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Abstract
Precision medicine offers better treatment options and improved survival for cancer patients based on individual variability. As
the success of precision medicine depends on robust biomarkers, the requirement for improved imaging biomarkers that reflect
tumor biology has grown exponentially. Radiomics, the field of study in which high-throughput data are generated and large
amounts of advanced quantitative features are extracted from medical images, has shown great potential as a source of quanti-
tative biomarkers in the field of oncology. Radiomics provides quantitative information about the morphology, texture, and
intratumoral heterogeneity of the tumor itself as well as features related to pulmonary function. Hence, radiomics data can be used
to build descriptive and predictive clinical models that relate imaging characteristics to tumor biology phenotypes. In this review,
we describe the workflow of CT radiomics, types of CT radiomics, and its clinical application in thoracic oncology.
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Introduction: Role of Radiomics in Precision
Medicine

Tumors are biologically complex and show phenotypic and
genomic heterogeneity between different tumors and even
within an individual tumor. In other words, although tumors
have the same histopathological cell type, they can show vast
variations in imaging features including vascularity, contrast
enhancement, and necrosis. In parallel, such variations have
also been reported in the genetic profile of cancers. Such ge-
netic variation of cancers has become of great interest because
patient-centered chemotherapy based on patient-specific tu-
mor cell mutation, an approach called precision medicine,
has recently been introduced and shows excellent results.

Thus, during the past decade, large database studies have
transferred the concept of cancer diagnosis from traditional
histopathological cell type to a new classification based on
molecular genetic data [1–3]. However, cancer treatment
based on these results typically fails due to the amazing ability
of tumor cells to acquire subclonal mutations during tumor
evolution. Therefore, the key factor leading to successful pre-
cision medicine lies in a clear understanding of each patient’s
tumoral heterogeneity and individual situation [4]. In other
words, robust biomarkers are required to obtain a better un-
derstanding of the evolving biology of cancer.

During the last decade, dramatic advancements in high-
throughput computing and automated pipeline systems have
been introduced. Such advancements, especially in computed
tomography (CT), have made it possible to extract innumerable
quantitative features from medical CT images, a discipline
known as radiomics. Thus, by extracting radiomics features, a
great deal of information hidden within the layers of conven-
tional CT images can be revealed for clinical use. Although
radiomics can be applied to various conditions, its potential
has been most promising in the field of oncology. Multiple
studies using a radiomics approach have shown that quantitative
features offer better characterization of the tumor, more precise
prognosis assessment, and improved prediction of drug resis-
tance [5–7]. Texture analysis has also been shown to be a highly
significant independent predictor of survival in patients with
non-small cell lung cancer [8]. Intratumor heterogeneity, which
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is near ubiquitous in malignant tumor, is a key challenge in
cancer medicine. Genetic heterogeneity of a malignant tumor
leads to regional difference in stromal architecture or function of
individual tumors and imaging can quantify the adverse spatial
feature and functional heterogeneity through measurement of
quantitative features [9, 10]. In other words, quantitative tumor
characteristics observable at medical imaging reflect the molec-
ular, cellular, and tissue components, which might ultimately
advance our understanding of the evolving biology of the whole
tumor. In this article, we review the methodology of CT
radiomics and discuss its application in thoracic oncology.

Methodology of CT Radiomics in Oncology

Radiomics is a quantitative, noninvasive method of revealing
information embedded within conventional CT images per-
formed clinically for diagnosis and preoperative planning.
Radiomics data can be used to build descriptive and predictive
clinical models relating imaging characteristics to tumor biol-
ogy phenotypes. Although conceptually simple, each step of
radiomics has its own challenges and applications.
Furthermore, clinical translation of CT radiomics is a complex
undertaking that requires the coordinated efforts of the radiol-
ogist, computer scientist, and oncologist (Figs. 1 and 2).

Steps

1) Image acquision
Image acquisition is the first step in the practice of

radiomics. One major challenge in this step is the wide
variation in image acquisition parameters including radi-
ation dose, scanning protocol, reconstruction algorithm,
and slice thickness used in routine clinical practice. Yan

et al. successfully identified several features that remained
stable even at different PET image reconstruction settings
[11], of which peak standardized uptake value (SUVpeak),
SUVmean, multiple texture features, and entropy were the
most robust. However, comparison of radiomics features
extracted from different methods of image acquisition
needs further investigation.

