
Asia-Pac. J. Atmos. Sci., 54(s), 351-360, 2018 pISSN 1976-7633 / eISSN 1976-7951

DOI:10.1007/s13143-018-0022-2

Real Data Assimilation Using the Local Ensemble Transform Kalman Filter 

(LETKF) System for a Global Non-hydrostatic NWP model on the Cubed-sphere

Seoleun Shin
1
, Jeon-Ho Kang

1
, Hyoung-Wook Chun

1
, Sihye Lee

1
, Kwangjae Sung

1
, Kyoungmi Cho

1
, Youngsoon Jo

1
,

Jung-Eun Kim
1
, In-Hyuk Kwon

1
, Sujeong Lim

1
, and Ji-Sun Kang

2

1Korea Institute of Atmospheric Prediction Systems (KIAPS), Seoul, Korea
2Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea

(Manuscript received 28 February 2018; accepted 19 June 2018)
© The Korean Meteorological Society and Springer 2018

Abstract: An ensemble data assimilation system using the 4-dimen-

sional Local Ensemble Transform Kalman Filter is implemented to a

global non-hydrostatic Numerical Weather Prediction model on the

cubed-sphere. The ensemble data assimilation system is coupled to

the Korea Institute of Atmospheric Prediction Systems Package for

Observation Processing, for real observation data from diverse re-

sources, including satellites. For computational efficiency in a

parallel computing environment, we employ some advanced software

engineering techniques in the handling of a large number of files.

The ensemble data assimilation system is tested in a semi-operational

mode, and its performance is verified using the Integrated Forecast

System analysis from the European Centre for Medium-Range

Weather Forecasts. It is found that the system can be stabilized

effectively by additive inflation to account for sampling errors,

especially when radiance satellite data are additionally used.

Key words: Ensemble data assimilation, local ensemble transform

Kalman filter (LETKF), numerical weather prediction (NWP), at-

mospheric global model (AGM)

1. Introduction

The Ensemble Kalman Filter (EnKF) was first suggested by

Evensen (1994) for atmospheric and oceanic data assimilation.

Thereafter, EnKF was applied to an atmospheric system by

Houtekamer and Mitchell (1998), and extensive investigations

of the ensemble technique with operational interests have been

made. For a numerical weather prediction (NWP) system, data

assimilation provides optimal analysis of atmospheric states by

making uses of observation data and numerical solution from a

mathematical model under Bayesian paradigm. Recently, most

operational centers consider combinations of the two major

methods, such as a hybrid ensemble-variational data assimilation

(e.g., Buehner et al., 2013; Kleist and Ide, 2015; Lorenc et al.,

2015). 

At the Korea Institute of Atmospheric Prediction Systems

(KIAPS), we are developing a hybrid 4-dimensional ensemble

variational system (Song et al., 2017) aiming for operational

uses. For the applications in the hybrid system, we have

developed a Local Ensemble Transform Kalman Filter (LETKF)

system (Shin et al., 2016) using the 4D-LETKF algorithms

(Hunt et al., 2007). The LETKF system had been implemented

to the hydrostatic global weather forecast model, which is

based on the spectral element method for discretization of

governing equations on the cubed-sphere (Sadourny, 1972).

The performance of the LETKF system has been evaluated

using the Observing System Simulation Experiment (OSSE),

and real data assimilation using the National Centers for En-

vironmental Prediction (NCEP) PREPBUFR files, containing

conventional observation data, such as sonde, aircraft, satwind,

and surface pressure observations (Shin et al., 2016). The

experience in those implementation works indicated that the

applications of covariance inflation methods were important

for real data assimilation, for which we need to handle under-

estimation of background uncertainties properly, to stabilize

the ensemble data assimilation system. More details on the

implementation can be found in Shin et al. (2016). 

