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Abstract
Purpose Although quantification of amyloid positron emission tomography (PET) is important for evaluating patients with
cognitive impairment, its routine clinical use is hampered by complicated preprocessing steps and required MRI. Here, we
suggested a one-step quantification based on deep learning using native-space amyloid PET images of different radiotracers
acquired from multiple centers.
Methods Amyloid PET data of the Alzheimer Disease Neuroimaging Initiative (ADNI) were used for this study. A training/
validation consists of 850 florbetapir PET images. Three hundred sixty-six florbetapir and 89 florbetaben PET images were used
as test sets to evaluate the model. Native-space amyloid PET images were used as inputs, and the outputs were standardized
uptake value ratios (SUVRs) calculated by the conventional MR-based method.
Results The mean absolute errors (MAEs) of the composite SUVR were 0.040, 0.060, and 0.050 of training/validation and test
sets for florbetapir PETand a test set for florbetaben PET, respectively. The agreement of amyloid positivitymeasured byCohen’s
kappa for test sets of florbetapir and florbetaben PETwere 0.87 and 0.89, respectively.
Conclusion We suggest a one-step quantification method for amyloid PET via a deep learning model. The model is highly
reliable to quantify the amyloid PET regardless of multicenter images and various radiotracers.
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Introduction

A definitive diagnosis of Alzheimer’s disease (AD) requires
both clinical features and histopathological confirmation by
brain biopsy or autopsy [1–3]. The histopathology of AD
brain is characterized by amyloid deposition, which can be
currently noninvasively evaluated by amyloid positron emis-
sion tomography (PET) [1–4]. Therefore, amyloid imaging
has become critical diagnostics to assess AD pathology for
earlier diagnosis of AD and mild cognitive impairment
(MCI), eventually affecting effective treatment [5–8]. The cur-
rent routine clinical practice of amyloid imaging is dependent
on the visual interpretation, which is limited in reliability be-
cause of interobserver variability, images acquired from mul-
tiple centers using variable radiotracers [3].

To overcome the visual interpretation and to use amyloid
PETas a quantitative biomarker, there have been many efforts
to reliably and accurately quantify the amyloid deposition
using PET. Conventionally, both magnetic resonance imaging
(MRI) and amyloid PET scans are employed to calculate am-
yloid deposition using standardized uptake value ratios
(SUVRs) [9]. The MR-based processes to estimate SUVR
have been variable according to studies; however, image co-
registration, brain segmentation, and normalization processes
to delineate cortex and the reference regions have been com-
monly included [9]. Even though these methods can accurate-
ly delineate the cortical and reference regions and show a high
correlation with amyloid pathology [10, 11], there are hurdles
in routine clinical use, including the requirement of structural
MRI scan and complicated preprocessing steps [3].
Quantification results from multiple centers that can be affect-
ed by different PET machines and reconstruction algorithms
make it difficult to standardized criteria for amyloid positivity
[12]. Furthermore, due to recently developed various F-18
radiotracers for evaluating amyloid deposits, the quantifica-
tion of amyloid deposition is considerably variable according
to the types of radiotracers [12, 13].

In this study, we aimed to develop an automated
amyloid aggregation quantification system based on
end-to-end training of deep learning using multicenter
amyloid PET. Recently, deep learning approaches have
been widely used to evaluate brain imaging, particularly
developing biomarkers for dementia [14–17]. These
studies have attempted to predict future cognitive out-
comes from multimodal images or to assess convention-
al biomarkers such as amyloid quantification. As the
amyloid deposit is a key pathologic marker of AD, its
accurate quantification is critical for understanding AD
and its related disorders. Our approach of the end-to-end
deep learning model has several advantages compared
with previous conventional approaches: (1) amyloid
PET quantification based on native-space PET without
structural MRI, (2) quantification for multiple centers

with different machines and reconstruction algorithms,
and (3) a feasibility in the application of the same
method for different F-18 radiotracers, florbetapir and
florbetaben.

