3DVar

system has been continually and significantly improved with

many updates (see Hong et al., 2018, Table A2). The most

significant change in the DA system was replacing from

3DVar with H4DEV in February 2017. This section describes

how 3DVar was coupled to the KIM and introduces 3DVar in

the operational DA system; we also describe the process of

replacing 3DVar with H4DEV.

a. Data assimilation for the Korean Integrated Model

The KIM was developed using the spectral element method

(SEM) on a cubed-sphere grid (Choi et al., 2014). A state-of-

the-art physics parameterization package was implemented in

KIM and demonstrated comparable performance to the KMA

Unified Model (UM) in a cold-start test without significant

deficiency (Hong et al., 2018). The non-hydrostatic dynamic

core included a solver based on the moist flux form of the

Euler equations using perturbation from a reference state. The

time integration technique of the dynamic core is the explicit

time integration scheme of time-split third-order Runge-Kutta

(RK3). The KIM employed a finite difference scheme for

vertical discretization in the hybrid sigma pressure coordinate

on the Lorenz grid. The vertical hybrid coordinate can be

defined with η = [0,1] and a weight parameter for the terrain-

following coordinate, hence the model levels can be smoothly

transformed from terrain-following sigma to pure pressure. 

Model variables of KIM are zonal and meridional winds,

potential temperature, mixing ratio, and dry surface pressure.

The variables that passed to DA are zonal and meridional

winds, temperature, mixing ratio and surface pressure rather

than dry surface pressure. 

These variables are analyzed in DA. In the post processing

step, the temperature and surface pressure are converted to

potential temperature and dry surface pressure, respectively, to

be model variables for the KIM initial condition.

The KIM requires the dry surface pressure because the initial

model pressure is calculated from the dry surface pressure

using η. In the post processing step, the dry surface pressure

can be calculated by subtracting the moist pressure from the

analyzed surface pressure: 

, (1)

where  and  are the initial and analyzed dry surface

pressure, respectively; q is the specific humidity, i.e. the ratio

of water vapor mass to total mass; ptop is the pressure at model

top; and psfc the pressure at the surface. The rightmost term in

Eq. (1) represents the moist pressure, i.e. the accumulation of

moist mass from the model top to bottom.

The interface level pressure is required to calculate the moist

pressure, but is not included in the analysis. After calculating

the geopotential height using the background pressure, surface

height, and virtual temperature, the interface pressure in

discretized form is 

, (2)

where k = 1,2,…,K indicates the index for vertical levels in

which K is the total number of model levels; and g, Rd, , and

z represent gravity acceleration, the gas constant for dry air,

the virtual temperature at the model’s level, and the geopo-

tential height at the interface level, respectively.

The pressure in Eq. (2) is a hydrostatic pressure, so the dry

surface pressure in Eq. (1) is also in hydrostatic balance. The

pressure for each model level is determined by the initial dry

surface pressure, thus three-dimensional analysis is vertically

re-aligned during the model’s initialization. Consequently, the

initial condition of non-hydrostatic KIM is in hydrostatic bal-

ance, as intended. Cloud liquid water and ice, rain and snow in

the background are transferred to the initial condition of KIM

during the model initialization. 

b. 3DVar data assimilation in the operational system

We developed the 3DVar system on the native cubed grid by

devising a spectral transformation that represents spherical
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harmonic functions directly on the cubed-sphere grid (CSG)

points without horizontal interpolation (Song and Kwon, 2015).

In background error covariance modeling, spectral transfor-

mation and Eigen decomposition act as horizontal and vertical

filters, respectively. Parameter transformation converts the

model variables of zonal wind, meridional wind, temperature,

mixing ratio, and surface pressure into control variables of

stream function, unbalanced velocity potential, unbalanced

temperature, specific humidity, and unbalanced surface pre-

ssure. The balanced temperature and surface pressure are

related to the rotational wind through a nonlinear balance

equation (see Song et al. (2017b) for the control variable

transformation details). The static BEC is generated by the

NMC method (Parrish and Derber, 1992), which calculates the

difference between forecasts starting from two different initial

times at the same valid time. Typically, the differences bet-

ween the 48- and 24-hour forecasts over several months are

selected as the background error samples. The NMC method is

known to have a lack of correspondence between these 24-

hour lagged forecast differences and six-hour forecast errors,

so it is necessary to tune the model error variance (Buehner

2005). In the KIAPS DA system, the correspondence between

forecast samples and the six-hour forecast error is improved

using more diverse pairs of forecasts including shorter lagged

forecasts to generate a static BEC. Various forecast differences

may represent some background error modes that the 24-hour

lagged forecast differences cannot represent. In this study,

three pairs: the differences between 48- and 24-hour forecasts,

between 36- and 12-hour forecasts, and between 24- and 12-

hour forecasts are selected for July-November 2017. First, we

removed the bias of each different group by performing

sample bias correction and then combined the three groups. In

total, 675 samples were used to calculate the static BEC. It was

confirmed that the variance of various forecast samples was

smaller than that of only 48- and 24-hour forecasts samples,

and we found that the BEC calculated using these samples

improves the analysis performance in the 3DVar system. The

static BEC variances were obtained by rescaling the NMC

method variances by factors of 0.7, 0.7, 0.8, 1.0, and 0.7 for

stream function, unbalanced velocity potential, unbalanced

temperature, specific humidity, and unbalanced surface pre-

ssure, respectively. The rescaling factors were determined by

comparing the variance of BEC to the background RMSD

against IFS analysis.