2) Segmentation
The next step is to define the region of interest (ROI)

that contains the whole tumor or subregions within the
tumor, a process called tumor segmentation. This is gen-
erally not a problem for solid tumors with definite tumor
margins. However, when tumors have indistinct borders,
e.g., peripheral ground glass opacity (GGO) in invasive
lung adenocarcinoma, identification of the tumor margin
becomes a much more complex task [12].

In addition, particular consideration should be paid to
whole lung and lobe segmentation, which provides the
advantage of predicting postoperative residual lung func-
tion, morbidity, and mortality. For lobe segmentation, the
first step is to segment the lung region including the lung
parenchyma, airways, and vessels by applying an airway
threshold. Next, the major airways and vessels are re-
moved to separate the left and right lungs. Fissure detec-
tion is essential for accurate lobe segmentation and is
based on image intensity computed from the local neigh-
borhoods around each voxel and anatomical information,
such as the airways and vasculature [13]. Segmentation of
the airways can be performed by manual, semiautomatic,
or automatic methods. Manual segmentation is extremely
time consuming. Region growing and wave propagation
are common methods of airway segmentation based on
threshold (cutoff) pixel values in Hounsfield units (HU).

Fig. 1 Overview of radiomics in lung cancer. Whole tumors are
segmented by drawing regions of interest that traced tumor edge, and
quantitative features are extracted within defined tumor contours on CT

images. Relationships among the radiomics features, clinical data, and
genomic data are analyzed
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Amorphology-basedmethod is also used for segmentation
of airways [14]. Some additional algorithms have been
developed to improve this basic segmentation process.
The luminal segmentation is condensed to the centerline
that runs exactly through the center of the airway [15].
Airway branches are identified by detection of the diver-
gence of each point on the skeleton, and the airway is
labeled or classified by the identified airway branches [16].

3) Feature extraction
After accurate tumor segmentation, a nearly limitless sup-

ply of radiomics features can be extracted from the identified
tumor ROI. The advantage of including radiomics features
in the field of oncology is quite clear: quantitative features
will allow better tumor characterization and can objectively
reveal valuable patterns reflecting the tumor biology that are
hard to detect with the human eye. Furthermore, extracted
radiomics features are constantly being refined and devel-
oped [17–19]. We will discuss major types of currently
available radiomics features in detail later in this article.

4) Feature selection
Having extracted a massive amount of radiomics fea-

tures, the next step is to capture the true clinical value of
such features. Although the full potential of extracted fea-
tures has yet to be realized, they have been shown to have
associations with cancer detection, diagnosis, prognosis
assessment, and even monitoring of treatment response
[5, 7, 17, 20]. Commonly use methods are least absolute
shrinkage and selection operator, principle component
analysis, and random forest. The challenge in this step is
the considerable variability in predictive performance that
has been reported for the different methods of feature
selection and classification [21]. Therefore, the goal is

to select the most useful radiomics features for clinical
translation in the field of oncology.

Types of Radiomics Features

We present five major classes of radiomics feature: (a) morpho-
logical, (b) statistical, (c) regional, (d) model-based, and (e) skel-
eton features [22]. Morphological features provide detailed infor-
mation about the shape and volume of a tumor. Features calcu-
lated by statistical methods can be further classified into first-
order statistical (histogram) features and higher-order statistical
(texture) features. Regional features can allow quantification be-
yond the immediate neighborhood and represent intratumor clon-
al heterogeneity by subregional clustering. Model-based features
are extracted using mathematical approaches, such as the fractal
model. Skeleton features provide information about the alter-
ation, shape, thickness, and narrowing of airways.

In the subsequent subsections, we briefly summarize the
details of each class of feature.