In practice of ensemble data assimilation, it is required to

use inflation methods to deal with limitations such as the

underestimation of background error variance and a localization

to treat sampling errors. Multiplicative inflation (Anderson and

Anderson, 1999) changes the magnitude of the background

error covariance by multiplying a factor. Adaptive multipli-

cative inflation methods have been suggested (e.g. Anderson,

2009; Miyoshi, 2011) and they demand less manual tuning to

avoid unnecessary covariance inflation where observation is

sparse or absent. In this study, we use the adaptive multipli-

cative inflation algorithm developed by Miyoshi (2011) and

use inflation factors updated at each analysis time and at every

grid point. Multiplicative inflation methods tend to amplify (or

lessen) the pre-existing perturbations. Additive inflation has

been suggested to help capturing unrepresented errors asso-

ciated with dynamical activity by adding perturbations which

may emphasize baroclinically growing error structures (Whitaker

et al., 2008). There are also relaxation methods such as

relaxation to prior spread and relaxation to prior perturbation,

and their characteristics are being investigated (e.g. Zhang et

al., 2004; Whitaker and Hamill, 2012; Kotsuki et al., 2017).

These methods inflate perturbations that are affected by obser-

vations only so that deflation does not occur (Kotsuki et al.,
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2017). Although we have tested the adaptive multiplicative

and additive inflation in this study, we will further implement

the relaxation methods in our system.

The non-hydrostatic version of the Korean Integrated Model

(hereafter, KIM) is available for tests (Hong et al., 2018). Thus,

we modify the LETKF framework for the forecast model and

couple the LETKF system to the KIAPS Package for

Observation Processing (hereafter, KPOP, Kang et al., 2018)

system for real data assimilation, instead of using the NCEP

PREPBUFR data. For this coupling, we split the observation

operator from the LETKF system, and instead use the ob-

servation operator implemented in the KPOP system (Kwon et

al., 2015). Moreover, we optimize the infrastructure of the

system especially the handling of several output files for semi-

operational uses. In this article, we explain the main features of

the LETKF framework coupled with KIM and KPOP and

discuss its performance in real data assimilation. It is found

that the use of additive inflation would be essential, parti-

cularly when the volume of observations increases because the

multiplicative inflation might not be sufficient to use satellite

observations whose positions are temporally changing. Also,

the effect of scaling factor for additive inflation on the perfor-

mance of the system is discussed.

In the next section, we briefly introduce the forecast models,

KIM, KPOP, and LETKF, respectively. Here, we also explain

the software engineering aspects of the LETKF system focus-

ing on its efficient file handling and computation. Section 3

describes experimental design for the evaluation of the perfor-

mance of ensemble data assimilation. In section 4, we discuss

the results from the real data assimilation experiments. The

final section summarizes the current work and presents some

future plans. 

2. System components

a. KIM

A non-hydrostatic global atmospheric model for NWP has

been developed at the KIAPS, which uses the spectral element

method, and is formulated on the cubed-sphere with an

unstructured grid system (Choi and Hong, 2016). The hori-

zontal spatial resolution used for this study is based on the 360

elements per face and 4 Gauss-Legendre-Lobatto (GLL) points

per element, and thereby the average grid spacing is about

50 km. The model has 50 vertical levels, which is extended up

to 0.3 hPa. The performance of the model is verified in experi-

ments, such as heavy rainfall cases and tropical-cyclone events

(Choi and Hong, 2016). 

b. KPOP

(a) Main KPOP platform

For an optimal estimation of initial conditions, observation

data go through a sophisticated observation quality control

(QC) and bias correction (BC) before they are used in a data

assimilation system. The current version of the KPOP can

handle almost all observation types that are currently used in

the Korea Meteorological Administration (KMA) operational

NWP system. These observation data include the sonde,

surface, aircraft, Global Positioning System-Radio Occultation

(GPS-RO), Infrared Atmospheric Sounding Interferometer

(IASI), Advanced Microwave Sounding Unit-A (AMSU-A),

Cross-track Infrared Sounder (CrIS), Microwave Humidity

Sounder (MHS), Advanced Technology Microwave Sounder

(ATMS), and Atmospheric Motion Vectors (AMVs). 

All of the raw observation data are obtained from the KMA

in Binary Universal Form for the Representation of Meteor-

ological data (BUFR) that are merged or re-constructed after

ingested from the Global Telecommunication System of the

World Meteorological Organization. In the KPOP system,

observations near poles are treated in the same way as in the

other parts of the globe in our current system. Bilinear inter-

polation is performed to estimate background quantities on the

position of observations. For possible problems of analysis

discontinuities, Yamazaki et al. (2017) suggested an improved

way to handle observations close to the poles. This issue is

beyond the scope of this paper and will be examined in the

future. 