The KIAPS Package of Observation Processing (KPOP;

Kang et al., 2018) has been established to provide quality

controlled real-time observations for DA systems (Kang et al.,

2018). KPOP obtains Binary Universal Form Representation

(BUFR) files for observed meteorological data directly and

performs quality control, cloud screening, bias correction, and

thinning for conventional and radiance observations. For

radiance data assimilation, we have developed an adaptive bias

correction (BC) method that calculates the BC coefficients

with background at the analysis time rather than using static BC

coefficients. The KPOP selects the best observations through

the consecutive iterations consisting of BC and the evaluation

based on the difference between the observed brightness

temperature (TB) and the TB computed from the background

state. As seen in Table 1, 3DVar-based system (version 2.5)

assimilates Sonde, surface, and aircraft observations, the

Advanced Micro Sounding Unit-A (AMSU-A), Microwave

Humidity Sounder (MHS) and temperature channels of

Advanced Technology Microwave Sounder (ATMS) in micro-

wave radiance observations, the Infrared Atmosphere Sounding

Interferometer (IASI) and Cross-track Infrared Sounder (CrIS)

in infrared radiance observations, and clear sky radiance

(CSR) from COMS satellite. It assimilates the bending angle

of Global Positioning System Radio Occultation (GPS-RO)

Atmospheric Motion Vector (AMV) and Advanced Scatterom-

eter (ASCAT) in addition. No ATMS moisture channels were

assimilated in the 3DVar-based system. We decided not to

develop an assimilation module for Atmospheric Infrared

Sounder (AIRS) because it has already exceeded its expected

lifetime. To assimilate the satellite brightness temperature in

3DVar, the KPOP provides the Jacobian appropriate for the

background using the observation operators, where the radiative

transfer for the television and infrared observation satellite

operational vertical sounder (RTTOV) version 10.2 (Bormann

et al., 2011; Hocking et al., 2012) and the radio occultation

processing package (ROPP, Culverwell et al., 2015) version 8

are implemented for satellite radiance and GPS-RO obser-

vations, respectively. 

c. Replacing 3DVar with H4DEV

Before describing H4DEV, we should introduce the LETKF

implementation at KIAPS. While 3DVar was being developed,

LETKF was implemented for the ensemble DA system at

KIAPS and has been continually updated. The ensemble size

of current KIAPS-LETKF is 50 members, and the horizontal

resolution of the ensemble model is 50 km. It assimilates most

observations assimilated in 3DVar but does not assimilate

surface and TC bogus observations. In the first DA cycle, the

initial conditions for the ensemble forecasts are produced by

adding lagged forecast difference samples from set used to

generate for the static BEC to a reconfigured analysis from

KMA’s installation of the Unified Model (UM) global NWP

system. First, we randomly select 50 samples from 225 sam-

ples with 48- and 24-hour forecasts differences, and then

performed sample bias correction to generate 50 perturbations

with an ensemble mean of zero. Second, the 50 perturbations

are added to the UM analysis to be the initial condition. It was

found that the initial perturbations gave sufficient large spread

and approximately Gaussian distributions. LETKF was also

run in semi-real time during summer 2016, but we found that

the performance degraded as the DA cycle progressed. It was

found that this was due to filter divergence caused by reduc-

tion of ensemble spread with time evolution. Adaptive multi-

plicative inflation (Miyoshi, 2011) was already implemented in

the LETKF but is was insufficient to inflate the ensemble
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spread when satellite radiance observations were assimilated.

We additionally implemented an additive inflation to solve the

problem (Shin et al., 2018). In the current version of DA

system, perturbations for the additive inflation are randomly

selected from the 675 forecast difference samples that have

been previously generated for the static BEC. The perturb-

ations are added to each ensemble initial state after scaling by

a factor of 0.3.

Subsequently, 3DVar and LETKF were combined to build

H4DEV (Song et al., 2017c), which replaced semi-real time

3DVar. Introducing ensemble trajectories, which conform the

thermodynamic energy, dynamical momentum, and mass con-

servations that underlie the equation set of the forecast model,

into the 3DVar cost function using the ensemble control

variable (Lorenc, 2003; Lorenc et al., 2015; Kleist and Ide,

2015; Song et al., 2017c) provides an extended function to be

minimized using the ensemble perturbation constraint as well

as the static BEC. This approach is called the Hybrid Four-

dimensional Ensemble-Variational data assimilation scheme

(H4DEV). The ensemble control variable is operated, with

Schur production, on ensemble trajectories consisting of the

model variable, not the control variable. Just for the static

BEC, the balanced temperature and surface pressure are

derived through the nonlinear balance equation introduced in

Song et al. (2017b). First, the ensemble control variable is

given vertical correlation, assigned by Gaspari and Cohn

(1999)’s fifth-order correlation function with 0.2 log pressure,

by a transform using the Eigen decomposition and the

horizontal transform is applied to it. The localization length

scale for H4DEV is approximately 3,600 km horizontally,

which is wavenumber 10 in the spectral space. However, the

localization scale in LETKF varies 660-1,800 km depending

on the level. Song et al. (2017c) provided a more detailed

description and their references address relevant principles.