Material and Methods

Subjects

In this study, amyloid PET data of multiple centers col-
lected from the Alzheimer disease neuroimaging initia-
tive (ADNI) (http://adni.loni.usc.edu) database. ADNI
total 1216 florbetapir PET and 89 florbetaben PET
data were included for this study. Florbetapir PET
images were divided into two datasets, a training/
validation set and a test set. A training/validation con-
sists of 850 baseline florbetapir PET images regardless
of the diagnosis. Three hundred sixty-six florbetapir
PET images as a 2-year follow-up were used as an
independent test set to evaluate the accuracy of the
model. Eighty-nine florbetaben PET images of ADNI-3
were also applied as an independent test set from the
training data. The ADNI was launched in 2003 by a
$60 million, 5-year public-private partnership. The ini-
tial purpose of ADNI has been to test whether serial
MRI, PET, other biological markers, and clinical and
neuropsychological data can access the progression of
MCI and/or early AD. The principal investigator is
Michael W. Weiner, MD, VA Medical Center and
University of California San Francisco. Many co-
investigators from a broad range of academic institu-
tions and private corporations work to find participants
then they have achieved to recruit over 50 sites across
the USA and Canada. The institutional review boards of
all participating institutions approved imaging studies
and neuropsychological tests, and all participants signed
a written informed consent form. For up-to-date infor-
mation, see http://www.adni-info.org.

PET Images and Quantification of Amyloid Deposition

ADNI provides processed PET images of four different
levels. Four different levels are different levels of
preprocessed PET data that provide different initial
points for the following analyses. Sets 1 and 2 of
preprocessed PET data are native-space images and the
original images. Set 1: the realigned dynamic images
after co-registration, set 2: the single-frame averaged
static images of set 1, set 3: transformation into a stan-
dardized orientation and intensity normalization of the
images of set 2, and set 4: scanner-specific smoothing
applying to image set 3. Four levels of preprocessed
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PET data can be downloaded from the ADNI, and we
use the set 2 of preprocessed native-space PET images
[11]. More specifically, to develop a deep learning mod-
el that can be applied to PET images with various cen-
ters of different machines and reconstruction parameters,
we used native-space PET images without voxel size
standardization or smoothing. Because PET images were
reconstructed for multiple time frames for the ADNI
database, we used averaged images across the time
frames without further processing including a spatial
transformation for developing deep learning model.
SUVR calculation results based on structural MR were
acquired from the ADNI database. The detailed SUVR
calculation method is described in previous papers [18,
19]. Briefly, each amyloid PET scan was co-registered
to the corresponding MRI which is segmented and
parcellated with Freesurfer to define cortical subregions
of interests (frontal, cingulate, parietal, and temporal),
and reference regions [5, 9]. SUVRs were calculated
by mean counts of the cortical subregions (frontal, cin-
gulate, parietal, and temporal) divided by those of the
whole cerebellum [5, 9]. The deep learning model was
designed to predict normalized SUVRs of four regions
calculated by the conventional MR-based method. The
composite SUVR was calculated by the mean value of
normalized SUVRs of four cortical subregions for both
the conventional MR-based method and the deep
learning-based predicted method.

End-to-End Training of Deep Learning

Florbetapir amyloid PET images were used as training/
validation data. A total of 765 imaging data (90.0%)
were used for training, and the remaining 85 imaging

data (10.0%) were used for the internal validation. The
validation data were used to determine architectures and
parameters and were randomly selected among
florbetapir training/validation data. The model was
trained by 765 florbetapir PET dataset as a training set
and 85 florbetapir PET datasets as an internal validation
set to optimize the training parameters and architectures
of the deep learning model (Fig. 1). The architecture of
a 3D convolutional neural network (CNN) model we
used in this study is shown in Fig. 2. We used super-
vised learning for the training. The input images were
florbetapir PET, and the target outputs were convention-
al MR-based SUVRs. Thus, it was a regression problem
instead of classification, and the label was a continuous
variable.

