
ORIGINAL ARTICLE

Autoclustering of Non-small Cell Lung Carcinoma Subtypes
on 18F-FDG PET Using Texture Analysis: A Preliminary Result

Seunggyun Ha & Hongyoon Choi & Gi Jeong Cheon &

Keon Wook Kang & June-Key Chung &

Euishin Edmund Kim & Dong Soo Lee

Received: 14 February 2014 /Revised: 20 May 2014 /Accepted: 22 May 2014
# Korean Society of Nuclear Medicine 2014

Abstract
Purpose Texture analysis on 18F-fluorodeoxyglucose posi-
tron emission tomography (18F-FDG PET) scan is a relatively
new imaging analysis tool to evaluate metabolic heterogene-
ity. We analyzed the difference in textural characteristics
between non-small cell lung carcinoma (NSCLC) subtypes,
namely adenocarcinoma (ADC) and squamous cell carcinoma
(SqCC).
Methods Diagnostic 18F-FDG PET/computed tomography
(CT) scans of 30y patients (median age, 67; range, 42-88)
with NSCLC (17 ADC and 13 SqCC) were retrospectively
analyzed. Regions of interest were manually determined on
selected transverse image containing the highest SUV value in
tumors. Texture parameters were extracted by histogram-
based algorithms, absolute gradient-based algorithms, run-
length matrix-based algorithms, co-occurrence matrix-based
algorithms, and autoregressive model-based algorithms.
Twenty-four out of hundreds of texture features were selected

by three algorithms: Fisher coefficient, minimization of both
classification error probability and average correlation, and
mutual information. Automated clustering of tumors was
based on the most discriminating feature calculated by linear
discriminant analysis (LDA). Each tumor subtype was deter-
mined by histopathologic examination after biopsy and
surgery.
Results Fifteen texture features had significant different
values between ADC and SqCC. LDA with 24 automate-
selected texture features accurately clustered between ADC
and SqCC with 0.90 linear separability. There was no high
correlation between SUVmax and texture parameters (|r|≤0.62).
Conclusion Each subtype of NSCLC tumor has different
metabolic heterogeneity. The results of this study support the
potential of textural parameters on FDG PET as an imaging
biomarker.

Keywords Positron emission tomography . F-18
Fluorodeoxyglucose . Carcinoma . Non-small cell lung .

Texture analysis . Cluster analysis

Introduction

In Korea as well as USA, lung cancer is the most common
cause of cancer-related deaths [1]. The conventional treatment
strategy in advanced lung cancer was determined based on the
simplified cancer type classification, namely, non-small cell
lung carcinoma (NSCLC) and small cell carcinoma (SCLC),
although NSCLC is a heterogeneous disease group including
adenocarcinoma (ADC) and squamous cell carcinoma
(SqCC). Recent advances in targeted anti-lung cancer agents
emphasize certain subclassifications of tumor type in NSCLC,
especially in ADC.

Histopathologic examination is a “gold standard” in tumor
subclassification; however, these approach occasionally
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provide failed results due to inadequate tissue sample [2].
Noninvasive metabolic imaging of tumors may have
complementary roles to histopathologic evaluation. Prior
studies have shown the relationship between SUVmax of
18F-fluorodeoxyglucose positron emission tomography
(18F-FDG PET) scan and histopathologic diagnosis [3].
Likewise, divergence of imaging analysis methods may
lead to improved knowledge of tumor characterization
[4, 5].

The digital PET image is composed of voxels and each one
has a value in the gray-level intensity of the volume element in
space [6]. The gray-level intensity is a representative value of
glucose metabolism within the 18F-FDG PET image, so gross
texture of a lesion within the image may represent its histo-
pathologic characteristics. Texture analysis is a mathematical
pattern analysis technique and it quantifies the inter-
relationships of the pixels or voxels via complex and variable
mathematical methods [4]. Although the human eye is a good
tool for discriminating the texture characteristics of a lesion, it
has disadvantages, including being hard to achieve objectifi-
cation. In addition, the visual system is able to recognize
limited patterns of the texture. So the texture analysis based
on a mathematical approach is a promising tool for recogniz-
ing hidden patterns of lesion for classification.

We hypothesized that metabolic heterogeneity reflects the
histopathologic characteristics of a tumor, and by extension,
molecular marker expression. This study is a preliminary
study before evaluating the potential of metabolic heteroge-
neity as a predictive marker, so we analyzed the correlation
between metabolic heterogeneity and histopathologic
characteristics.

Materials and Methods

Subjects and 18FDG-PET/CT Imaging

Thirty patients with NSCLC as ADC and SqCC, who had
received a basal 18F-FDG PET/computed tomography (CT)
during January to December of 2012, were included in this
analysis. Pathologic confirmation of tumor was done by per-
cutaneous needle aspiration (PCNA) and/or surgical resection.
All the patients had been more than 6 h of fasting time before
18F-FDG PET/CT scan. Fasting BST were regulated as less
than 120. Each of the patients was injected with 5.18 MBq/kg
of 18F-FDG intravenously. Sixty minutes after injection,
torso PET/CT scans were obtained on a Biograph 40
scanner (Siemens Medical Solutions, Knoxvillle, TN).
Matrix size was 200 × 200 and voxel size was 2.6×2.6×
2.5 mm3. PET image reconstruction was subsequently per-
formed with ordered subsets-expectation maximization
algorithm.

