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Abstract: CORDEX-East Asia, a branch of the coordinated regional

climate downscaling experiment (CORDEX) initiative, provides

high-resolution climate simulations for the domain covering East

Asia. This study analyzes temperature data from regional climate

models (RCMs) participating in the CORDEX - East Asia region,

accounting for the spatial dependence structure of the data. In

particular, we assess similarities and dissimilarities of the outputs

from two RCMs, HadGEM3-RA and RegCM4, over the region and

over time. A Bayesian functional analysis of variance (ANOVA)

approach is used to simultaneously model the temperature patterns

from the two RCMs for the current and future climate. We exploit

nonstationary spatial models to handle the spatial dependence

structure of the temperature variable, which depends heavily on

latitude and altitude. For a seasonal comparison, we examine changes

in the winter temperature in addition to the summer temperature data.

We find that the temperature increase projected by RegCM4 tends to

be smaller than the projection of HadGEM3-RA for summers, and

that the future warming projected by HadGEM3-RA tends to be

weaker for winters. Also, the results show that there will be a

warming of 1-3
o
C over the region in 45 years. More specifically, the

warming pattern clearly depends on the latitude, with greater

temperature increases in higher latitude areas, which implies that

warming may be more severe in the northern part of the domain. 

Key words: Bayesian hierarchical model, CORDEX-East Asia,

nonstationary covariance function, regional climate model, spatial

regression 

1. Introduction

COrdinated Regional climate Downscaling EXperiment

(CORDEX) is a program sponsored by the World Climate

Research Programme (WCRP). Its goal is to organize an inter-

national coordinate framework to produce improved generation

of regional climate change projections worldwide. CORDEX

consists of multiple ensembles (both dynamically and statis-

tically downscaled versions) of climate variables over several

regional domains around the globe. For more details, see

Giorgi et al. (2009). CORDEX-East Asia is a branch of the

CORDEX initiative for an East Asian region where weather

and climate extremes, such as heat wave and heavy rainfall

events, are expected to occur more frequently with stronger

amplitude under global warming (Min et al., 2015). Currently,

outputs are available for 72 years from 5 Regional Climate

Models (RCMs), HadGEM3-RA, RegCM4, SNU-MM5, SNU-

WRF, and YSU-RSM, constrained by a Global Climate Model

(GCM), HadGEM2-AO; these include 27 year simulations for

the current (1979-2005) climate and 45 year simulations for

the future (2006-2050) climate. More information on the ex-

perimental set-up and other details can be found at http://

cordex-ea.climate.go.kr. 

In the research literature, there have been several studies on

the CORDEX-East Asia data. Using the simulation results

from 1989 to 2008, Suh and Oh (2012) examined the pre-

diction skills of five ensemble methods for temperature and

precipitation. Using the precipitation simulation results from

1989 to 2006, Park et al. (2013) studied the impact of

boundary conditions for the RegCM4 model. Moreover, Park

et al. (2016) analyzed the performance of five RCMs in simu-

lating temperature and precipitation extremes in the summer

over East Asia. 

There also have been GCM-based studies for the East Asia

region. Baek et al. (2013) presented GCM simulation results

from HadGEM2-AO under four Representative Concentration

Pathway (RCP) scenarios. Their work is focused on presenting

simulation results for climate change in the 21st century,

including global and regional changes in temperature and

precipitation. The future East Asian climate was projected to

be warmer and wetter than the global mean change. Min et al.

(2004) also analyzed multiple GCM simulation results for

climate change in the 21st century over East Asia (20-50
oN,

100-145oE). Their multi-model analysis consistently suggested

that East Asia will likely become warmer and wetter. 

However, more rigorous statistical analysis of the data from

CORDEX-East Asia is scarce, in contrast to the North

American Regional Climate Change Project (NARCCAP),

another international program for regional climate change
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projection experiments (http://www.narccap.ucar.edu). For ex-

ample, Sain et al. (2011) assessed differences between two

downscaling methods and their projections of summer tem-

perature and precipitation using NARCCAP outputs. Greasby

and Sain (2011) used a hierarchical Bayesian spatial model

approach to characterize the temperature profiles for seasons

of the year, current and future, using NARCCAP outputs.