The native-space PET images of multiple centers have
different voxel size, and preprocessing steps were
proceeded for normalizing the same voxel size (3 × 3 ×
3 mm3) and resizing 80 × 80 × 60 matrix dimensions.
The image resize was performed by the nearest-
neighbor-like algorithm for scaling-down. These resliced
native-space PET images were the input of the 3D CNN
model with convolutional layers 32, filter size of 3 × 3 × 3,
rectified linear unit (ReLU) activation layer, and a stride
size of 2 × 2 × 2. After each convolutional layer, max-
pooling layers were applied with a pool size of 2 × 2 × 2
and a stride size of 2 × 2 × 2. 3D convolutional layers and
followed max-pooling layers are applied three times.
Additionally, 3D convolutional layers were performed
with 128 convolutional layers, a filter size of 5 × 5 × 5,
and ReLU activation layers. Consequently, these multiple
convolutional layers and max-pooling layers produced
128 feature vectors. The 128 features were related to four
outputs. The four outputs corresponded to normalized

Fig. 1 Overall subjects for developing and validating the deep learning-
based amyloid PET quantification method. A total of 1216 amyloid PET
data were used for the training/validation and test datasets. Eight hundred
fifty baseline florbetapir PET from ADNI data were used for developing
the model and were randomly divided into two datasets, training (90%)

and validation (10%) sets. Three hundred sixty-six baseline florbetapir
PET images as a 2-year follow-up of ADNI data were used for an
independent test set to validate the model. Eighty-nine florbetaben PET
of ADNI data were used for another test set for validating the model
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SUVRs of four cortical subregions. The training/
validation set for florbetapir PET was trained to minimize
the loss function, mean absolute error (MAE) defined by

L yi; ŷið Þ ¼ 1
N ∑

N

i¼1
yi−ŷij j, where yi and ŷi are the regional

SUVR, respectively. For the training of weights, Adam
optimizer with learning rate = 0.0001 was used. The per-
formance was independently tested by two test sets,
florbetapir PET and florbetaben PET data. This training

Fig. 2 Convolutional neural
network model and the
architecture. The end-to-end deep
learning model for SUVR
prediction. Inputs are native-
space PET images and outputs are
conventional MR-based SUVRs.
3D CNN consists of multiple
convolutional and
deconvolutional layers to
calculate amyloid PET to SUVR.
The training of network was
aimed at calculating SUVR,
which cannot be distinguished
from conventional MR-based
SUVRs
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was conducted by Tensorflow (version 1.12) on Python
(version 3.6).

Statistics

The assessment of the similarity between conventional MR-
based SUVRs and deep learning-based predicted SUVRs
were assessed by multiple metrics. Four subregional SUVRs
were obtained by mean SUV of the whole cerebellum. The
composite SUVRs were calculated by the mean value of nor-
malized four subregional SUVRs. MAEs and intraclass corre-
lation coefficients (ICCs) of the composite SUVR were esti-
mated for each of the training/validation set and test sets.
ADNI subjects can be categorized as amyloid positive or neg-
ative by the predefined cutoff value of 1.11 [20]. The cutoff of
1.11 applies to the composite SUVRs to obtain Cohen’s kap-
pa, accuracy, sensitivity, and specificity for the training/
validation set and test sets of florbetapir and florbetaben
PET, respectively. The Bland-Altman plots show the means
of the conventional MR-based SUVRs and deep learning-
based predicted SUVRs plotted against their differences to
assess agreement two methods for each test set.

Results

We developed the model to quantify the amyloid deposition
using amyloid PET images. The SUVR could be calculated
regardless of multicenter images and various radiotracers. The
MAEs of the composite SUVR of training/validation and test
sets for florbetapir PET were 0.04 and 0.06. The MAE of the
composite SUVR of florbetaben PET as an independent test
set was 0.05. The ICCs were 0.98, 0.96, and 0.97 for the
training/validation set and test sets of florbetapir and
florbetaben PET, respectively. Figure 3 presents the loss

(MAE) according to the epochs. The MAEs and ICCs of
quantitative SUVRs by conventional MR-based and deep
learning-based methods for each subject of four cortical sub-
regions are shown in Tables 1 and 2. Scatterplots show
SUVRs calculated by the conventional MR-based method
and deep learning-based predicted method for four cortical
subregions (Fig. 4).

