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Abstract Prostate-specific membrane antigen (PSMA) is an
attractive target for both diagnosis and therapy because of its
high expression in the vast majority of prostate cancers.
Development of small molecules for targeting PSMA is im-
portant for molecular imaging and radionuclide therapy of
prostate cancer. Recent evidence implies that androgen-
deprivation therapy increase PSMA-ligand uptake in some
cases. The reported upregulations in PSMA-ligand uptake af-
ter exposure to second-generation antiandrogens such as
enzalutamide and abiraterone might disturb PSMA-targeted
imaging for staging and response monitoring of patients un-
dergoing treatment with antiandrogen-based drugs. On the
other hand, second-generation antiandrogens are emerging
as potential endoradio-/chemosensitizers. Therefore, the en-
hancement of the therapeutic efficiency of PSMA-targeted
theranostic methods can be listed as a new capability of
antiandrogens. In this manuscript, we will present what is
currently known about the mechanism of increasing PSMA
uptake following exposure to antiandrogens. In addition, we
will discuss whether these above-mentioned antiandrogens
could play the role of endoradio-/chemosensitizers in

combination with the well-established PSMA-targeted
methods for pre-targeting of prostate cancer.
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Introduction

Prostate cancer (PCa) is one of the most commonly diagnosed
cancers among men in western industrialized nations and is a
leading cause of cancer-related deaths [1].Men with advanced
PCa are usually treated with androgen-deprivation therapy
(ADT) [2]. Most patients with metastatic disease treated with
ADT eventually relapse with castration-resistant prostate can-
cer (CRPC). CRPC can be managed with the second-
generation inhibitors of the androgen receptor (AR), such as
enzalutamide and abiraterone [3]. These medications provide
significant survival benefits, but are not curative [4], and ulti-
mately the patients die of the disease.

Prostate-specific membrane antigen (PSMA), a transmem-
brane protein, is a promising target for imaging and therapy of
PCa [5, 6]. First, PSMA is overexpressed in more than 85% of
primary PCa tumors and metastatic lesions in lymph nodes
and bone [7–9]. Second, from the technical point of view,
targeting PSMA by either by antibodies or small molecules
is feasible [10–13]. Particularly, a new class of functional li-
gands including Glu-NH-CO-NH-Lys-[68Ga-(HBED-CC)]
or 68Ga-PSMA-11 [14–17], PSMA-DKFZ-617 [18–20], 18F-
DCFPyL [21] and EuK-Subkff-68GaDOTAGA [22] demon-
strated their outstanding affinity to PSMA, therefore making
possible the imaging of both local PCa tumors and distant
metastatic lesions. These PSMA ligands can also be labeled
with therapeutic radionuclides such as lutetium-177 [11].
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Overall, it is anticipated that this new class of PSMA-binding
radioligands will lead to a significant improvement in the di-
agnosis of recurrent PCa and endoradiotherapy of PCa [23].

In contrast to the normal prostate cells, fatty acid synthesis
plays a crucial role in the rapid proliferation of prostate cancer
cells since malignant cells need higher amounts of fatty acid
for their new membrane biogenesis. Particularly choline is
utilized for biosynthesis of phosphatidylcholine, and it is the
basis for imaging with 18F-fluorocholine (18F-FCH) for the
visualization of prostate cancer and bone, lymph nodes and
visceral metastasis. Currently, for staging and monitoring
treatment response, choline PET/CT using either 11C or 18F
can be performed. It is generally assumed that ADT does not
significantly affect choline PET/CT uptake in PCa cells con-
sidering the biological mechanism of choline-based nuclear
imaging procedures [24]. However, a tendency of reduction
in choline uptake following ADT is documented, particularly
in hormone-naïve patients [25]. Recent in vitro and in vivo
evidence and a recent clinical pilot study indicate that PSMA
is regulated by androgens and suggest that ADTcould consid-
erably increase PSMA-ligand uptake [13, 26–29]. Therefore,
despite the apparent clinical value of PSMA-based imaging
and therapy, for those patients who are undergoing treatment
with antiandrogens, evaluations of PSMA-targeted scans must
account for this upregulation phenomenon.