1) Morphological features
Morphological features are used to define the physical

characteristics of a tumor. For example, the roundness of a
tumor can be quantified using features, such as sphe-
rical disproportion, sphericity, and discrete compactness.
Surface area can be calculated by triangulation, which is a
technique of generating a net of triangles that completely
covers the tumor surface. In terms of spiculation, a larger
surface-to-volume ratio demonstrates a more spiculated and
irregular tumor, while a lower surface-to-volume ratio dem-
onstrates a smoother and rounder tumor. Another morpho-
logical feature of interest is tumor mass, a parameter that
integrates volume and density. A wide spectrum of lung

Fig. 2 Schematic diagram of quantitative analysis of diffuse lung disease
in lung cancer patients. Whole lung and lobes are segmented, and
quantitative features are extracted using histogram or texture-based

method. Relationships among the quantitative features, clinical data,
and genomic data are analyzed
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adenocarcinomas, the most common histologic type of lung
cancer, manifest as sub-solid nodules including a GGO por-
tion. Tumor mass measurement enables the detection of
GGO growth earlier than traditional measurements [23, 24].

Laplacian of Gaussian is a spatial filtering technique that
enhances the marginal features from surrounding regions.
This technique enables quantitative analysis regarding tu-
mor margin characterization, which can reflect the relation-
ship between tumor and surrounding tissue and thus the
tumor microenvironment.

2) Statistical features

a. First-order histogram features
The basis of first-order statistics is a histogram, which

is a simple plot of tumor pixel attenuation along one axis
versus the frequency of pixels at each attenuation value
along the other axis. Thus, a histogram displays the range
and frequency of pixel values within the defined lesion
ROI. Multiple features including mean, median, standard
deviation, kurtosis, skewness, energy, entropy, uniformity,
and variance can be calculated from this histogram, and
most features are reported to be reproducible [25].

Constructing a histogram from conventional CT im-
ages is easy, and histogram analysis yields multiple quan-
titative features; therefore, histogram-based features have
been used widely in the field of oncology. Quantitative
features from the histogram demonstrate information from
the voxel level, which can reflect subtle changes in lung
cancers. However, a major limitation of histogram-based
features is the loss of spatial information about each voxel.

b. Higher-order texture features
In contrast to histogram features, higher-order texture

features denote spatial information about each voxel. A
gray level co-occurrence matrix (GLCM) is constructed
using the number, distance, and angle of a combination of
gray levels in the image. From the GLCM, features of
cluster, correlation, contrast, energy, and entropy can be
extracted. A gray level run length matrix (GLRL) charac-
terizes continuous voxels with the same gray level in any
direction. From the GLRL, features such as long run em-
phasis, short run emphasis, run length non-uniformity,
gray level non-uniformity, and run percentage can be ex-
tracted. The neighborhood gray-tone difference matrix
(NGTDM) uses the intensity values of a neighborhood
instead of one voxel to represent how similar or dissimilar
voxel intensities are within a neighborhood. Features of
busyness, complexity, and texture strength can be extract-
ed from the NGTDM. There is a large body of literature
on texture analysis showing an association with tumor
stage, metastasis, treatment response, survival, and mo-
lecular genetic profiles in lung cancer [8, 26–30].

3) Regional features
As mentioned above, a great deal of heterogeneity ex-

ists even within a single tumor. Intratumoral heterogene-
ity is important because certain subregions can initiate
cancer cell transformation leading to tumor progression.
Intratumoral heterogeneity can be exhibited by mapping
the spatial distribution of similar gray level intensities
within a tumor, namely regional features. In other words,
regional features demonstrate the number of subregions
and how often certain subregions occur within a tumor.
Methods of subregional partitioning include data-driven
segmentation and the use of threshold values [6, 10, 31].
Data-driven segmentation groups voxels with similar in-
tensity into clusters, and threshold values are also used to
group voxels into clusters.

4) Model-based features
Fractal alteration characterizes the shape complexity of

an object over a range of scales. In other words, fractal
dimension is a mathematical calculation that reflects the
intrinsic shape of an object. In this context, morphological
complexity and spatial heterogeneity of tumors can be
quantified and assigned a numerical value.

Advantages of fractal dimension are that it is relatively
stable, less susceptible to noise than other features, and
can be used for longitudinal assessment in a single patient
[32]. Another feature of interest is the recently developed
fractal signature dissimilarity method, which has been
suggested as a novel image texture analysis technique
[33]. In that study, the fractal signature dissimilarity meth-
od was used to quantitatively assess contrast agent uptake
heterogeneity dynamics, indicating a potential role in
monitoring the early response to anti-angiogenesis treat-
ment [33].