Figure 1 shows the flow chart of H4DEV analysis cycle.

KPOP collects all possible observations, performs quality

control and bias correction for satellite radiances using the

high-resolution forecast at hourly intervals as the background,

and provides corrected observations to both H4DEV and

LETKF after horizontal, vertical, and temporal thinning. We

use 50 ensemble samples in H4DEV to produce ensemble

BEC, and the ensemble-to-static covariance ratio is 0.3:0.7 for

hybrid BEC in H4DEV. Although the ensemble covariance

ratio is set at 0.3, it gradually decreases above 20 km because

the ensemble spread of the KIM ensemble forecasts is huge in

the upper-level stratosphere and mesosphere. The large spread

in the upper level seems to be characteristic of KIM. Changing

the control variable from specific humidity to pseudo-relative

Table 1. Summary of the difference between the 3DVar and 4DEnVar systems.

3DVar-based system (version 2.5) H4DEV-based system (version 3.1)

Background-error covariance Static background-error covariance generated by the 
NMC method

Static background-error covariance generated by the 
NMC method
Ensemble background error samples from LETKF 

Minimization Single outer-loop; the maximum iteration count is 90 Multi-resolution multi outer-loop;
Four outer-loops with respective total wavenumbers of 
42, 85, 170, and 170
The alpha control variable appears from the third loop

Recentering None The ensemble mean of LETKF analyses for u, v, T are 
recentered to deterministic analyses.
Partial recentering for humidity (50% recentered)

First guess Only six-hour forecast at the analysis time
Single time bin for observation within the analysis win-
dow

Hourly first guess at appropriate time (FGAT)
Hourly time bin for observations (seven time bin within 
the analysis window)

Observations Sonde (u, v, T, q), Surface (u, v, T, q, ps), Aircraft (u, v, 
T), GPS-RO, AMV, AMSU-A (6), ATMS temperature 
channels (6), IASI (112), CrIS (60), CSR (1) from 
COMS, and ASCAT

Adding LEOGEO AMV, ATMS water vapor channels 
(3) and AMSU-A channels 11,12,13, and 14 (4)

Humidity control variable Specific humidity Pseudo-relative humidity

Innovation QC No innovation QC in the Var system Innovation QC for every outer-loop

Observation operator RTTOV and ROPP are not in the Var system, and the 
Jacobian calculated from the KPOP is used 

RTTOV and ROPP are included, so the Jacobian is cal-
culated using updated guesses every outer-loop

Tropical cyclone initialization No TC initialization TC bogusing using the minimum pressure information 
for the RSMC Tokyo

KIM Model KIM version 2.5
Horizontal resolution: 25 km
Vertical resolution: 50 levels with 60 km model top

KIM version 3.1
Horizontal resolution: 12 km
Vertical resolution: 91 levels with 80 km model top

● The number in parentheses is the number of channels to be assimilated
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humidity in H4DEV is described in detail in Section 3c and,

for technical description, Song et al. (2018; their Section 3c).

After the LETKF process, the ensemble mean analysis is fully

replaced by deterministic analysis in the recentering process.

The current H4DEV version is coupled to a high-resolution

deterministic model with resolution of 12 km, but the H4DEV

analysis, ensemble model, and LETKF analysis resolutions

were all 50 km. This paper discusses the operational con-

figuration that accompanies the change to H4DEV (Table 1).

The use of ensemble forecasts is the key difference between

3DVar and H4DEV.

3DVar is a global solver where conventional and non-

conventional data are fitted simultaneously by increments

relative to a background state. Since it uses a snapshot (three-

dimensional) background, observation times within the analysis

window is typically ignored. The relationship of model

variables at different observation times (e.g., hourly) cannot be

considered in the 3DVar framework. In contrast, the use of

four-dimensional ensemble trajectories in H4DEV allows use

of analysis increments closer to the observation times, and

introduces temporal as well as spatial relationships between

the analysis variables. The 3DVar framework was extended to

utilize first-guesses at appropriate times (FGAT; Lee and

Barker, 2005) within the analysis window, which is named

3DVar-FGAT. H4DEV shares the FGAT framework with

3DVar (3DVar-FGAT), so it can afford to analyze the hourly

guesses. 