In this manuscript we will briefly review the existing evi-
dence regarding upregulation of PSMA expression as a result
of ADT and its consequence on diagnostic images and thera-
peutic outcomes. In addition, the molecular background and
possible mechanism of alterations in PSMA levels will also be
examined. Finally, the emerging opportunities and challenges
for PSMA radioligand imaging and therapy will be discussed.

Alteration in PSMA Expression by Antiandrogens

Molecular Biology of PSMA Expression

Folate hydrolase 1 (FOLH1) gene encodes PSMA protein, and
it is located at the short arm of chromosome 11 in a region that
is not normally omitted in PCa (11p11-p12) [30, 31]. It has been
well documented that FOLH1 gene expression is suppressed by
androgens [32–34]. By using an enhancer trap approach, Watt
et al. [35] discovered an enhancer region as a major regulatory
element for PSMA expression that considerably activates the
FOLH1 core promoter region. Additionally, they reported that
similar to the repression of the FOLH1 gene, PSMA expression
is also inhibited in the existence of androgens. Subsequently,
Noss et al. [36] sequenced and analyzed the capability of the
FOLH1 promoter region to promote the transcription of PSMA
mRNA. They reported that in their established PCa model cell
line, the FOLH1 promoter region shaped a 21 % downregula-
tion in response to androgens. However, activation of the

enhancer region caused a 45 % downregulation in response to
androgens. Furthermore, by using chromatin immunoprecipita-
tion together with massively parallel sequencing, Yu et al. [37]
recorded four peaks of AR binding in introns of the FOLH1
gene [26].

Very recent evidence substantiates the claim that we can
take advantage of upregulation of PSMA expression for en-
hancing the efficiency of PSMA-based approaches of
endoradio-/chemotherapy [13, 27–29]. However, the molecu-
lar biology of this phenomenon is unclear, and the underlying
molecular mechanism needs more studies. Figure 1 illustrates
PSMA-targeted endoradio-/chemotherapy using a multifunc-
tional theranostic agent with and without pre-targeting
enzalutamide, bicalutamide and abiraterone. Figure 1a illus-
trates that a complex including androgen and AR turns off the
PSMA enhancer region of the FOLH1 gene. This complex
might be responsible for androgen-mediated downregulation
of FOLH1 gene transcription. Consequently, the low level of
PSMA mRNA leads to a low level of PSMA on the cell
membrane.

On the other hand, antiandrogens such as enzalutamide,
abiraterone and bicalutamide competitively inhibit androgen
binding to AR, and the PSMA enhancer region of the FOLH1
gene is switched on. Therefore, ADT leads to an
antiandrogen-mediated upregulation of FOLH1 gene tran-
scription. Finally, a high level of PSMA on the cell membrane
can be observed because of the high level of PSMA mRNA
(Fig. 1b). It can be inferred that common PSMA-targeted ther-
apy without pre-targeting by antiandrogens could be less ef-
fective than PSMA-targeted therapy with prior pre-targeting
by antiandrogens since increasing the level of PSMA leads to
an increasing endoradio-/chemotherapeutic payload to PCa
cells (Fig. 1c, d). The multifunctional platform illustrated on
Fig. 1 contains an imaging probe such as 68Ga [6], a therapeu-
tic radioisotope such as 177Lu [6] and a chemotherapeutic
agent such as microtubule-disrupting agent E (MMAE) [38].
However, the biological mechanism of sensitizing PCa cells
for treatment with a single function PSMA-targeted therapeu-
tic agent containing either a radioisotope or chemotherapeutic
could be similar.