To assimilate the radiance data, Radiative Transfer for the

Television Infrared Observation Vertical Sounder model

(RTTOV) version 10.2 is used as the observation operator for

computing the radiance from the model profiles of temperature

and moisture. Among the microwave observations, the AMSU-

A data onboard the five polar-orbiting satellites, NOAA-15/18/

19 and MetOp-A/B, are used to obtain the atmospheric

temperature sounding. AMSU-A channels 5 to 10 provide

global coverage over the oceans. The QCs for clear sky

assimilation of AMSU-A are strictly applied to remove the

pixels contaminated by cloud, precipitation, and sea-ice, using

algorithms suggested by Grody et al. (1999, 2001). The KPOP

system employed an adaptive BC scheme for radiance data,

based on Harris and Kelly (2001). The bias of radiance ob-

servation is represented as the sum of scan bias terms at

different zenith angles and air-mass bias terms, depending on

the thermodynamic properties of the underlying atmosphere.

Global multiple linear regression of the scan-corrected innov-

ations against two model predictors of 850-300 and 200-50

hPa thicknesses is employed to correct the air-mass bias. These

scan and air-mass bias correction coefficients are automatically

calculated and updated at each assimilation cycle, i.e., every 6

h. Bias-corrected AMSU-A data are selected by a thinning

process with the resolution of 1.5
o latitude-longitude grid. The

values of observation error for AMSU-A are given as follows:

0.5 K for channel 5~8; 0.8 K for channel 9~10. As for ATMS,

we apply the same conditions as AMSU-A, except that we use

5.0 K as the value of the observation error for water vapor. 

Likewise, the MHS onboard the three polar-orbiting satel-

lites, NOAA-18/19 and MetOp-A are used to obtain the atmos-

pheric water vapor sounding. MHS channels 3 to 5 with land

masking are used for data assimilation. Fundamentally, the
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MHS and AMSU-A have a very similar QC process to each

other. Cloud-contaminated pixels of MHS are removed with

the empirical thresholds of the first-guess departure. After

processing BC and thinning with 1.0o latitude-longitude grid,

observation data from MHS is finally prepared to be passed to

the data assimilation system. The thinning resolution is chosen

individually depending on the type of satellite observation at

most of operational NWP center and the choice is made in

consideration of the characteristics of each observation type. It

is found that the analysis accuracy has been improved when

we select higher thinning resolution (1.0o) for MHS than the

thinning resolution (1.5o) for AMSU-A in the tests using the

3D-VAR system at KIAPS. Since spatial correlation error is

depending on the type of observation and MHS data is used for

humidity, it might be reasonable to choose a higher thinning

resolution for MHS than for AMSU-A. Nevertheless, this

reasoning needs to be reexamined by using the latest version of

the data assimilation system at KIAPS. Some other operational

institution like UK-Met Office chooses thinning resolution

differently also for equatorial, mid-latitude, and polar regions,

respectively, but we apply a fixed value of thinning resolution

everywhere. The observation error for MHS is set to be 5 K in

this study.

Among the infrared observations, the IASI onboard MetOp-

A/B and CrIS onboard Suomi NPP are used to provide the

observed atmospheric temperature profile. In this study, we use

60 IASI channels, taken from the Met Office dataset of 138

channels (Hilton et al., 2009). Due to the difficulties in spe-

cifying surface emissivity over land and ice, the mid and upper

atmospheric temperature sounding channels are selected, whose

sensitivity peaks of weighting function are located around 50-

700 hPa. In the case of CrIS, 20 channels with peaks at higher

levels (50-200 hPa) were taken from the Met Office dataset of

134 channels in Smith et al. (2015). Although the IASI and

CrIS channels differ from each other, the quality control pro-

cesses are identical. IASI and CrIS observations at a particular

spectrum in which they are free from the effects of clouds are

identified, using the cloud detection scheme based on the

background departure in McNally and Watts (2003). For the

BCs we use the same scheme as that for the AMSU-A, but the

cloud screening and BC are repeated five times because those

two processes are heavily dependent on each other’s quality.