The 3DVar minimization technique is a re-orthogonalized

conjugate gradient method (Parlett, 1980). During minimi-

zation, H4DEV performs multiple outer loops with multiple

resolutions. Four outer loops are executed with total wave-

number resolutions of 42, 85, 170, and 170, and its ensemble

control variable participates in the minimization process after

the second outer iteration (see Fig. 6 in Song et al., 2018),

while 3DVar conducts a single outer loop with total wavenum-

ber 170. In other words, we conducted two 3DVar-FGAT

minimizations—one each at T42 and T85—and then two

H4DEV minimizations at T170. The full nonlinear model (or

ensemble) is not re-run as a part of this process. This process,

which only conducts re-linearization of the nonlinear obser-

vation operator, could be a shortage of being called outer loop,

which strictly spoken additionally conducting re-integration of

the nonlinear model; however, in this study, just the re-

linearization of the observation operator is called outer loop for

the convenience. Finally, the increment from the middle of the

window is passed back to the model. The multiple outer loops

method is beneficial for humidity variables with strong non-

linearity and small scale and provides a better guess and

Jacobian. The guess can be updated closer to observations for

each outer loop, and the Jacobian for radiances is computed

using the updated guess to mitigate errors due to strong

nonlinearities. The Jacobian in the 3DVAR is not updated in

the minimization process because it is provided by KPOP,

whereas H4DEV contains observation operators and hence can

calculate a new Jacobian during minimization. The multiple

resolution approach also has computational efficiency because

it minimizes the cost function with low-resolution for the first

and second outer loops. The accuracy is similar between full-

resolution and multi-resolution outer-loop strategies because

the early iteration in both tries to fit large-scale analysis

increments to observations (Song et al., 2018). H4DEV added

observation quality control in the process of minimization. The

observations are evaluated with updated guess at the beginning

of each outer loop, so the suspicious observations are removed

and the eligible observations are restored, meaning that quality

control decisions are redone as a part of the outer loop process.

The number of observations differs for each H4DEV outer

loop because the QC removes or restores observations.

Tropical cyclone (TC) initialization is also used in H4DEV.

To make the analysis better represent the TC structure, Kleist

Fig. 1. Flow chart of the hybrid H4DEV analysis cycle system. The KPOP processes observations for both H4DEV and
LETKF, and the recentering replaces the ensemble mean analysis with deterministic analysis. Presently, the high-resolution
and low-resolution are respectively 12 km and 50 km horizontally, and the ensemble size is 50 members.
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(2011) and Heming (2016) have assimilated TC advisory mini-

mum sea level pressure. Based on these previous works, we

assimilate a single value of minimum sea level pressure

estimated from the Regional Specialized Meteorological Center

(RSMC) Tokyo. Observation error varies linearly with TC

intensity, where strong TC has larger observation error.

d. Differences in the use of observations 

Three ATMS water vapor channels are added in H4DEV-

based system to improve the humidity performance, while

3DVar-based system assimilated only ATMS temperature chan-

nels. In the H4DEV-based system, high-latitude AMV from

composite satellite observation is added. The AMVs derived

from geostationary (GEO) satellite observations covers the

middle latitudes and tropics, while AMVs over the polar

region are derived from low-earth (polar) orbiting (LEO)

satellite. Thus, coverage between 60 and 70 degrees latitude is

a gap in AMV observations. This was addressed by using

AMVs derived from a combination of LEO and GEO satellite

observations (LEOGEO AMV, Lazzara et al. 2014). Lee and

Song (2018) have tested the LEOGEO AMV in the KIAPS

DA system, and found the improvement of high-latitude wind

performance. Therefore, The LEOGEO AMV observation has

been added in H4DEV-based system to provide better spatial

coverage for wind observation. 

An important change in KIM that directly affects DA is that

the model top was increased from about 60 to 80 km. Version

2.5 of the 3DVar-based system did not use upper channels 11-

14 in Advanced Micro Sounding Unit-A (AMSU-A) because

those observations degraded the performance. Those channels

were affected by temperatures above 60 km depending on

location (Fig. 2). If the model top was low, an observation

operator cannot accurately calculate the brightness temperature

of the upper channels from the background; hence the upper

channels have been only sparsely considered previously. Since

the model top was increased to 80 km in version 3.1, we

assimilated those upper channels of AMSU-A and described

the impact of these additional channels in Section 3d.

3. Evaluation of data assimilation changes

This section evaluates performance changes due to updating

from 3DVar to H4DEV (Table 1). Two experiments—3DVar2.5+

and H4DEV3.1—were conducted using the same model (KIM

version 3.1) in which the horizontal resolution was 25 km to

see only the impact of DA changes (Table 2). The con-

figuration of 3DVar2.5+ experiment is the same as version 2.5

of the 3DVar-based system, but 3DVar has hourly FGAT. Note

that H4DEV experiment runs lower-resolution KIM compared

to the version 3.1 system in Table 1. The experimental results

have confirmed significant improvements in analysis fields

from the update. Some additional experiments were conducted

to see what specific updates improved performance.

Fig. 2. The weighting function of AMSUA channels (http://profhorn.
meteor.wisc.edu/wxwise/satmet/lesson12/hurrmicro1.html).

Table 2. Description of experiments

Experiment name Description

H4DEV3.1 The same as version 3.1 of the H4DEV-based system (See Table 1), but the resolution of KIM is 25 km

3DVar2.5+ The same as version 2.5 of the 3DVar-based system (See Table 1), but 3DVar has hourly FGAT and runs with the same 
KIM as H4DEV3.1

3DVar3.1 The same as H4DEV3.1, but 3DVar-FGAT with a single outer-loop

H4DEV3.0 H4DEV version 3.0 which does not include multiple outer-loops, pseudo-RH, new observations, Innovation QC, TC ini-
tialization, and partial recentering

LETKF3.0 LETKF version 3.0

RECNT_P Partial recentering applied to H4DEV3.0

RECNT_F Full recentering applied to H4DEV3.1

H4DEV3.0b H4DEV version 3.0b which includes pseudo-RH, new observations except AMSU-A channels 11 - 14, Innovation QC, 
TC initialization, and partial recentering 

H4DEV3.0b_NPRH H4DEV version 3.0b which does not include pseudo-RH
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a. Assessment of full data assimilation system update

Both 3DVar2.5+ and H4DEV3.1 experiments were con-

ducted from 1800 UTC 22 June to 1200 UTC 31 July 2017.