Antiandrogens as endoradiotherapy sensitizers

In 2011, Evans et al. [26] reported upregulation of PSMA
expression as a result of ADT in a PCa animal model. They
discovered that the AR is a prerequisite for androgen control
of the expression of PSMA. Using 64Cu-J591 radiolabeled
antibody, they presented that ADTeither by castration of mice
or via treatment with enzalutamide increases 64Cu-J591 up-
take in xenografts of AR-positive and hormone-sensitive PCa
cell lines including LNCaP and 22Rv1. However, exposing
these androgen-sensitive cell lines to dihydrotestosterone
(DHT) reduced the PSMA expression. Figure 2 illustrates
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the impact of enzalutamide therapy on both tumor volume and
intratumoral uptake of 64Cu-J591. Figure 2b shows that 64Cu-
J591 PET delineates increasing levels of PSMA expression in
both LNCaP xenograft in the left thigh and 22Rv1 xenograft
in the right thigh of male mice. It should be highlighted that as
a result of enzalutamide therapy, the amount of PSMA per cell
increased. However, the tumor size is reduced because of the
inhibitory effect of enzalutamide. Therefore, uptake of the
PSMA-imaging agent does not agree with tumor size

measurements by caliper because the cells have been exposed
to ADT (Fig. 2b, c, d).

Recent data indicate that more expression of PSMA in PCa
cells causes more PSMA radioligand uptake by the cells. In a
very recent study, Meller et al.[29] examined binding of a
68Ga-labeled PSMA-HBED-CC to PCa cell lines to evaluate
the association between alterations of PSMA expression using
the antiandrogen abiraterone. They developed three different
PCa model cell lines with different levels of PSMA

Fig. 1 The schematic of a multifunctional PSMA-targeted endoradio-/
chemotherapy with and without pre-targeting antiandrogen. (a) The
androgen binds to AR, and this complex inactivates the PSMA
enhancer region of the FOLH1 gene. (b) Enzalutamide competitively

inhibits androgen binding to AR, and the PSMA enhancer region of the
FOLH1 gene is activated. (c) Common PSMA-targeted therapy. (d)
PSMA-targeted therapy with prior pre-targeting by antiandrogens
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expression. A low PSMA-expressing cell line was developed,
and it was characterized with an androgen-sensitive pheno-
type. In addition, a high-PSMA-expressing cell line was
established, and it represented the androgen-tolerant pheno-
type. Interestingly, a direct relationship between the level of

the expression of PSMA and the uptake of PSMA radioligand
was observed (Fig. 3a, b). Particularly, Fig. 3c shows that
2 days’ exposure of the androgen-sensitive phenotype model
to abiraterone can significantly increase the uptake of PSMA
radioligand (p < 0.001). In addition, Fig. 3d illustrates the

Fig. 2 Monitoring treatment response using caliper measurements versus
PSMA-based imaging. (a) Experiment timeline; (b) PET scans 7 days
after enzalutamide therapy (10 mg/kg) versus control group. (c)

Percentage change in LNCaP xenografted tumor volumes. (d) The
SUVmean ratio of the first PET scan (before ADT) to the second PET
scan (after ADT). (Adapted andmodified fromRef. [26] with permission)
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schematics of the developedCRPC cell lineswith diverse PSMA
expression levels and their respective radioligand uptake. It
seems that the higher level of PSMA leads to the higher capacity
for radioligand uptake in a time-dependent manner.

In a very recent clinical pilot study using PSMA-targeted
SPECT scans, Vallabhajosula et al. [13] monitored metastatic
CRPC patients undergoing ADT. Interestingly, 2 weeks after
ADT by either abiraterone or enzalutamide, the PSMA scans
showed the same or more lesions with higher intensity com-
pared to baseline. The observed higher intensity compared to
baseline could be a result of upregulation of PSMA expression
after ADT. However, after 12 weeks, there was a considerable
reduction of the PSMA-ligand uptake in the lesions. The re-
ported alteration in PSMA levels by Vallabhajosula et al. [13]
is in accordance with the elaborated molecular biology of
PSMA expression in this article.