Kang et al. (2011) used a Bayesian hierarchical spatial model

to combine multiple regional climate model outputs from the

NARCCAP experiment. Most of these studies find that spatial

dependence in the NARCCAP outputs is significant. Thus,

accounting for such spatial dependence structures gives more

statistically efficient analysis results. In other words, ignoring

spatial dependence may lead to inaccurate results with greater

uncertainty (i.e., statistical inefficiency). We expect that

CORDEX-East Asia outputs exhibit strong spatial dependence

as well, similar to the NARCCAP outputs, and we need to take

this into account in our statistical models. 

Our goal in this paper is to provide a statistically rigorous

analysis of outputs in the CORDEX-East Asia experiment that

accounts for the spatial dependence structure of the data. In

particular, we assess how the mean state of the temperature

Fig. 1. Spatial map of surface air temperatures (unit: 
o
C) by GCM (HadGEM2-AO) and two RCMs (HadGEM3-RA and RegCM4)

for the historical (left) and RCP8.5 (right) scenario experiments. Each figure shows JJA averages, averaged over 27 years.
APHRODITE data for the years 1979-2005 (unit: oC) is shown in the last row.
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varies across different RCM outputs. The two RCMs we

consider are HadGEM3-RA, developed by the Met Office

Hadley Centre (Davies et al., 2005), and RegCM4, developed

by the International Centre for Theoretical Physics (Giorgi et

al., 2012). For the current climate, we consider the historical

simulations (1979-2005), and for the future climate, we consider

the outputs with RCP8.5 runs (2024-2050), which assume a

high CO
2
 concentration scenario in the future describing a

rising radiative forcing pathway leading to 8.5 Wm−2 in 2100

(Moss et al., 2010). Within the entire domain of the CORDEX-

East Asia experiment, we focus on the domain covering part of

China, Korea, and Japan (latitude range 20o-50oN and longitude

range 100o-150oE). See Fig. 1 for a map of the domain con-

sidered in this work. 

The rest of this paper is organized as follows. Section 2

describes the statistical method and computational details.

Section 3 presents the results of our analysis. Finally, we

conclude in Section 4 with a possible extension of our work.

An appendix provides details about our statistical models and

their implementation. 

2. Data and Statistical Method

a. Data description

We use historical surface temperature data from 1979 to

2005 as well as future projections with the RCP8.5 scenario

from 2024 to 2050: a total of 27 years of data for both the

current and the future climate. The RCM outputs from the

CORDEX archive come as monthly averages, and we take

seasonal averages over June-August (JJA) and December-

February (DJF) for each given year. We consider two RCM

outputs, from HadGEM3-RA and RegCM4, which have

slightly different horizontal resolutions of 0.44o and 50 km,

respectively. To deal with this grid discrepancy, we used linear

interpolation with a triangulation scheme to obtain the data on

common grids of 0.5o × 0.5o. The interpolated data has 61
(latitude) by 101 (longitude) grid points over the East Asian

domain (Fig. 1). 

Figure 1 shows the spatial distributions of historical and

future JJA mean temperatures from the two different RCMs

and observations. We can clearly see east-west as well as

north-south patterns, having warm summers over eastern

China. The RCM results we use are all driven from the same

GCM, HadGEM2-AO. The effect of GCM boundary forcing

on the outputs of RCMs is known to be significant

(Christensen et al., 2013; Park et al., 2016). Figure 1 displays

the effect of GCM on the RCM outputs. We note that, for the

Boreal summer temperature, the HadGEM3-RA RCM produces

slightly higher temperatures than the RegCM4 model. 

For further evaluation of the two RCMs, we compare

observations with the RCM outputs. We used the Asian

Precipitation-Highly Resolved Observation Data Integration

Towards Evaluation of Water Resources (APHRODITE; Yatagai

et al., 2012) data for the years 1979-2005 as observations

(shown in Fig. 1). APHRODITE is the only data over monsoon

Asia (15oS-55oN, 60-155oE) that provides high-resolution

observations, both spatially and temporally. We calculate

seasonal means from daily mean temperatures on a grid with a

0.5o × 0.5o resolution, which was created based on quality-
controlled station observations (Yasutomi et al., 2011). The

number of stations used for this data set was 1.5-3 times larger

than the number used for the Global Telecommunication System

(GTS) reports. The monthly mean temperature climatology

was shown to be comparable to other gridded temperature

products (Yasutomi et al., 2011). 