5) Skeleton features
Skeletonization, referred to as medial axis extraction,

is widely used in computerized shape analysis [16].
Quantitative measurement of airways follows segmenta-
tion to accurately find the location of the inner airway and
is then computed, allowing segmentation of perpendicu-
lar plans across the targeted bronchi [14, 34]. The full-
width-at-half-maximum (FWHM) method, based on the
difference between the two extreme values at which the
HU value is equal to half of its maximum, is mostly used
to find the inner and outer pixels of the airway wall and
calculate the airway wall dimension [15, 34]. The luminal
area, wall area (WA%), is automatically extracted and has
been used for quantification of airway wall thickening
and airway narrowing [34]. Bifurcation angle and airway
luminal circularity are used to identify the alteration of
airway skeletal structure and heterogeneous airway lumi-
nal shape [35].
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Clinical Application of CT Radiomics
in Oncology

Radiomics Approach to Lung Cancer

In 2011, the International Association for the Study of Lung
Cancer (IASLC), the American Thoracic Society (ATS), and
the European Respiratory Society (ERS) introduced a new
classification for lung adenocarcinomas. A vast volume of
literature has covered sub-solid nodules, namely nodules with
a GGO component, which correlate with the spectrum of lung
adenocarcinoma. CT findings of early-stage lung adenocarci-
nomas and their precursors are usually pure GGO nodules or
part-solid nodules. Thus, the imaging spectrum of GGO re-
flects the evolving process of adenocarcinoma from
preinvasive lesions caused by the accumulation of gene mu-
tations. However, discrimination between the invasive and
non-invasive proportions is challenging in GGO lesions due
to limited visual perception and subjective analysis of conven-
tional CT scans [36, 37]. Multiple investigations have shown
that quantitative radiomics features of GGO lesions can help
find small pathologically invasive components that are hard to
visually perceive at the medical imaging voxel level [7, 18,
38]. Entropy or a high attenuation value, such as the 75th
percentile CT attenuation value from histograms, has been
reported as a significant discrimination factor for invasive ad-
enocarcinomas [7]. Furthermore, the 97.5th percentile CT at-
tenuation value and the slope of CT attenuation values have
been suggested as predictors for future CTattenuation changes
and the growth rate of pure GGO lesions [39]. Therefore, it is
not surprising that lung cancer-specific (GGO-related)
radiomics features can provide additional information about
tumor invasiveness and progression from other indolent or
non-invasive lesions and can even predict tumor growth.

In addition, regional features have shown great potential in
depicting the spatial heterogeneity of cancers. By grouping
similar voxels together, multiple subregions that respond differ-
ently to therapy or result in tumor progression can be revealed.
In fact, in one recent study, researchers were able to identify
clinically relevant high-risk subregions in lung cancer using
intratumor partitioning of 18F-FDG PET and CT images [31].

Tissue stiffness is a widely accepted biomechanical prop-
erty of fibrotic tumors and affects tumor growth, invasion,
metastasis, and treatment. Analysis of tissue displacement af-
ter disruption of the confining structure showed that solid
stress depends on both cancer cell type and the microenviron-
ment; solid stress increased with tumor size, and mechanical
confinement by the tumor surroundings substantially contrib-
utes to intratumoral solid stress [40].

Radiomics features have also shown favorable results when
linked to underlying genomic alterations. Features of tumor
size, edge shape, and sharpness showed the highest prognostic
significance to predict metagenes in patients with non-small

cell lung cancer [30]. Another study using semantic features
and clinical variables was able to predict patients with ALK
rearrangements [41]. Finally, Yoon et al. combined radiomics
features and clinical information to successfully predict onco-
genic fusion genes in lung cancer [42].