Antiandrogens as Chemosensitizers

Antibody–drug conjugates (ADCs) use the ability of mono-
clonal antibodies (mAbs) to specifically carry chemotherapeu-
tic agents to malignant cells, and PSMA ADC is one of the
members of this class of drugs for CRPC, which is in the

clinical development state. PSMA ADC comprises a fully
human IgG1 anti-PSMA mAb that is conjugated to the
MMAE via a valine-citrulline (vc) linker [38]. In an in vitro
study, Murga et al. [27] evaluated simultaneous application of
PSMA ADC and two antiandrogens including enzalutamide
and abiraterone. They documented the upregulation of PSMA
in two PCa cell lines including the LNCaP and C4-2 cell lines
(Fig. 4a). Interestingly, both enzalutamide and abiraterone in
combination with PSMA ADC demonstrated a statistically
significant synergistic antiproliferative effect on proliferation
of PCa cell lines. The observed synergistic effect was related
to some extent to increasing the expression of PSMA as a
result of exposure of PCa cells to antiandrogens. Figure 4b
illustrates that treatment with enzalutamide amplified PSMA
expression gradually up to fourfold over 21 days, and the
PSMA level returned to its baseline expression amount 7 days
after treatment of cells with normal cell culture medium [27].

It is possible that we can take advantage of PSMA upregula-
tion for improvement of PSMAADC treatments. Recently, in an
in vivo study using patient-derived xenografts, DiPippo et al. [28]
represented that the combination of enzalutamide with PSMA
ADC could be significantly advantageous over enzalutamide
monotherapy. The developed animal model showed minor

Fig. 3 Alteration of 68Ga-PSMA-HBED-CC uptake regarding the level
of PSMA. (a) Levels of PSMA in three models of CRPC cell lines. (b)
The uptake of 68Ga-PSMA-HBED-CC in different cell lines after 3 h
incubation. (c) The alteration of 68Ga-PSMA-HBED-CC uptake in the

low-PSMA-expressing model. (d) The schematics of the three CRPC
models with different PSMA expression levels and their associated
radioligand uptake. (Adapted and modified from Ref. [29])
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responses to enzalutamide therapy and then showed resistance to
enzalutamide therapy. However, Fig. 4c and d demonstrates that
the combination of PSMA ADC with enzalutamide displayed
more noticeable tumor size shrinkage than monotherapies by
either enzalutamide or via PSMA ADC. They also reported that
a maximum level of PSMA expression was observed in the
combinational therapy study group, which indicates a positive
role of upregulation of PMSA for CRPC therapy.

Perspective

The final ADT outcome should be determined more by the bio-
logic aggressiveness of the residual PCa tumor than by the vol-
ume. AR variant 7 (AR-V7) is an AR isoform and encodes a
shortened AR protein without the C-terminal ligand-binding do-
main (LBD). AR-V7 needs no androgen for activation; it is
constitutively active, and the expression of AR-V7 could be

augmented up to 20-fold [39]. Because antiandrogens such as
enzalutamide primarily interact with the LBD of AR, it is expect-
ed that AR-V7 without LBD causes resistance to ADT and in-
creasing AR-V7 could be indicative of increasing aggressiveness
of PCa [40, 41]. The reported data by DiPippo et al. [28] repre-
sented that the combination of enzalutamide with PSMA ADC
could significantly reduce AR-V7 expression, which means the
residual PCa tumor is more susceptible. However, Meller et al.
[29] reported two different trends in levels of AR-V7 after treat-
ment of their models with abiraterone. In their low-PSMA-
expressing model, ADT had no impact on the level of AR-V7,
while in their moderate-PSMA-expressing model, PSMA and
AR-V7 were increased with the same trend. It can be inferred
that PSMA-targeted therapy with prior pre-targeting by
antiandrogens in some models leads to the formation of tumors
with a higher level of AR-V7 in the residual PCa tumor.
Therefore, for clinical application of this method, we should

Fig. 4 Antiandrogens could play the role of chemosensitizer. (a) The
estimation of PSMA protein levels in LNCaP and C4-2 cell lines using
the Western blot method. (b) Time course of PSMA expression in
enzalutamide-treatedC4-2 cells. Vertical bars show mean fluorescence
intensity (MFI) values, and the pink color line represents the fold increase

in PSMA expression in treated cells relative to untreated cells. (Adapted
from Ref. [27] with permission). (c) Tumor volume (fold change); (d) the
percentage of tumor volume changes at 4 weeks. (Adapted from Ref. [28]
with permission)
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monitor the level of AR-V7 in response to antiandrogen therapy
to avoid formation of more aggressive tumors.