Figure 2 shows model biases, i.e., differences between

model outputs and observations. We notice that even though

HadGEM3-RA produced higher temperature data than

RegCM4 for the Boreal summer over the region, it gives lower

temperatures than the observed data over a large portion of the

region, including the Korean Peninsula. This cold bias in JJA

is known to be associated with a cold sea surface temperature

(SST) bias in HadGEM2-AO GCM (Park et al., 2016).

Overall, RegCM4 tends to produce lower temperatures than

HadGEM3-RA. Although one could incorporate observations

into the statistical model fitting procedure, which would be

equivalent to giving weights to climate models based on model

Fig. 2. Model bias (i.e. differences between model output and observation) of two RCMs, (a) HadGEM3-RA, (b)
RegCM4, for JJA mean temperatures, averaged over 1979-2005 (unit: oC). APHRODITE data are used as observations.
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biases (e.g., Hawkins and Sutton, 2009; Salazar et al., 2011),

we do not use the observation data for the statistical analysis in

the next section. 

b. Functional ANOVA model

Our statistical model is based on the functional Analysis of

Variance (ANOVA) approach. It is called a “functional”

ANOVA because each factor in the ANOVA structure comes

in functional form (i.e. as a function of spatial locations). The

categorical factors include the choice of RCM and the choice

of the period for GCM (historical run or future RCP8.5

scenario run). The functional ANOVA approach is a useful

tool for comparing the data with respect to four different

combinations of RCM/period. Several works have analyzed

climate model outputs with the functional ANOVA approach,

including Kaufman and Sain (2010) and Salazar et al. (2011).

Salazar et al. (2011) considered discrepancies between obser-

vations and regional climate model outputs in the space-time

context. Our approach is similar to the one in Kaufman and

Sain (2010), and we only consider model outputs in spatial

context in the functional ANOVA framework. 

Let Y
ijt
(s) denote the output from the ith RCM model (i = −1

for HadGEM3-RA and i = 1 for RegCM4), the jth period

(j = −1 for the current run and j = 1 for the future run) at time t

(t = 1,…,27) and location s. Then we define 

Y
ijt
(s) = μ(s) + iα(s) + jβ(s) + ij(αβ)(s) + γ (t − 14) + ∈

ijt
(s).

(1)

Here, μ(s) represents the grand mean temperature at location s.

Two main effects, α(s) and β(s), represent the deviation from

the grand mean for the chosen RCM and time period,

respectively. The interaction term, (αβ)(s), enables us to

differentiate the rate of temperature increase with two different

RCMs. Finally, γ represents the temperature change in one

year, which we assume fixed for spatial location s. Similarly to

Kaufman and Sain (2010), we assume that the terms, μ, α, β,

and (αβ) follow a Gaussian distribution. 

The term μ in Eq. (1) may require the most complex spatial

structure of all the terms, since all other terms describe

deviations from μ and μ itself represents the grand mean over

the domain. This term is modeled through a nonstationary

covariance model. In particular, we allow the variance to be

different over the land and the ocean. That is, for σμ, η > 0, we

let 

(2)

where W is a mean zero Gaussian process. The covariance

structure of W is given by a Matérn correlation function (Stein,

1999) that only depends on distance: 

, (3)

with φ, v > 0 and K
v
 a modified Bessel function of order v.

That is, we have Cov{W(s), W(u)} = C(|s − u|; φμ, vμ ). Here,

|s − u| denotes the distance between the two locations s and u.
Note that the covariance model in Kaufman and Sain (2010) is

isotropic (which implies constant variance over the entire

domain), and this isotropic assumption may be limited for the

μ term in Eq. (1). We fix vμ = 2, similarly to Kaufman and Sain

(2010). 

We assume that the mean structure of the grand mean

temperature process μ at location s, μ
0
(s), can be well modeled

by the following three factors: the latitude of location s, the

elevation at location s, and whether s is located on the land or

the sea. The term μ
0
 is modeled through a regression equation

that depends on the latitude (L) and elevation (A, unit: km) in

the following way: 

(4)

The structure in Eq. (4) is useful for explaining the large-

scale variation of the μ term. The data set on elevation and

land/sea mask is obtained from the Joint Institute for the Study

of the Atmosphere and Ocean (http://research.jisao.washington.

edu/data_sets). To deal with the discrepancy of the grid re-

solution for different RCM models, we interpolated the

elevation variable to the common 0.5o × 0.5o grid. Further
details on the Bayesian model set up and computational

techniques are presented in the Appendix. 