Samples were divided into amyloid-positive and amyloid-
negative groups using a predefined cutoff value of 1.11. The
agreement of amyloid positivity measured by Cohen’s kappa
of two quantification methods, based on structural MR and
deep learning, was 0.93, 0.87, and 0.89 for the training/
validation set and test sets of florbetapir and florbetaben
PET, respectively. When conventional MR-based SUVRs
with the cutoff defined as an amyloid positivity, the accuracy,
sensitivity, and specificity of deep learning-based SUVRs of a
training/validation set and test sets for florbetapir and
florbetaben PET are shown in Table 3. The Bland-Altman
plots were also drawn to the agreement without bias for the
quantification of four cortical subregions (Fig. 5).

Discussion

The quantification of amyloid deposition is challenging be-
cause multiple preprocessing steps and MRI scans are needed
[5, 9, 21]. We developed the end-to-end deep learning model
that could quantify a native-space amyloid PET [22]. The
quality of our deep learning model was highly reliable and
comparable with the conventional MR-based method. Our
model was validated in the independent test sets for
florbetaben PETas a different radiotracer as well as florbetapir
PET.

The main advantage of our approach is that the model can
provide rapid and accurate one-step quantification results of

Fig. 3 The loss (MAE) according
to the epochs for training and
validation sets
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amyloid PET with native-space PET regardless of different
machines, reconstruction algorithms, and types of F-18 radio-
tracers for amyloid PET. It could overcome the variability of
the visual interpretation of amyloid PET in the clinical setting.
Amyloid PET is clinically performed to estimate amyloid de-
position in patients with cognitive impairment who need to
differentiate AD from other reasons for cognitive disorders [5,
7]. In addition to amyloid positivity based on the visual inter-
pretation, the quantification of amyloid deposition is impor-
tant in predicting future cognitive decline in patients with mild
cognitive impairment and early AD [5, 7]. Thus, the simple
and rapid quantification method which could be acceptable in
a busy clinical setting would be helpful for the interpretation
of amyloid PETas well as evaluating the prognosis of patients
with mild cognitive patients and early AD.

Due to the diversity of amyloid radiotracers, which
cause variable quantitative measures of cortical radio-
tracer retention, Centiloid quantification was recently
proposed for harmonizing multiple radiotracers of amy-
loid PET [12]. Even though amyloid PET quantification
based on multiple tracers showed a good correlation,
there is still a limitation to directly quantify the amyloid
deposition using a simple linear equation [12]. As our
approach could quantify the amyloid PET of multiple
tracers, such scaling of multiple tracers could be
achieved by a fine-tuning of the deep learning model.
Furthermore, PET-only quantification methods are pro-
posed such as variable atlas approaches [23] and MR-
generating method [24] when MRI is not available.
Even though these methods have shown promising

results of high accuracy compared with MR-based
methods, data preprocessing is still required. Thus, as
a less complicated method of qualification, deriving
SUVR directly from the deep learning model could
serve as a breakthrough in managing the quantification
of amyloid PET.

Our approach showed a good agreement with the
MR-based quantification of SUVR. The MAE of the
SUVRs of the one-step deep learning-based method
was less than 0.06 in amyloid PET regardless of multi-
center and various radiotracer images. Considering all
agreement indices including ICCs, accuracy, accuracy,
sensitivity, and specificity show very high scores that
indicate high reliability of the model. Bland-Altman
plots also showed that SUVR measured by the deep
learning-based method was similar to SUVR of the con-
ventional MR-based method. However, according to the
Bland-Altman plots, SUVRs estimated by the deep
learning-based methods are relatively underestimated in
subjects who showed low SUVR. This pattern might be
caused by the left-skewed distribution of amyloid
SUVR. This underestimation may rarely affect the clin-
ical implications of quantification considering a deep
l e a r n i n g - b a s e d a pp r o a c h s howed h i g h ICC .
Nevertheless, further modification methods in training
including loss functions could solve this minor problem
in the quantification as future work. The one-step deep
learning method of amyloid quantification can be used
for clinical trials without structural MRI scan and mul-
tiple preprocessing steps, and it can be used clinically