An increasing number of publications are now discussing
the potential diagnostic usefulness of the new class of PSMA-
targeted imaging such as 68Ga-PSMA-11 [14–17] and PSMA-
DKFZ-617 [18–20]. However, currently these promising clas-
ses of radiopharmaceuticals are facing four main challenges,
including: (1) non-specific binding uptake in salivary glands
and lacrimal glands, liver, spleen and intestines [42]; (2) false-
negative outcomes in PSMA-negative PCa, small size tumors
and tumors situated close to areas with a high physiologic
tracer uptake [43]; (3) false-positive results in the celiac gan-
glia [44, 45]; (4) according to the issues discussed in this
review, a false-positive outcome after antiandrogen treatment,
particularly in hormone-naïve patients, is predictable.

The renal uptake of therapeutic PSMA-targeted agents is a
restrictive factor [46]. Some of the proposed solutions for de-
creasing off-target radiation to the kidneys include the small-
molecule PSMA inhibitor comedication [47], the application of
polyethylene glycol (PEG) polymer chains [48] and using the
nanoparticle-based platforms [49, 50]. However, it should be
highlighted that non-target expression of PSMA is fortunately
100- to 1000-fold less than baseline expression in most adeno-
carcinomas of the prostate gland. Therefore, PSMA-targeted
therapy with prior pre-targeting by antiandrogens cannot consid-
erably increase non-specific uptake. In addition, the hydrophobic
patches within the molecules could be a reason for the observed
considerable non-specific binding, and these patches may not be
affected by antiandrogen treatment [47].

We anticipate that antiandrogens could play the role of
endoradio-/chemosensitizers inCRPCmanagement for both che-
motherapy and internal radiation therapy using therapeutic radio-
isotopes. The significant upregulation in PSMA level in response
to antiandrogens could be the main requirement and the most
desirable characteristic for application of pre-targeting by
antiandrogens [13, 26–29]. However, pre-clinical reports repre-
sent that that PSMA expression is not the only factor involved in
treatment outcomes, and even increasing the endoradio-/chemo-
therapeutic payload to PCa cells cannot solely lead to higher
responses [51]. Therefore, this emerging therapeutic approach
is dependent on two factors including (1) the potential of PCa
cells for the upregulation of the PSMA level after ADT and (2)
the stability of the AR gene in response to ADTsince the formed
mutant AR and AR variants have the ability of independent
translocation to the nucleus and DNA binding.

It should be noted that the level of baseline PSMA expression
cannot predict the responsiveness of eachmodel to this emerging
therapeutic approach. For instance, the 22Rv1 cell line with a
relatively low level of PSMA showed less alteration after
enzalutamide treatment compared to the LNCaP cell line with
high baseline PSMA expression (Fig. 2b) [26]. However, the
low-PSMA-expressing model of Meller et al. [29] showed a
maximum responsiveness to abiraterone treatment in comparison

to both the moderate- and high-PSMA-expressing models.
Similarly, sensitivity to androgens cannot be a predictor of
PSMA alteration. For instance, both the LNCaP and C4-2 cell
lines showed significant potential for modulation of their PSMA
levels by antiandrogens while they have different levels of sen-
sitivity to androgens. Therefore, the discovery of a potential pre-
dictive biomarker that can estimate the sensitivity of PSMA al-
teration to ADT seems essential.