Data has been thinned at a scale of about 300 km so that the

residual data are 2% of the full data set. We had tested a

thinning distance like the microwave observations for the

infrared observations, but the performance was rather worsened

than when using a longer thinning distance. For this reason, the

thinning distance about 300 km (3.0
o) has been chosen for the

infrared observation. However, these tests were carried out

with the old versions of KIM and we plan to optimize the

thinning distance and observation error for individual obser-

vations using the latest KIM. For the LETKF system at KIAPS,

we currently use 60 channels for the upper to middle part of

the troposphere and the observation errors are 1.0 K for ch

16~185 (upper air temperature), 0.7 K for ch 187~386 (middle

air temperature). As for CrIS, we use 0.3~0.4 K for the upper

channels used in our study. 

Clear Sky Radiance (CSR) from geostationary satellites was

also used. CSR data are available from Himawari, Meteosat,

GOES, and Communication, Ocean and Meteorological Satel-

lite (COMS), but currently we use only CSR data provided by

COMS. The data is obtained from a water vapor sensitive

channel in COMS. Since CSR is already cloud-screened data,

we performed simple outlier removal quality control and bias

correction without going through additional cloud screening

processes. As CSR data are for water vapor, the observation

error is set to be 4 K. We use diagonal part of observation error

covariance only currently. However, it is a trend to decide ob-

servation errors by considering inter-channel correlation (e.g.

Bormann et al., 2010; Weston et al., 2014; Bormann et al,

2016) and we may consider this treatment in future. 

AMVs are derived by tracking the features of infrared, water

vapor, and visible-channel imagery onboard sequential geosta-

tionary (MetOp-7/10, GOES-13/15, Himawari, and COMS)

and polar-orbiting (NOAA-15/18/19, MetOp-A/B, and Terra/

Aqua MODIS) satellites. However, the AMV fields from

geostationary satellites are not derived poleward beyond 60o

latitude, and those from polar-orbiting satellites are not avail-

able equatorward below 70o latitude. The vertical coverage of

AMVs is up to approximately 100 hPa. Some AMVs of poor

quality are eliminated, namely those with quality indicators

(QIs) lower than the threshold of 0.85, and with the innovation

check for each level. AMV errors originate mainly from two

sources: errors in the height assignment and errors in the wind

vector tracking (Salonen et al., 2015). The AMV errors were

estimated simply based on innovation statistics in this study,

although in some other operational institution the error was

estimated in consideration of some other factors such as wind

shear and retrieval algorithms. The AMV error in this study

ranges 2.8~11.8 m s−1 depending on the reference height.

(b) KPOP-Mini for ensemble background states

There is a simple version of the observation operator for

LETKF that we term it “KPOP-Mini.” With this tool, we

obtain background states interpolated at the position of

observations. Our strategy is to apply the observation operator

to background states (first-guess) of each ensemble member in

such a way that all members use the same observations. To

achieve this, the coupling of the KPOP system to the LETKF

system consists of two parts: main KPOP and KPOP-Mini. 

For the execution of the main KPOP we prepare 7 (± 3 h

centered analysis time) ensemble mean background states. Re-

garding the ensemble mean states we proceed thinning, BC

and QC, and identify positions of observations using the main

KPOP. The information provided by the main KPOP also

includes observation error, observation values, a detailed de-

scription of observations, among others. Then, the KPOP-Mini

is performed for each ensemble member state. The KPOP-

Mini also comprises forward models, RTTOV for satellite

radiance data, and the Radio Occultation Processing Package
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(ROPP) for GPS-RO data. By running the KPOP-Mini inter-

polated background states on the position of each observation

are estimated for each member. Subsequently, the LETKF

system can use a consistent number of observations for all

members.

c. LETKF

(a) LETKF DA system

The LETKF system at the KIAPS (Shin et al., 2016) is

based on the 4D-LETKF algorithm formulated by Hunt et al.