3. Analysis results

a. Results for JJA

Figure 3 shows posterior means for μ, α, β, and (αβ), which

represent the grand mean, regional model, period, and inter-

action, respectively [Eq. (1)]. This figure shows that the

interaction term [bottom right, (αβ)], is very small, compared

to the other main effects. It also suggests that the temperature

from the RegCM4 model is lower than the temperature from

the other RCM (top right) and that there is warming over time,

across the entire domain (bottom left). Finally, it shows that the

magnitude of the temperature increase depends on the latitude

(bottom left). 

Using posterior samples of (αβ), we form a 95% credible set

on the interaction term. If the lower bound of the 95% credible

set exceeds 0 at a location (grid pixel), we say that (αβ) is

“credibly positive”. Similarly, if the upper bound of the 95%

credible set is smaller than 0, we say that (αβ) is “credibly

negative”. Black grid boxes in Fig. 4a indicate a credibly

positive (αβ), whereas white grid boxes indicate a credibly

negative (αβ). There is a clear coastline effect, although

similarly to what Fig. 3 suggests, overall, the size of the

interaction is small. 

Turning our attention to the main effects, Fig. 4b shows

results for the main effect of the regional model, α. From Eq.

μ s( ) μ0 σμe
η
W s( )+  ,  if s land,∈

μ0 σμW s( )+       , if s sea   ,∈⎩
⎨
⎧

=

C d φ v,;( ) 1

2
v 1–

Γ v( )
--------------------

d

φ
---⎝ ⎠
⎛ ⎞

v

Kv

d

φ
---⎝ ⎠
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μ0 s( )
μ00 μ01 L s( ){ } μ02 μ03+ +sin A s( )+  ,  if s land∈
μ00 μ01 L s( ){ }sin+                          , if s sea.∈⎩

⎨
⎧

=
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(1), with i = −1 for HadGEM3-RA and i = 1 for RegCM4, 2α

represents the difference in temperature between the two

RCMs. Black grid boxes indicate a credibly positive α,

whereas white grid boxes indicate a credibly negative α. In

other words, the output from the RegCM4 model gives higher

temperatures in black regions and lower temperatures in white

regions, compared to the HadGEM3-RA model. In Section 2,

we discussed the differences in the outputs from the two

RCMs. Figure 4b gives similar results. It shows that RegCM4

tends to produce higher temperatures in inland areas (over

central China and Mongolia) and lower temperatures in other

areas, compared to HadGEM3-RA. This agrees with the

difference in model biases shown in Fig. 2, although the biases

in Fig. 1 only concern the current time period, whereas α in

Fig. 4 concerns both the current and future time periods. 

We have seen from Fig. 3 that the posterior means of the

main effect regarding the period, β, is positive over the whole

domain, implying warming across the entire domain. The term

2β represents the increases in temperature by the period 2024-

2050 compared to the period 1979-2005. More precisely, 2β +

Fig. 3. Posterior means of μ (“Grand Mean”), α (“Regional Model”), β (“Time”), and (αβ) (“Interaction”), for JJA
mean temperatures (unit: oC).

Fig. 4. JJA case: (a) shows the regions where (αβ) is credibly different from zero (black regions suggest positive (αβ)
and white regions suggest negative (αβ)). (b) shows the regions where α is credibly different from zero (black regions
suggest positive α and white regions suggest negative α).



242 ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES

2(αβ) represents the temperature increases predicted by the

RegCM4 regional model, and 2β − 2(αβ) represents the
temperature increases predicted by the HadGEM3-RA regional

model. Thus, in this sense Fig. 3 implies a temperature in-

crease of about 1-3oC in 45 years. Figure 5 gives more detailed

information about β. It displays the posterior probabilities that

the temperature increases more than 1oC, 2oC, and 3oC in 45

years, respectively (row-wise) from the two RCM models

(column-wise). The first column displays 2β + 2(αβ) (for

RegCM4), and the second 2β − 2(αβ) (for HadGEM3-RA).