The initial background for the first cycle was six-hour

forecasts using KIM with the initial condition from the Unified

Model (UM) analysis from KMA valid at 1200 UTC 22 June

2017. Figure 3 shows the time series of the root mean squared

difference (RMSD) of analysis for both experiments. The

RMSD was calculated against the analysis of the ECMWF

integrated forecasting system (IFS) and averaged up to 10 hPa.

The improvement caused by the DA system update was

significant for all variables throughout the entire period. The

DA update reduced the zonal and meridional winds, tempera-

ture and mixing ratio errors by 10.1%, 12.8%, 13.9%, and

13.7%, respectively. Although the 3DVar2.5+ RMSD increased

rapidly for several days, H4DEV3.1 RMSD remained similar

to the initial state until the end. 

Figure 4 shows zonal means of the differences in RMSD

between H4DEV3.1 and 3DVar2.5+ for each variable. The DA

update contributes to reducing the analysis error for wind in

the upper troposphere, moisture and temperature in the tropical

mid-troposphere. The accurate boundary-layer humidity enables

the more accurate diagnosis of convective motion linking

lower-level improvement with free atmosphere wind accuracy.

The additional inclusion of upper-level AMUS-A channels

(11-14) adjusts the mid-/upper- stratospheric temperature and

horizontal winds. The difference between 3DVar- and H4DEV-

based systems can be attributed partially to each update in the

series of developments.

Figure 5 verifies the performance against observations. The

bias was calculated as the background minus observation and

averaged over the entire period. Wind speed performance was

evaluated by aircraft (Fig. 5a) and Sonde (Fig. 5d). The

smaller standard deviation of H4DEV3.1 for both observations

corresponds to the smaller wind speed RMSD in Fig. 4a. We

can also see that the model has little wind speed bias in the

upper levels but positive wind speed bias in the lower levels.

In addition to the Sonde temperature observation (Fig. 5e), the

AMSU-A brightness temperature (Fig. 5b) and GPS-RO

bending angle (Fig. 5c) are useful for evaluating the model

temperature accuracy. The background of H4DEV3.1 is rela-

tively close to the observation because the standard deviation

is smaller for all three observations. In particular, the standard

deviation for the AMSU-A upper channels has been greatly

reduced because H4DEV3.1 assimilates channels 11-14. Al-

though the standard deviations of temperature are smaller at all

levels, AMSU-A channels 10-11 have negative TB bias. Figure

5e shows that the background temperature of H4DEV3.1 has a

negative bias as the altitude increases to 50 hPa. It confirms that

Fig. 3. The time series of the root-mean-squared difference (RMSD) comparison between 3DVar2.5+ and
H4DEV3.1 analyses for zonal (a) and meridional (b) winds (m s−1), temperature (c; K), and specific
humidity (d; g kg−1). The RMSD is calculated against the IFS analysis for 1000-10 hPa. The differences
between the two experiments are as shown in Table 2. The analysis-forecast cycle started at 1800 UTC on
22 June 2017.
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the humidity of H4DEV3.1 is closer to observations (Fig. 5f).

As shown in Fig. 4c, temperature performance is improved

in most areas but degrades at around 250 hPa in the tropics.

We identified the cause of this increased RMSD by comparing

3DVar2.5+ and H4DEV3.1 biases (Figs. 6a, c). As expected

from the negative bias in the observation verification with the

Sonde temperature, the analysis of H4DEV3.1 has a negative

temperature bias in this region. It can be assumed that the new

DA makes the area cooler because both experiments use the

same model. However, we found that H4DEV3.1 significantly

increases the temperature around 250 hPa during the DA pro-

cess (Fig. 6d) compared to 3DVar2.5+ (Fig. 6b). It should be

noted that the temperature bias is at a low level around the

tropics. 3DVar has a positive bias in low levels, whereas

H4DEV3.1 has very little bias. Normally, warm temperature in

low levels accelerates convection above the area, which can

increase the temperature in the upper levels. In contrast, a

colder temperature in low levels for H4DEV3.1 causes less

convection and the upper-level temperature is hence cooler

than for 3DVar2.5+. Relatively small amount of convective

rain proves that the convection is reduced around the tropics

(Fig. 7). Consequently, H4DEV3.1 reduces the bias at both the

low and middle levels with appropriate analysis increments

during the DA process, but the model increases the negative

temperature bias at the middle levels.