Prediction of Postoperative Lung Function
or Postoperative Morbidity

Prediction of postoperative lung function plays a key role in
the preoperative evaluation of lung cancer patients with im-
paired lung function in order to identify an increased risk of
postoperative complication and mortality [43]. Currently,
postoperative lung function is predicted using spirometry, in-
cluding forced expiratory volume in 1 s and diffusing capacity
for carbon monoxide, and radionuclide lung scanning [44].
An accurate prediction of postoperative pulmonary function
is considered for conditions with inhomogeneous effective
pulmonary function such as pulmonary emphysema or inter-
stitial lung disease (ILD) [45]. Quantitative CT can be used to
calculate the volume of regional and total functional lung,
enabling the normal functional volume to be distinguished
from the non-functional volume resulting from emphysema,
tumor, and atelectasis using histogram-based lung densitome-
try, separately in the resected lobe and the remaining lung
regions [46, 47]. The effectiveness of quantitative CT for
predicting postoperative lung function was first proposed by
Wu et al. [48]. Further studies have demonstrated the role of
quantitative CT in predicting postoperative lung function, and
its prediction seems to correlate well with perfusion scintigra-
phy and pulmonary function tests [43, 49–51]. A recent study
showed that volumetry from inspiration/expiration CT could
be useful for prediction of postoperative lung function [45].
Although lung lobectomy results in permanent loss of func-
tional lung, patients with lung cancer and chronic obstructive
pulmonary disease (COPD) who undergo cancer resection can
haveminimal loss or improvement in postoperative lung func-
tion, a phenomenon known as the lung volume reduction ef-
fect [52]. A combined evaluation using spirometry and quan-
titative CT could characterize the respiratory dynamics and
might be used as a predictor of the volume reduction effect
[47]. In addition, dual-energy CT (DECT) provides images
presenting the lung perfusion at a specific time point. By ex-
traction and quantification of the iodine concentration, DECT
provides the ratio of lobar perfusion of the lung, which allows
accurate prediction of postoperative lung function [46, 53].
Choe et al. reported that a modified method incorporating
postoperative lung volume change using DECT can be con-
sidered a comparable method for predicting postoperative
lung function [54].

Furthermore, the frequencies of postoperative complications
and mortality are higher in patients with COPD and ILD [52,
55]. Quantitative CT in combination with spirometeric
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measurements contribute to improved prediction of cardiopul-
monary complications after lobectomy for lung cancer [56]. In
one study, the authors reported that lung density lower than
−787.5 HU and volume of emphysema greater than 5.41%
increase the risk for developing postoperative pulmonary mor-
bidity [57]. In addition, the severity of lung fibrosis on preop-
erative CT images was an independent predictive factor of
postoperative mortality in lung cancer patients with combined
pulmonary fibrosis and emphysema [58]. The severity of lung
fibrosis can be quantitatively analyzed for extent and pattern on
CT using histogram-based quantification, texture-based quan-
tification, and deep learning. Several studies showed that auto-
mated quantification of radiologic patterns of ILD, including
normal, GGO, reticular opacity, honeycombing, emphysema,
and consolidation, could predict lung function, disease severity,
and progression [59–63]. Therefore, quantitative analysis of
ILD and COPD can be used to predict mortality and morbidity
after treatment in lung cancer patients.

Conclusion and Future Aspects

Although radiomics is still in its infancy, the approaches used to
date are very promising sources of robust imaging biomarkers
for predicting molecular genetic subtypes related to patient
prognosis, optimizing treatment such as selecting the appropri-
ate chemotherapeutic agent, and predicting treatment response.
Nevertheless, the hurdle of reproducibility of radiomics fea-
tures remains. Although radiomics features were found to be
mostly unstable in earlier studies [64–66], there are continuous
improvements in their standardization. In addition, most studies
have extracted radiomics features from a single imaging mo-
dality, and extraction of radiomics features using multispectral
analysis across different modalities has substantial potential.
By combining anatomic, functional, and metabolic imaging, a
radiomics approach can provide valuable information for phe-
notyping tumor biology in correlation with tumor diagnosis,
classification, and treatment response prediction.

Another issue is sharing of data cross multiple institutions.
Data sharing is a critical point in the field of radiomics which
must be overcome. Answers to this may be large centralized
data repositories or federated approaches. For tumor response
and prognosis, any imaging biomarker must be reliable and
meaningful. Thus, by incorporating different image protocols
and reconstructions, data sharing among institutes can help to
create a predictive and prognostic model with high accuracy.
Furthermore, as intensity inhomogeneity may significantly
affect the extracted radiomics features, special consideration
is required when applying radiomics to magnetic resonance
images [67, 68].

In conclusion, the role of medical imaging in human cancer
is now larger than ever, and analysis of radiologic data, name-
ly radiomics, has enormous potential to further enrich the

knowledge obtained from medical images. Therefore, we an-
ticipate that radiomics will have an essential position in the
development and implementation of precision medicine in the
field of oncology in the foreseeable future.
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