The two columns of Fig. 5 look similar, though this is due to a

small interaction term (αβ). The first row suggests that the

probability that the temperature increases more than 1oC is

higher than 0.96 over the entire domain (from both models).

The second row clearly demonstrates that the northern part of

the domain is expected to suffer from more serious warming.

Note that the area-averaged value of the temperature increase

by 2024-2050 under the RCP8.5 scenario is estimated to be

2.11 (this value is obtained from posterior samples of 2β,

averaged over the domain). 

Our results are comparable to results in the literature for

similar regions. For instance, Baek et al. (2013) analyzed

HadGEM2-AO, which is used to derive the RCM results.

Table 2 of Baek et al. (2013) shows that the estimated area-

averaged temperature increase over the East Asia region (20-

50oN, 100-150oE) is greater than the area-averaged temperature

increase over the global region. Specifically, using RCP8.5, the

area-averaged JJA temperature change for 2081-2100 relative

to 1986-2005 is estimated to be 4.7oC over the East Asia

region, whereas the temperature change is estimated to be

4.0oC over the global domain. The annual temperature is

estimated to increase by 4.6oC over the East Asia region and

4.1oC over the global domain. According to Baek et al. (2013)

(using the RCP 8.5 scenario), the global area-averaged surface

air temperature will increase by 1-2oC by 2050 from the

temperature for 1986-2005. These results imply that the area-

averaged temperature over the East Asia region will increase

slightly more than 1-2oC by 2050 from the temperature for

1986-2005, which agrees with our results. 

Figure 5 (particularly the second row) suggests that the

Fig. 5. Posterior probabilities that temperature (JJA case) increases more than 1
o
C (top), 2

o
C (middle), and 3

o
C

(bottom) from RegCM4 model (left) and HadGEM3-RA model (right).
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latitude plays an important role in temperature increases. We

find similar results in previous studies of the East Asian region

(Min et al., 2004; Baek et al., 2013). Min et al. (2004) used

CMIP3 multi-model ensembles to predict the future climate

change over the East Asia region [20-50oN, 100-145oE, based

on Special Report on Emissions Scenarios (SRES) scenarios].

Figure 5 in Min et al. (2004) clearly shows the effect of

latitude on the temperature changes across the region, sug-

gesting a larger temperature increase in the region with the

higher latitude. Min et al. (2004) also suggest that the area-

averaged temperature will increase by 2.49oC by the 2050s,

compared to 1961-1990. Considering the fact that our estimate

is relative to 1979-2005 and that different scenarios are used,

our estimate of 2.11oC across the East Asia domain seems

comparable. 

b. Results for DJF

To compare our results for JJA to another season, we

considered the seasonal average over the Boreal winter (DJF)

and conducted the same spatial analysis. Figure 6 shows a

spatial map of DJF mean temperatures over the domain.

Fig. 6. Spatial map of surface air temperatures (unit: oC) by GCM (HadGEM2-AO) and two RCMs (HadGEM3-RA and RegCM4)
for the historical (left) and RCP8.5 (right) scenario experiments. Each figure shows DJF averages, averaged over 27 years.
APHRODITE data for the years 1979-2005 (unit: oC) is shown in the last row.
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Unlike the Boreal summer, we see that the RegCM4 model

gives slightly higher temperatures for the winter than the

HadGEM3-RA model. The RCM outputs are also compared to

the observation data (area-averaged value for 1979-2005).

Figure 7 shows the model biases of the two RCM outputs. The

two RCMs produce lower temperatures than the observed

temperature over most of the domain. Comparing Figs. 2 and

7, we see that the cold biases for the winter temperature are

about twice as large as those for the summer. 

For a Bayesian functional ANOVA analysis, we fit the DJF

data to a similar model, using Eq. (1). We used historical

surface temperature data from December 1979 to February

2005, as well as a future projection with the RCP8.5 scenario

from December 2024 to February 2050: 26 years of data each

for both the current and the future climate. We consider the

DJF average over each year. Figure 8 shows posterior means

for μ, α, β, and (αβ) for Boreal winter temperatures. Unlike

the JJA case, temperatures produced from the RegCM4 model

Fig. 7. Biases from two RCMs (unit: oC). (a) HadGEM3-RA, (b) RegCM4 for DJF temperatures (1979-2005).