(2007). The OSSE and real data assimilation, using conven-

tional data, such as sonde, aircraft, satwind, and surface

pressure has been done successfully with the LETKF system

implemented to the hydrostatic version of the global NWP

model, KIM. Recently, we have coupled the LETKF system to

the non-hydrostatic version of KIM described briefly in section

2.1. Currently, we update a set of analysis variables, including

zonal wind (U), meridional wind (V), temperature (T), and

specific humidity (Q), while two of the prognostic variables of

the forecast model are potential temperature (θ) instead of

temperature (T), and mixing ratio (W) instead of Q. Therefore,

we need to conduct a transform between those variables. Cur-

rently, we do not assimilate surface pressure because we need

to do some corrections for surface observation. Since the

differences in the vertical location of observation station and

model surface are not ignorable in some places, we are con-

sidering an adjustment (correction) of the location of obser-

vation to the height of model surface given by the topography

used for the forecast model. This correction is being imple-

mented to the KPOP system, and the implementation and its

impact will be further examined in future work. 

The spatial localization weights are given by a Gaussian-like

piecewise fifth-order rational function (Gaspari and Cohn,

1999; Miyoshi et al., 2007) so that the function drops to zero at

about 1800 km. The vertical localization function for conven-

tional data are defined by the Gaussian-like rational function,

with the localization scale of , where σ
v
 is chosen

to be 0.1 natural-log-pressure for the standard deviation

parameter in the function, currently. 

Another main change added to the LETKF system described

in Shin et al. (2016), is the inclusion of radiance data assimi-

lation. For the use of radiance data, we use the RTTOV

implemented in the KPOP to transform the state variables of

the ensemble background into the observed variable of bright-

ness temperature. We have implemented five options for the

vertical localization of the column-integrated radiance infor-

mation into the vertical levels of the model. Those options are

(1) the direct use of weighting function defined by a gradient

of transmittance of the measured radiance (Thépaut, 2003), (2)

vertical localization identical to pointwise observation such as

sonde (Houtekamer et al., 2005; Houtekamer and Mitchell,

2005), (3) to use a square of the weighting function normalized

in such a way that its maximum value is equal to unity (Miyoshi

and Sato, 2007), (4) the use of weighting function normalized

in such a way that its vertical sum is equal to unity and use

radiance data only if the value of the normalized weighting

function at the level was greater than a tunable threshold (Fertig

et al. 2007; Aravequia et al. 2011), and (5) a way similar to 4),

but without the truncation of the normalized weighting

function (Kang et al., 2012). Among them, we select the

option 1) in this study and simply use the vertical weighting

function (Thépaut, 2003) directly. Although this might lead to

an overuse of information far apart from a model grid, we

begin with this approach and plan to further improve the

localization process for proper use of radiance satellite data. 

An adaptive multiplicative inflation algorithm by Miyoshi

(2011) is used to prevent the filter divergence, especially where

observations are dense. We additionally implement additive

inflation by using randomly sampled differences between 6-

and 12-h forecasts for one valid time per ensemble perturb-

ation to handle such problems as sampling and model errors

(e.g., Whitaker et al., 2008). In section 4.1, we describe the

implementation of the additive inflation in more detail and

discuss its impact on the performance of the data assimilation

system.

(b) Software engineering aspects of the LETKF system

We have developed a framework called “DaPy” for the

LETKF system, which is implemented using the Python script

language mixed with the Fortran programming language. All

of the main components, namely KIM, KPOP, and LETKF, are

integrated as the model operator in DaPy. The framework

DaPy is parallelized using the Message Passing Interface

(MPI) and the multiprocessing package of Python.

The ensemble data assimilation in our study needs to handle

multiple states with enormous complexity. Consequently, high-

performance computing systems, as well as the parallelization

and optimization for the ensemble system are required. Figure

1 shows the workflow that consists of tasks for the real-time

operation of LETKF including the 9-h model forecasts (“letkf_

fcst”), execution of the KPOP (“kpop”), the KPOP-Mini

forward operator (“kpop_mini”), data assimilation (“letkf_da”),

and file transfers and check output files (“file_tx”). The

scheduling of the tasks is operated and controlled by the soft-

ware “Cylc” (available at https://cylc.github.io/cylc/), which is

a Python-based workflow engine for cycling tasks. We con-

tinually update the forecast-analysis cycling system based on

LETKF for the effective management of many data files and

the optimization of processes suitable for high-performance

computing resources. 