Figure 8 shows the impact of the DA update on the forecast

skill as measured by the geopotential height anomaly correl-

ation. More accurate analysis improved the forecast over five

days for all regions except the tropics. The anomaly correlation

at 500 hPa on day five was 0.76 for 3DVar2.5+, but 0.81 for

H4DEV3.1 in the northern hemisphere. Note that this is

different from the operational performance due to the lower

KIM horizontal resolution.

b. Impact of the data assimilation replacement 

Figure 9 shows the results from H4DEV3.1 and the 3DVar3.1,

which is the same as the H4DEV3.1 but uses the 3DVar-FGAT

technique (see Table 2). The H4DEV3.1 improves the analysis

for all model variables in most regions aside from the South

Fig. 4. Cross-section of the RMSD reduction of H4DEV3.1 analysis compared to the 3DVar2.5+ analysis for zonal (a) and
meridional (b) winds (m s−1), temperature (c; K), and specific humidity (d; g kg

−1
), which is a composite of 156 fields since 1800

UTC 22 June 2017. Red color (positive values) indicates the variables and regions for which H4DEV3.1 surpasses the analysis skill
of 3DVar2.5+.
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Pole and 250 hPa over the tropics for temperature (Fig. 9c) and

the lower-stratospheric zonal wind (Fig. 9a). The broad im-

provement in horizontal winds and temperature in the southern

hemisphere is consistent with Song et al. (2017c, Figs. 2, 3);

one deviation compared to their study is a significant improve-

ment in the arctic upper troposphere winds (Figs. 9a, b). 

As discussed in Song et al. (2017c), the two-way coupling

strategy (in which the LETKF analysis ensemble is recentered

around the H4DEV analysis rather than another deterministic

analysis such as 3DVar) for the BEC hybridization can enhance

the H4DEV performance relative to the 3DVar-FGAT. The

realized example is said to be the arctic upper-tropospheric

wind and temperature advantages as mentioned before. 

c. Strategies related to humidity improvement

The first released H4DEV version (H4DEV3.0) did not

implement all changes in Table 1, and although wind and

temperature performance were significantly improved, humidity

performance was hardly improved. Therefore, we compared

Fig. 5. The bias (solid curves) and standard deviation (dashed curves) of background (six-hour forecast) error with respect to the
wind speed observations from aircraft (a) and Sonde (d), brightness temperature (b) from AMSU-A, the bending angle (c) from
GPS-RO, and the temperature (e) and mixing ratio (f) from Sonde. Red and black colors denote H4DEV3.1 and 3DVar2.5+,
respectively. The low, mid, and high in the y-axis of the GPS-RO figure denote below 10 km, 10-40 km, and above 40 km,
respectively.
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Fig. 6. Cross-section of the analysis bias against IFS analysis of 3DVAR2.5 (a) and H4DEV3.1 (c), and the
analysis increments of 3DVar2.5+ (b) and H4DEV3.1 (d) for temperature.

Fig. 7. Convective precipitation difference which is a composite of 6-hour accumulated convective
rain (mm) from initials of July 2017. The average of the difference is negative 0.015 mm. Blue color
(negative values) indicates that the less convective rain in H4DEV3.1 than 3DVar2.5+.
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H4DEV3.0 and LETKF3.0 to identify ways of improving the

humidity performance. Figure 10 compares H4DEV3.0 and

LETKF3.0 accuracy for 21-28, March 2017. Although H4-

DEV3.0 and LETKF3.0 have similar wind performance,

LETKF3.0 has clearly better humidity performance. The solid

lines are the RMSD of the ensemble mean of 50 LETKF

analyses while the dashed lines are the H4DEV3.0 analysis. A

fair comparison was ensured by calculating the average of

each RMSD for 50 LETKF analyses (gray lines). Normally,

the average of each RMSD is greater than the RMSD of the

average of the errors. Nevertheless, the H4DEV3.0 humidity

error is still greater than the average of the LETKF3.0 humidity

error. The improved humidity performance of LETKF3.0 is

because the BEC of the humidity can be better estimated with

ensemble forecast samples. Furthermore, LETKF has a smaller

localization length scale, which is useful for variables with

strong heterogeneity such as the humidity.

(1) Impact of partial humidity recentering

In situations where LETKF has better humidity performance

than H4DEV, we have considered a partial recentering to take

advantage of the LETKF technique for humidity. Instead of

completely replacing the whole ensemble mean with deter-

ministic analysis, we have tried a 50% replacement just for

Fig. 8. Anomaly correlation for the geopotential height of 3DVar2.5+ (red line) and H4DEV3.1 (blue line) through five-
day forecast.
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humidity. Thus, the humidity average of the initial conditions

for the ensemble models is the mean of the ensemble mean

analysis and deterministic analysis, unlike other variables.

Bowler et al. (2017) confirmed that fully recentering ensemble

samples around the high-resolution analysis is an important

benefit in their ensemble 4DEnVar. However, this recentered

system showed slightly lower forecast skill than their ensemble

transform Kalman filter (ETKF) due to the fact that the spread

of the ensemble samples is less than the spread of the ETKF

ensemble. The ensemble BEC can better analyze humidity

because the humidity variable is highly flow-dependent and its

scale is relatively small. Although the H4DEV uses the ensem-

ble BEC, its ratio is only 0.3 and the localization length scale is

larger than LETKF. We did the same experiment with H4DEV

for the same period but applied partial recentering for hu-

midity. Figure 11 shows the partial recentering performance;

not only is the accuracy of the humidity greater than in the

experiment with full recentering, but the wind and temperature

performance were similar or better in the partial recentering

experiment. The partial recentering has a direct impact on the

ensemble forecasts, and the improved ensemble can affect the

hybrid BEC in the next DA cycle. The partial recentering of

humidity may cause some imbalance between the humidity

and the wind or temperature in the model initial condition.