Furthermore, Paximadis et al. [52] recently revealed that
treatment of LNCaP cell lines with enzalutamide could lead to
significant radiosensitization during exposure to external radi-
ations with different doses. Therefore, the discussed
radiosensitization capability of antiandrogen could be consid-
ered for both internal and external PCa radiation therapy.

Up to now, four radiopharmaceuticals including 18F-
fluorodeoxyglucose (18F-FDG), 18F-fluoro-5-dihydrotestoster-
one (18F-FDHT) [53], 18F-FCH [54, 55] and 64Cu-J591 [26,
56] have been applied in the dose optimization evaluation of
therapeutic pathways and assessment of the therapeutic efficacy
of antiandrogen enzalutamide. However, according to Jadvar’s
[57] review of the utility and limitations of 18F-FDG PET, the
helpfulness of FDG PET in PCa is still evolving and FDG PET
cannot be favorable in the detection of PCa in a relatively large
portion of patients since FDG uptake in PCa is associated with
tumor differentiation levels. Similarly, the described considerable
upregulations in PSMA-ligand uptake after exposure to
antiandrogens raise a question about the ability of PSMA-
targeted imaging such as 68Ga-PSMA-11 [14–17] or PSMA-
DKFZ-617 [18–20] for staging and response monitoring of pa-
tients undergoing treatment with antiandrogen-based drugs [26].
Therefore, we recommend the application of choline PET/CT
and 18F-FDHT for antiandrogen drug development proposes.

A general trend of more PSMA expression and more ligand
uptake throughout a variety of PSMA radioligands including
labeled monoclonal antibodies such as ProstaScint® [58] and
J591 [12, 26], nanobodies such as JVZ-007 [59], labeled small
molecules such as 123I-MIP-1072 [60], 111In-PSMA I&T [61],
68Ga-labeled DOTA and [50] HBED-CC [26] has been reported.
Therefore, because PSMA uptake is proportional to total PSMA
protein levels, improving PSMA protein expression could im-
prove the therapeutic efficacy of PSMA-ligand therapy.

Up to now, many research groups have suggested utiliza-
tion of PSMA enhancer/promoter for application in gene ther-
apy of PCa as a potential adjuvant therapy of CRPC [62–67].
PSMA enhancer has been an appealing candidate for express-
ing different cytotoxic genes accompanied by ADT since it
exhibits a much higher activity at low levels or in the absence
of androgens. For instance, Lee et al. [62] used PSMA en-
hancer to control viral E1A protein expression and achieve
exclusive virus replication in the prostate. In addition,
Ikegami et al. [64] suggested utilization of PSMA enhancer
with Cre recombinase/LoxP system for gene therapy of PCa.
Therefore, the discussed prognostic and therapeutic role of

208 Nucl Med Mol Imaging (2017) 51:202–211



PSMA enhancer in this review could expand the role of this
gene in oncology and nuclear medicine.

In the future, we might be able to use the PSMA upregu-
lation as an adjunct to the management of PSMA-positive
CRPC. However, prospective candidates for this approach
should be selected based on their potential for the elevation
of PSMA after ADT. According to the available literature, the
PSMA-enhancer region is responsible for this alteration.
Moreover, patinas with a mutant and shortened AR such as
AR-7 cannot be appropriate candidates for this therapeutic
approach since mutated ARs have the ability of DNA binding
irrespective of the antiandrogen medication. Therefore, the
use of PSMA ligand imaging to select those that are PSMA
positive and are ready for PSMA ligand therapy after ADT,
besides a quantitative reverse-transcriptase-polymerase-chain-
reaction (PCR) assay to evaluate the PSMA-enhancer region
and stability of the AR region, is essential for the selection of
candidates and CRPC management.

Conclusion

Pre-targeting CRPC with second-generation antiandrogens
could play a role of endoradio-/chemosensitizers in combina-
tion with the well-stablished PSMA-targeted methods because
of the amplification of endoradio-/chemotherapeutic payload
to PCa cells. In addition, in diagnostic PSMA-based scans a
false-positive result after antiandrogen treatment, particularly
in hormone-naïve patients, is predictable.
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