We create many data files including 50-member background

data files, 50 analysis data files, their mean and spread data

files, an adaptive multiplicative inflation data file at each cycle

and so on. After we finish the cycle, output files need to be

transferred to a storage place. Among them, the file size of one

ensemble analysis is about 700 Mbytes. Since we have 50

members, the total file size for analysis states is about 35

Gbytes. Hence, it would be time-intensive if those files are

transferred using shell scripts executed in one thread (Fig. 2a).

2 10 3⁄ σ
v

⋅
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To overcome this problem, we have developed a copy tool

called “multicopy,” to copy multiple files to a target directory

using many cores (threads) in parallel as described in Fig. 2b.

This tool is implemented using the multiprocessing module of

Python (available at https://docs.python.org/2/library/multipro-

cessing.html).

Figure 3 shows that the time-consumption is much reduced

by “multicopy” using many threads when copying 205 LETKF

data files to another data server. When the number of threads

increases, the time for the copy decreases until the number of

threads reaches 25, and thereafter, the transfer time is nearly

unchanged. We have used the Intel Haswell 2.6GHz (24 cores

per node) supercomputer located at the KMA, equipped with

Cray XC40 and multi-petabyte Cray Sonexion Lustre file

system. 

3. Experimental design

We use the following types of observations: sonde, aircraft,

GPS-RO, AMV, AMSU-A, IASI, CrIS, COMS CSR, and

ATMS. First, we test the system using only the adaptive multi-

plicative method (Miyoshi, 2011) for covariance inflation.

With this experimental set-up, we have experienced a kind of

“filter divergence.” It means that error keeps growing in time,

even if data assimilation is carried out every 6 h. By imple-

menting additive inflation to the LETKF framework we attempt

to manage this problem. For additive inflation in this study we

obtain a state difference between two adjacent 6-h forecasts

that are randomly chosen from the pool, which contains

outputs from the model run for 3 months. The three-month

model run starts from 1200 UTC 23 September to 1800 UTC

23 December 2016, and the initial condition for the simulation

is obtained from the Unified Model (UM) analysis interpolated

on the KIM grid points. Before those state differences are

added to the analysis ensemble, they are multiplied by a

scaling factor less than 1.0. Unless the inflation is scaled down,

ensemble runs can become unstable and blow up. We begin

with a small scaling factor of 0.1, and then examine the effect

of the size of added perturbation by increasing the factor up to

0.4. On the performance of the LETKF system, we will

discuss the results from those experiments with 1) adaptive

multiplicative inflation only and 2) adaptive multiplicative in-

flation + additive inflation with scaling factors 0.1~0.4, re-

spectively.

4. Evaluation 

a. Experiments with/without additive inflation

To evaluate the performance of the system, we run a

forecast-analysis cycle for the period between 0600 UTC 21

March and 1800 UTC 04 April 2017. Initially, we use the

adaptive multiplicative inflation only. Figure 4 shows the in-

flation field at model level 15 at around 500 hPa at 0000 UTC

on 04 April 2017. The value of inflation is typically high over

lands where conventional data are dense at that time. For

example, the inflation factor is greater than 1.05 over North-

eastern America and East Asia. On the contrary, the inflation

factor is below 0.95 over the ocean. It means that ensemble

perturbations are deflated in the region. Kotsuki et al. (2017)

Fig. 1. Schematic diagram of the
DaPy-based LETKF workflow.

Fig. 2. Two ways of file transfer: (a) A sequential copy using a
single thread, and (b) a multicopy method using 50 threads.

Fig. 3. Transfer time for the copy of multiple files using single and
multiple threads.
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showed deflation over oceans in the experiment using both

conventional and AMSU-A data. They discussed that larger

values of observation error of AMSU-A than the true value

can be related to the underestimated inflation factors. The

observation error of AMSU-A was also 0.5 K in the experi-

ment shown in Fig. 10d of Kotsuki et al. (2017). Fair and

direct comparison with our experiments might be difficult but

we assume that the deflation in Fig. 4 can be related to the

characteristics of adaptive multiplicative inflation sensitive to

the observation errors of radiance satellite observations (Kotsuki

et al., 2017). Also, the adaptive multiplicative inflation might

be better estimated in areas where observation data, such as

sonde and surface which can be provided continuously in time.