However, it is reasonable to deduce that the balance is restored

during the model evolution. Furthermore, partially recentered

humidity is better balanced with cloud water contents because

there is no change in the cloud water contents and the humidity

increment is relatively small.

(2) Impact of the implementation of pseudo-relative humidity

(RH)

Pseudo-RH has been adopted to increase the represen-

tativeness of the interpolation process for humidity observation

and to improve the Gaussianity of the moisture background

error characteristics (Dee and Da Silva 2003; Song et al.,

2018). In contrast with the specific humidity, the relative

humidity broadens the effective radius of the moisture error

correlation; relatively, the interpolation error that originates

from fitting to conventional (Sonde and Surface data) moisture

observations (its distribution can be found in Fig. 4 of Kang et

al. (2018)) is reduced. The moisture quality improvements in

Fig. 9. The same as Fig. 4 except the RMSD is reduced by changing only the DA technique (From 3DVar with a single outer-loop
to H4DEV with multiple outer-loops).
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Fig. 10. The time series of the RMSD comparison between H4DEV and LETKF alone cycles. The
dotted line represents the early version of H4DEV (experiment H4DEV3.0), and the black and gray
solid lines are the RMSD of the ensemble mean and the average of 50 ensembles’ RMSD generated
by LETKF (experiment LETKF3.0), respectively. The analysis-forecast cycling started at 1200 UTC
on 22 March 2017.

Fig. 11. The same as Fig. 9 except for the comparison between full recentering (dotted line) and partial
recentering (solid line) in experiment H4DEV3.0.
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the boundary-layer shown in Fig. 12 come partly from the

accurate calculation of the observation innovation for humidity.

The negative feature in the mid-/upper-moisture ends up

having a neutral impact on the cycling analysis. For reference,

this experimental result comes from the comparison between

H4DEV3.0b_NPRH and H4DEV3.0b as shown in Table 2.

Deviation from Gaussianity is necessarily related to the

appearance of skewness in the probability distribution of the

moisture background. With considering the analysis increment

solely obtained from the information of the mean and the

Fig. 12. Difference in the background RMSD calculated over latitude-longitude axes as a function of the time and level between the
cases in which the specific humidity (H4DEV3.0b_NPRH) or pseudo-RH (H4DEV3.0b) was used for the humidity control
variable. The blue color represents that the adoption of pseudo-RH shows positive impacts in zonal wind (a; m s−1) and specific
humidity (b; g kg−1). The analysis cycle configuration is the same as in Fig. 8 except for the moisture control variable.

Fig. 13. The same as in Fig. 3 except it is a comparison between partial recentering (dotted line) and full
recentering (solid line) in the experiment H4DEV3.1.
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covariance (the first and second moments of the probability

distribution), the asymmetric correction depending on the

skewness can be allowed by incorporating non-Gaussianity into

the variational framework (Fletcher, 2010) or a serial ensemble

Kalman filter (Bishop, 2016) or by implementing a particle

filter. Pseudo-RH has a more similar shape to the Gaussian

distribution in contrast to the specific humidity. Thus, there can

be a distinct improvement in dry and cloudless regions where

the near-zero values on a tail create an unbalanced heavy

weighting in the probability. In addition to this kind of physical

variable transform approach for preserving Gaussianity, there

is analytic function-based transform approach such as Gaussian

anamorphosis (Amezcua and Van Leeuwen, 2014).

We would expect improvements in the H4DEV humidity

analysis caused by adopting pseudo-RH to reduce the impact

of partial recentering. The impact of the partial recentering

after changing to pseudo-RH is as illustrated in Fig. 13. As

shown there, partial recentering still apparently works for

decreasing the humidity analysis RMSD; this implies that the

recentering strategy has room for analysis improvement, even

in the configuration of a new humidity control variable.

d. Impact of assimilation of middle atmospheric microwave

observation

In March 2018, the top model level of KIM was raised from

60 km to 80 km (Hong et al., 2018). As shown in Fig. 2, the

microwave sounding from AMSU-A has non-negligible weight-

ing above 60 km. Thus, the usability of the upper channels (11-

14) was expected to improve the mid-/upper-stratospheric

forecast skill. However, KIM offers a poor-quality background

at observation-sparse levels (above 60 km), which makes it

difficult to apply an effective air-mass-based bias correction.

Therefore, it is decided that only scan bias correction is carried

out for channels 11-13, unlike in the other operational center.

There is no bias correction for channel 14 in our strategy,

which is the same as most other operational centers.