Fig. 8. Posterior means of μ (“Grand Mean”), α (“Regional Model”), β (“Time”), and (αβ) (“Interaction”), for DJF
mean temperatures (unit: oC).
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are higher. This agrees with what we see in Figs. 6 and 7.

Figure 9a shows that the interaction over the domain is

credibly close to 0. Figure 9b, which gives the main effect of

the regional model, α, suggests that the output from the

RegCM4 model tends to produce higher temperatures over a

large part of the domain except for the lower left corner region,

which agrees with Figs. 7 and 8. Figure 8 (bottom left) shows

the posterior means of β, the main effect regarding time. It

suggests warming over the domain. Furthermore, the first row

of Fig. 10 suggests that the probability of a temperature

Fig. 9. DJF case: (a) shows the regions where (αβ) is credibly different from zero (black regions suggest positive (αβ)
and white regions suggest negative (αβ). (b) shows the regions where α is credibly different from zero (black regions
suggest positive α and white regions suggest negative α).

Fig. 10. Posterior probabilities that temperature (DJF case) increases more than 1
o
C (top), 2

o
C (middle), and 3

o
C

(bottom) from RegCM4 model (left) and HadGEM3-RA model (right).
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increase greater than 1oC is greater than 0.95 over most of the

domain (similarly to JJA case). It suggests that the temperature

change in 2024-2050 relative to 1979-2005 for DJF is about 1-

2oC over the lower latitude regions and 2-3oC over the higher

latitude regions. The area-averaged temperature increase in

winter over East Asia by 2024-2050 from 1979 to 2005 is

about 1.94oC. 

c. Results regarding the trend

To see the seasonal effect on temperature increases, we

check the estimated values for both β and γ in Eq. (1). Here, 2β

indicates the temperature increases between the years 2024-

2050 and 1979-2005. In contrast, γ indicates the linear trend of

temperature increases in a single year. Also, β is a spatial field,

but γ is a fixed constant over the domain. 

Figure 11 shows the distributions of the posterior samples of

γs for summer and winter. Even though the area-averaged

value of β for the summer (1.05671) is slightly greater than the

area-averaged value of β for the winter (0.96769), this may not

mean that the warming in the summer will be more intense

than in the winter. Since the estimate for γ for winter is larger

than the estimate for summer, the temperature increase for

consecutive years is estimated to be larger for winter. 

Figure 12a shows the estimated area-averaged temperature

increase relative to the year 1979 in the Boreal summer. The

line shows the estimated temperature increases compared to

the summer of 1979, i.e., 

γ(x − 2024) + 2β, x∈(2024, 2050) (5)

Remember that 2β gives the temperature increase over 45

years (temperature increase from 1979 to 2024) and γ indicates

the linear trend of temperature increases in single consecutive

years. Figure 12b shows the same information as Fig. 12a, but

for the Boreal winter. Since the estimated value of β (area-

averaged value) is higher for the summer, the line intercept in

Fig. 12a is larger than in Fig. 12b. However, since the

estimated value of γ (the mean value) is larger for the winter,

the slope of the line in Fig. 12b (0.06241) is greater than the

slope in Fig. 12a (0.04265). Figure 12 shows a clear distinction

between the two RCM models in terms of a temperature

increase relative to 1979 for JJA, but not for DJF. Priors,

posterior means, and credible intervals for all the parameters

considered for the two seasons, JJA, and DJF, are shown in

Tables 1 and 2 in the Appendix. 

4. Conclusions

In this study, the spatial patterns of temperature changes are

analyzed using two regional climate model (RCM) simulations

participating in the CORDEX-East Asia experiment-HadGEM3

-RA and RegCM4. The spatial covariability of temperatures is

rigorously examined using the Bayesian functional Analysis of

Variance (ANOVA) approach, which simultaneously models

space-time structures of temperature change patterns. This

method enables examination of similarities and differences in

temperatures between two RCMs over the present and future

periods. The spatial dependence structure of the temperature is

allowed to depend on latitude and altitude. We consider both

summer and winter for a seasonal comparison. 

Temperature patterns from the two RCMs are similar to

those from GCMs, which represent dominant force of the

driving global climate models (GCMs), as indicated by pre-

vious studies. The analysis results show that HadGEM3-RA

tends to produce warmer temperatures than RegCM4 during

the summer, while the opposite is seen during the winter - the

HadGEM3-RA projection tends to be colder than the RegCM4

projection. Comparison of the model biases suggests that this

difference in the projected temperature change is mainly due to

different model climatologies for the seasons. This implies that

Bayesian functional ANOVA is quite sensitive to model bias

and that model skills are one of the important factors for this

analysis. 