The position of satellite data varies in time, and these data

covering oceanic areas may not be fully used in updating the

adaptive multiplicative inflation factor. This reasoning might

need to be reexamined in a simplified setting where a single

type of radiance satellite observation is used for data assimi-

lation. 

The low inflation value in those areas of deflation implies

that the background covariance is possibly far underestimated.

To manage this issue, we use the additive inflation method to

perturb the subspace spanned by the original ensemble. As in

Whitaker et al. (2008), we use a randomly sampled and the

normalized difference between two adjacent forecasts (6- and

12-h forecasts, respectively) for one valid time, per ensemble

perturbation. For comparison, we experiment two cases: one

test only with adaptive multiplicative inflation, and the other

test additionally with additive inflation using the scaling factor

of 0.3. We evaluate the performance of the newly developed

LETKF system using the Integrated Forecast System (IFS)

analysis data from the European Centre for Medium-Range

Weather Forecast (ECMWF). We regard the IFS analysis as a

reference for a current atmospheric state and compute the

Root-Mean-Square Difference (RMSD) of our analysis from

the IFS analysis. 

Figure 5 illustrates the RMSD time-series of the temperature

analysis from the two tests. During the early stage of the cycle,

the difference between the RMSDs from the two tests is not

significant but growing continuously as the cycle progresses.

The RMSD from the test using both additive and multi-

plicative inflation remains almost plateau in the later stage of

the cycle but the value from the test using only multiplicative

inflation keeps growing, which indicates a kind of “filter

divergence.” As the analyzed states drift away from the refer-

ence states, the number of radiance satellite observations used

for the data assimilation decreases in time. It is because the BC

of the radiance observation relies on the background model

states. The decrease in the use of the radiance satellite data

becomes more severe as the background states drift away from

the true atmospheric states and observations. This result sug-

gests that the use of additive inflation in addition to the

adaptive multiplicative inflation can help the system deal with

the underestimation of background uncertainties in real data

assimilation using various types of observation including

radiance satellite data. 

b. Impact of the magnitude of additive inflation

We also examine the impact of the magnitude of the scaling

factor on the performance of the LETKF system. We test the

scaling factors 0.1, 0.3, and 0.4, and run the forecast-analysis

cycle for the period between 0600 UTC 21 March and 1800

UTC 09 April 2017. Figure 6 shows the RMSD time-series of

Fig. 4. An example of the distribution of multiplicative inflation
factor: Inflation field at the fifteenth model level around 500 hPa at
0000 UTC on 04 April 2017. 

Fig. 5. Time-series of globally-averaged Root-Mean-Square Differ-
ence (RMSD) of temperature (T) analysis from the test using
additive inflation with the factor 0.3 (red) and without additive
inflation (black), during the forecast-analysis cycle 0600 UTC 21
March and 0600 UTC 04 April 2017.
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zonal wind (U), meridional wind (V), and temperature (T), and

specific humidity (Q) from each test. The RMSD values of all

variables continue growing steadily in the test with the scaling

factor 0.1 but slower than in the test without additive inflation.

This result indicates that the system can still experience the

“filter divergence” or requires an extended spin-up if we add a

relatively small amount of perturbation to the original ensem-

ble. It means that underestimation of uncertainties has not been

sufficiently handled by the addition of perturbation rescaled

with the factor 0.1. A larger amount of perturbation seems to

be required to handle better the uncertainties associated with

the sampling errors. 

We increase the scaling factor from 0.1 to 0.3 and re-

evaluate the performance. The RMSD of the temperature

analysis is already compared with that from the test without

additive inflation in Fig. 5. The increase in the scaling factor

markedly improves the performance of the DA system. The

RMSD values fluctuate but they do not grow persistently in

time. If we increase the factor from 0.3 to 0.4, the RMSD

values of analysis variables become larger again (Fig. 6). Larger

additive inflation perturbations might lead to an unnecessary

accumulation of noises for analysis variables. We assume that

an optimal factor can be around 0.3 for our current system but

at the same time acknowledge that the factor is a kind of

tuning parameter and more careful investigation would be

beneficial for us to obtain a clearer answer. Nevertheless, this

additive inflation method can be quite powerful, to stabilize an

ensemble data assimilation system with system errors.