Extending the useful range of numerical model forecasts

beyond around 10 days and into the sub-seasonal time-scale is

a major research issue for modern numerical weather pre-

diction. The strong stratospheric polar vortex results in auto-

correlations at sub-seasonal time-scales and the tropospheric

jet is affected by anomalous changes in the stratospheric vortex

within this time-scale (Tripathi et al., 2014). In addition, Arctic

Oscillation response to the stratospheric Quasi-Biennial Oscil-

lation can modulate the atmospheric prediction on seasonal-to-

multiannual timescales (Marshall and Scaife, 2009). Therefore,

middle atmospheric dynamics is a key link between short-

range and extended-range weather forecasts and between the

actively mixed layer and departed density layers in the

atmosphere (Tripathi et al., 2014). The impact of the variation

in the polar vortex alters the strength and phase of jet streams

so that the short-range baroclinic waves that disturb weather

systems vary in turn.

The impact of the middle atmosphere correlations accu-

mulates through continuous analysis-forecast cycling (Fig. 14).

As well as the temperature itself, for which the AMSU-A

upper-channel observation provides information mainly, zonal

wind centered around 10 hPa has been improved as the

analysis-forecast cycle repeats (Fig. 14a). The indirectly induced

mid-stratospheric zonal wind information from the BEC

structure and consecutive six-hour forecasts (Polavarapu and

Pulido, 2015) consistently contribute to reducing the back-

ground error in the repeated cycling of the incorporation of

upper-level AMSU-A channels. 

However, the significant degradation around 2-5 hPa is also

Fig. 14. The same as Fig. 11 except for the objective to be
evaluated, DA schemes used, and experiment period. Here, the
red color shows where the upper-level AMSU-A channels (11-
14) reduce the analysis RMSD of zonal wind (a; m s−1) and
temperature (b; K) against IFS analysis relative to the denial
experiment. For both experiments (the addition of upper-level
channels versus denial), 3DVar-FGAT was used for the DA
scheme. The analysis-forecast cycling started at 0000 UTC on 12
July 2017.
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found. The relationship between temperature and horizontal

wind is partly determined by horizontally geostrophic and

vertically hydrostatic balances (thermal wind balance; Holton

2004). The 3DVar-FGAT with regressed balance equation (Wu

et al., 2002; Song et al., 2017b) and hydrostatic relationship

(Derber and Bouttier, 1999) considers the thermal wind

balance in an expanded way, even including nonlinear advec-

tion. However, the thermal wind relationship applies only

weakly in the tropics, particularly in the upper level (refer to

Fig. 2 in Song et al., 2017b); the negative impact appears

around 5 hPa in the experiment about the stratospheric

channels of AMSU-A. Potentially, use of ensemble information

(currently, the sensitivity test of upper-level AMSU-A channels

is conducted in the 3DVar-FGAT frame.) could contributes to

reducing this negative impact of the wind information extrac-

tion from the satellite-derived temperature. This issue will be

investigated in the near future. 

4. Conclusions and discussion

This study demonstrates the development history of the

KIAPS operational DA system through its successful and

consistent skill improvements. The improvement arising from

the full DA update was significant for the zonal and meridional

winds, temperature and mixing ratio throughout the entire

period. The DA scheme change from 3DVar to H4DEV brings

out overall enhancements in the operational DA performance.

Since Figs. 4 and 8 have similar patterns and amplitude, it can

be seen that impact of the scheme change accounts for most of

the performance improvement. The biggest difference between

Figs. 4 and 8 is wind and temperature above 10 hPa. This was

caused by assimilation of AMSU-A channels 11-14. The

upper-level AMSU-A channels correct the temperature and

horizontal winds indirectly through background error specifi-

cation so that stratospheric phenomena can be better simulated

to demonstrate the intrusion of the positive signal into the

lower-atmospheric level. Another difference two figures is

error reduction of zonal wind around Jetstream regions. High-

latitudinal (60-70o) wind analysis improvements can be attri-

buted to LEOGEO AMVs. 

The coupling strategy for the hybridization of the humidity

analysis between H4DEV and LETKF and the adoption of the

pseudo-RH improve the quality of the H4DEV moisture

analysis. Furthermore, we have tested the partial recentering

experiment with a single recentering weight as 0.5 for only

humidity. Although the improvements have been made to the

humidity analysis in this study, a more sophisticated study of

partial recentering is required in part to find reason and

optimize performance. 

After raising the model top from 60 to 80 km, AMSU-A

channel 11-14 were assimilated, giving improved temperature

forecasts above 10 hPa. Following assimilation of the upper

AMSU-A upper channels, the ATMS upper channels will be

assimilated soon. Since ATMS channels 12-15 are similar to

the AMSU-A channel 11-14, some additional improvement is

expected. 

Future plans for KIAPS DA are four-dimensional incre-

mental analysis updates (4DIAU), variational bias correction

(VarBC), and increasing the ensemble size and resolution. The

4DIAU is expected to mitigate the spin-up caused by the

imbalance of initial conditions in the early stages of model

evolution. The VarBC is currently under development and has

been applied to AMSU-A, which significantly reduces the

differences between observation and analysis. This will be

operational after further evaluation for both summer and

winter seasons. H4DEV will employ a time-lagged ensemble

method using the members of the previous prediction that are

valid for the analysis time to get a larger ensemble size at a

lower cost. After increasing the ensemble size and resolution,

we will try to increase the ratio of ensemble BEC in H4DEV.

We are planning to apply variable localization length-scales on

each outer-loop according to its spectral resolution, of which

results will be appeared in the future.
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