The results also suggest that the average temperature

increase over East Asia will be 1-3oC by the mid-21st century,

which is similar to previous studies based on different models

and scenarios. This seems to be due to the fact that there are

not significant differences in radiative forcing among different

emission scenarios for SRES or RCP for the near future

Fig. 12. Estimated temperature increases (
o
C) relative to the year

1979 in (a) JJA, (b) DJF. Circles indicate the data from HadGEM3-
RA regional model and triangles indicate the data from RegCM4
model.

Fig. 11. Histogram of the posterior samples of γ (a) JJA, (b) DJF.
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period, which results in relatively small differences in tem-

perature changes. 

Our spatial analysis clearly identifies a north-south difference

in temperature changes that dominates the spatial pattern of

warming, i.e. a latitudinal dependence. This implies that

stronger and faster temperature increases are expected to occur

at higher latitudes than at lower latitudes. 

The main objective of this study was to exploit a spatial

analysis approach to East Asian temperatures in a relatively

simple setting. Our functional ANOVA model assesses the

significance of the differences in temperature projected by two

regional climate models, differences in current and future

temperatures, differences in the rate of temperature increase,

and linear trends, accounting for the spatial dependence of

these factors as well as the error in the ANOVA model. Our

method has many caveats. First, we use limited experiment

datasets from one GCM combination of two RCMs. Second,

we only considered one scenario, RCP8.5. It is well known

that projected future climate changes at regional scales are

characterized by high uncertainties, largely due to model

differences and scenario uncertainties (e.g., Hawkins and

Sutton, 2009; Salazar et al., 2011). In the future, we plan to

carry out an extended analysis, considering multi-models and

multi-scenarios in our statistical model. 
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Appendix: Computational details 

In this appendix, we offer details about the Bayesian im-

plementation of our model fitting. 

1. Priors: 

We put a Gaussian distribution prior to each effect. In

particular, we let α~N(0, C(·;φα , 2)), β~N(μβ, C(·;φβ , 2)),

and (αβ)~N(0, C(·;φ
int
, 2)). We assume that ∈

ijt
~N(0, C

(·;φ∈ , 2)). The covariance function C is defined in Eq. (3).

We find that for the JJA temperatures, μβ is well explained

by latitude, since latitude seems to be the dominant factor in

describing the term β. Thus, for the JJA temperature analysis,

we write μβ as a linear combination of Legendre polynomials

of order 3 with the sine of the latitude as their arguments: 

μβ(s) = μ
20
+ μ

21
P
1
[sin{L(s)}] + μ

22
P
2
[sin{L(s)}] + μ

23
P
3
[sin

{L(s)}], (6)

where L denotes the latitude and P
n
(x) is the nth Legendre

polynomial. We put a uniform prior U(−90, 90) on the co-
efficient terms for μβ , i.e., μ20

, μ
21
, μ

22
, and μ

23
.

For the DJF temperatures, β is more complex and cannot be

fully explained by latitude alone. Thus, we sample μβ directly

from the vector space. More specifically, we put a uniform

prior on μβ∈R
6161. This prior distribution, U(R6161), is an

improper prior, but it yields a proper posterior distribution,

which is multivariate normal in our setting. 

We put a non-informative prior distribution on the remaining

parameters including the coefficient terms in the linear

combinations for μ
0
. Here, the coefficient terms for μ

0
 are μ

00
,

μ
01
, μ

02
, and μ

03
. We let γ ~U(−5,5), which reflects our belief

that the average temperature change in a given year is less than

5oC. For covariance parameters, we let σ2~U(0,1250), η~

U(0,3), and φ ~U(0,1000). For σ, we followed the same

rational as Kaufman and Sain (2010), and used σ2~U(0,1250).

Due to the greater heat capacity of the sea, the rate of the

temperature increase over land is about twice the rate of the

temperature increase over the sea and this suggests that the

sign of η should be positive, so we used η~U(0,3). The prior,

φ~U(0,1000), implies a restriction of the maximum correlation

between neighboring points to 0.9993. 