We examine the impact of additive inflation on the ensemble

spread and on the gap between the spread and RMSD. Figure 7

demonstrates the time-series of the globally-averaged ensem-

ble spread and RMSD of the zonal wind (U) analysis from the

test using only multiplicative inflation, and from the test using

both the multiplicative and additive inflation with the scaling

Fig. 6. Time-series of the Root-Mean-Square Difference (RMSD) of analysis variables, zonal wind (U), meridional wind (V),
temperature (T), and specific humidity (Q) from the test using both multiplicative and additive inflation with the scaling factors 0.1,
0.3, and 0.4. 
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factor 0.3. If we use the adaptive multiplicative inflation only,

the ensemble spread drops rapidly in time and remains about

0.5 m s−1 while RMSD keeps growing in time and approaches

8 m s−1 at the end of the cycle. Consequently, the gap between

the spread and RMSD also keeps increasing and it becomes

around 7.5 m s−1. In contrast, the ensemble spread drops slightly,

remaining about 2.0 m s−1 when we use the additive inflation.

The RMSD also remains plateau with relatively low values

around 2.5~3.0 m s−1 so that the gap between the ensemble

spread and RMSD is maintained at about 0.5~1.0 m s−1. This

result supports that the extra use of additive inflation would

help our system to manage the problem of underestimation of

ensemble covariance.

5. Summary

We have developed the LETKF framework for the non-

hydrostatic version of the forecast model KIM and coupled the

system to the KPOP developed at KIAPS. The coupling with

the KPOP facilitated the use of diverse types of observations

including satellite radiance observation for the LETKF frame-

work. Moreover, we optimized the infrastructure, such as

handling multiple files for ensemble states, scripts for running

forecast-analysis cycles, and scheduling for semi-operational

runs. The infrastructure called DaPy has been implemented

using a mix of the Python script and Fortran programming

languages and parallelized using the MPI and the Python

multiprocessing package. 

We used the RTTOV implemented in the KPOP to transform

the state variables of the ensemble background into the ob-

served variable of brightness temperature and included several

options for the vertical localization of the column-integrated

radiance information into the vertical levels of the model. In

this study, the following observation types were used: sonde,

aircraft, GPS-RO, AMV, AMSU-A, IASI, CrIS, CSR, and

ATMS. 

For the evaluation of the system, we ran a forecast-analysis

cycle for the period between 0600 UTC 21 March and 1800

UTC 04 April 2017 and compared the results with the IFS

analysis as a reference. First, we tested the system only using

the adaptive multiplicative method (Miyoshi, 2011) for covar-

iance inflation. The error continued growing in time, and the

analyzed state drifted away from the reference state. To handle

the far underestimated ensemble covariance, we implemented

additive inflation to the LETKF system, using randomly sam-

pled adjacent forecast differences, which were added to the

ensemble perturbations (Whitaker et al., 2008). The 6-h state

differences were multiplied by a scaling factor before they are

added to each ensemble perturbation. We began with a small

scaling factor of 0.1 and then examined the effect of the size of

added perturbations by increasing the factor up to 0.4. We ran

cycling experiments for the period between 0600 UTC 21

March and 1800 UTC 09 April 2017.

The use of additive inflation effectively improved the perfor-

mance of the system. More observations could be utilized for

corrections and the accuracy of the analysis states was

increased. The positive impact of additive inflation on the per-

formance increased with the size of the scaling factor. How-

ever, the gain in the performance became smaller as the factor

was further strengthened, and the system was even somewhat

degraded if the factor was 0.4. We acknowledge that the

scaling factor is a kind of tuning parameter and need to per-

form several tests to find an optimal value. Nevertheless, this

additive inflation method can be a practical and powerful

approach, to stabilize an ensemble data assimilation system. In

future, we consider the implementation of an additive inflation

method by which fast-growing errors can be captured more

selectively (e.g. Houtekamer and Zhang, 2016; Yang et al.,

2015).
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