Table 1 Demographics and
initial clinical diagnosis Florbetapir PET Florbetaben PET

Training dataset (n = 850) Test dataset (n = 366) Test dataset (n = 89)

Age 77.56 ± 7.22 (55–91) 74.39 ± 7.23 (57–94) 71.00 ± 6.63 (57–90)

Sex (M/F) 443:407 197:169 34:55

Diagnosis (AD/MCI/CN 141:529:179

1:N/A

26:206:134 2:66:20

1:N/A

AD Alzheimer’s disease, MCI mild cognitive impairment, CN cognitively normal, N/A not available

Table 2 The performance of the
deep learning model. Mean
absolute errors and intraclass
correlation coefficients were
measured each of four cortical
subregions and the composite
SUVRs

Mean absolute errors Intraclass correlation coefficients

Florbetapir Florbetaben Florbetapir Florbetaben

Training Test Test Training Test Test

Frontal region 0.050 0.071 0.058 0.98 0.95 0.96

Anterior/posterior cingulate region 0.061 0.081 0.065 0.97 0.94 0.95

Lateral parietal region 0.052 0.067 0.058 0.97 0.95 0.96

Lateral temporal region 0.047 0.060 0.050 0.98 0.96 0.97

The composite region 0.040 0.060 0.050 0.98 0.96 0.97
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as a biomarker for predicting the cognitive outcome
using the model.

In spite of the high reliability of our model, there are some
limitations. Although the model could calculate SUVRs of the
one-step deep learning-based method, the model ignored pa-
tient’s characteristics such as age, baseline clinical diagnosis
data, and cortical atrophy status [25–27]. We have tested
ADNI data and with two radiotracers amyloid PET data. In
the future, we should develop the modified deep learning
model which considers other clinical information and should
be validated in independent test sets including other radio-
tracers and another independent amyloid PET data [25, 28].

Fig. 4 Scatterplots of SUVRs calculated by different quantification
methods for four cortical subregions. SUVRs measured by the
conventional MR-based method were compared with the deep learning-
based predicted method. The conventional MR-based SUVR
quantification method was highly correlated with the deep learning-
based SUVR predicted quantification method. The training set of
florbetapir (a) was drawn four cortical subregions for frontal, anterior/

posterior cingulate, lateral parietal, and lateral regions, respectively.
Histograms were incorporated into the scatter plot of the training
dataset to visualize the distribution of SUVRs. The test sets of
florbetapir (b) and florbetapet PET (c) were drawn four cortical
subregions for frontal, anterior/posterior cingulate, lateral parietal, and
lateral regions, respectively. (AD: Alzheimer’s disease, MCI: mild
cognitive impairment, CN: cognitively normal

Table 3 The predefined cutoff value of 1.11 applies to the composite
SUVRs that showed Cohen kappa, accuracy sensitivity, and specificity

Florbetapir
PET

Florbetaben
PET

Training dataset Test dataset Test dataset

Cohen’s kappa 0.93 0.87 0.89

Accuracy 0.97 0.94 0.96

Sensitivity 0.96 0.94 0.88

Specificity 0.97 0.94 0.98
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We will continue further study to validate the deep learning
model using independent multicenter data obtained from rou-
tine clinical use.

Conclusion

We developed a deep learning model based on end-to-end
training for the quantification of amyloid PET. We suggest a
one-step quantification of amyloid PET without a structural
MRI scan as well as multiple preprocessing steps. Our model
was validated by florbetaben PET images as an independent
dataset. Our approach directly provides amyloid PET quanti-
fication results from native-space PET images of florbetaben
as well as florbetapir radiotracers. As an automated system, it
could overcome problems in the quantification of amyloid
PET such as the requirement of structural MRI and several
preprocessing steps. Thus, we expect that our method may
be easily applied to routine clinical practices. In the future,
further modification and validation will be needed to be ex-
tended to multicenter data in the real clinical setting and var-
ious F-18-based radiotracers.
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