2. MCMC: 

If there are highly correlated parameters, it is recommended

that each pair of correlated parameters be sampled as a block.

σα
2 σβ

2

σint
2 σ

 ∈
2

Table 1. Estimates of hyper-parameters for JJA mean temperatures
data.

Prior Used Estimate  95% Credible Set 

μ
00

U(−90, 90) 54.47 (52.15, 57.06) 

μ
01

U(−90, 90) −59.53 (−64.01, −55.71) 

μ
02

U(−90, 90) −0.17 (−0.30, −0.07) 

μ
03

U(−90, 90) −0.22 (−0.26, −0.19) 

 μ
20

U(−90, 90) 21.36 (16.82, 25.33) 

 μ
21

U(−90, 90) −43.63 (−52.05, −34.09) 

μ
22

U(−90, 90) 34.38 (27.33, 40.68) 

 μ
23

U(−90, 90) −12.88 (−15.18, −10.33) 

γ U(−5, 5) 0.043 (0.042, 0.044) 

η U(0, 3) 0.093 (0.079, 0.105) 

φμ U(0, 1000) 153.46 (144.83, 163.08) 

 U(0, 1250) 10.33 (8.22, 13.00) 

φα U(0, 1000) 56.06 (54.45, 57.55) 

 U(0, 1250) 0.26 (0.24, 0.28) 

φβ U(0, 1000) 70.75 (66.77, 74.59) 

 U(0, 1250) 0.0037 (0.0030, 0.0044) 

φ
int

U(0, 1000) 21.54 (20.07, 23.21) 

U(0, 1250) 0.00012 (0.00011, 0.00014) 

φ∈ U(0, 1000) 82.01 (81.75, 82.24) 

U(0, 1250) 0.178 (0.176, 0.180) 

σμ
2

σα
2

σβ
2

σint
2

σ
 ∈
2
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We paired the mean parameters of μ, the mean parameters of

β, and each (σ2, φ). We can easily compute the normal

posterior distributions for the parameters except for the covar-

iance parameters. We used a Gibbs sampler to sample from the

normal conditional distributions for the mean parameters μ, α,

β, (αβ), and γ. For each pair (σ2, φ), we first sampled φ from

its distribution conditional on everything except σ2, using

Metropolis-Hastings steps with Gaussian proposal distribu-

tions. We then sampled each σ2 with the sampled value of hi

using an inverse gamma conditional distribution. 

For each iteration, we randomly chose the order of para-

meters to be updated, as Roberts and Sahu (1997) suggested.

Additionally, during the first 2000 iterations, we updated

proposal variances for the Metropolis-Hastings steps in every

100 iteration. We carried out 5000 iterations, discarded the first

500 iterations for burn-in, and used every second sample. We

checked convergence visually with ACF and PACF plots (not

shown). Tables 1 and 2 show posterior estimates of the hyper-

parameters for JJA and DJF, respectively. 

3. Covariance approximation for a large data set

There are a large number of pixels even in the limited spatial

domain, and computation for statistical estimation using the

Bayesian method as described above may be challenging. The

total number of the grid points on the domain is 6161, which

involves inverting of matrices of size 6161 × 6161 numerous
times for the Bayesian implementation. 

Various computational techniques, including covariance ap-

proximation and likelihood approximation, have recently been

developed in the statistics literature (Stein et al., 2004; Furrer

et al., 2006; Kaufman et al., 2008). Of these, we use the full

scale approximation developed in Sang et al. (2011) and Sang

and Huang (2012). 

Full scale approximation consists of two parts: reduced rank

approximation and sparse approximation of the residual (the

difference between the original covariance matrix and the

reduced rank approximation). For the reduced rank approxi-

mation, we used 375 (m = 375) evenly distributed points for

knots on the domain. For the sparse approximation of the

residual part, we divided the entire domain into 6 disjoint

subdomains and assumed that there is no spatial dependence

across different subdomains. As a result, the sparse approxi-

mation produced a block diagonal matrix with 6 non-diagonal

blocks. We chose 6 non-overlapping subdomains arbitrarily

with the ith subdomain consisting of n
i
 grid points: n

1
= 1054,

n
2
= 1020, n

3
= 1023, n

4
= 990, n

5
= 1054, and n

6
= 1020. See

Sang and Huang (2012) for full details on the full scale

approximation method. 
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