Texture Image Analysis

After the PET scan was obtained, texture feature extraction
was processed as follows. Firstly, tumor on PET scan was
segmented by drawn region of interest (ROI). We chose a
transverse slice of each PETscan, which contained the highest
SUV value in the tumor. And then, a representative two-
dimensional (2D) ROI containing the visible tumor with the
highest SUV value was manually drawn for each patient.
Secondly, voxel-intensity was resampled with 64 gray levels
and normalized to the mean±3 standard deviations (SD) for
minimizing the error affected by contrast and brightness var-
iation [7]. The final step was texture feature extraction from
segmented and normalized tumor ROI using different algo-
rithms, such as histogram-based, absolute gradient (Gr)-
based, run-length matrix-based, co-occurrence matrix
(COM)-based, and autoregressive model-based methods.
The overall steps are briefly summarized on Fig. 1. More than
200 texture parameters per each ROI were extracted in this
study. The histogram-based features including mean, vari-
ance, skewness, and kurtosis were calculated. The Gr-based
parameters were calculated for spatial gray-level variance.
The run-length matrix-based parameters about linear gray-
level uniformity were calculated at 0, 45, 90 and 135 degrees.
The COM-based parameters were about different combina-
tions of gray levels of pixels in an image. For example, they
calculated how often a pixel of intensity i co-occurred to
another pixel of intensity j with pre-defined relationship of
certain distance and direction. We computed for 20 vectors
with five distances and four angles—0, 45, 90 and 135 de-
grees—in this analysis. The autoregressive model-based
parameters computed the spatial relationship among neigh-
borhood pixels. The formulae of several texture parameters
which had significance in our data or were needed to describe
them are shown in the Table 1. The rest of the texture feature
extraction formulae which were included in this analysis can
be found in the manual [8].We used the softwareMaZda v.4.6
& B11 (The Technical University of Lodz, Institute of Elec-
tronics, Poland) for ROI drawing, texture parameter acquisi-
tion and analysis.

Feature Selection and Tissue Classification

We used three feature reduction methods to determine ten
features per each method with high distinguishing ability
between ADC and SqCC, as following subsets in MaZda
v.4.6 software: (1) the largest Fisher coefficient (F), a
between-class variance to within-class variance ratio, (2) min-
imization of both classification error probability and average
correlation (PA), and (3) mutual information (MI), depen-
dence between random variables (Table 3). The definition
and detailed formulae of these subsets can be found in the
manual [8]. All of the automatically selected parameters after
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Fig. 1 Brief process of texture analysis on PET scan. First step is
selection of the representative transverse image with highest SUV of
tumor (a). Next, tumor is segmented by ROI with manual process (b).

Segmented tumor is resampled by normalization with restriction of voxel
intensity range (c). Final step is texture feature extraction by variable
algorithms (d)

Table 1 Texture Parameters

Texture features Formula or assumption

1. Histogram-based features Assumption) p(i) is a normalized histogram value for a pixel intensity I. μ is mean value.

Variance (σ2)
σ2 ¼ ∑

i¼1

N
i−μð Þ2p ið Þ

2. Absolute gradient-based parameters Assumption) x(i,j) is a pixel intensity at (i,j) position

Absolute gradient value [G(i,j)]
for 5 × 5 matrix of M elements

G i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiþ2; j−xi−2; j
� �2 þ xi; jþ2−xi; j−2

� �2
q

Mean of G(i,j), (GrMean) GrMean ¼ 1
M ∑

i; j∈ROI
G i; jð Þ

Variance of G(i,j), (GrVariance) GrVariance ¼ 1
M ∑

i; j∈ROI
G i; jð Þ−GrMeanð Þ2

Ratio of non-zero G(i,j) matrix elements, (GrNonZeros) Ratio of non-zero G(i,j) values

3. Run-length matrix-based parametersa

4. Co-occurrence matrix-based parameters Assumption) p(i,j) is the joint probability of co-occurring pixel intensity values i
and j. Nx is a number of pixel intensities.

pxþy kð Þ ¼ ∑
i¼1

Nx

∑
j¼1

Nx

p i; jð Þ; iþ j ¼ k

px−y kð Þ ¼ ∑
i¼1

Nx

∑
j¼1

Nx

p i; jð Þ; j⋯i− j j ¼ k

Angular second moment (AngScMom)
AngScMom ¼ ∑

i¼1

Nx

∑
j¼1

Nx

p i; jð Þ2

Entropy
Entropy ¼ −∑

i¼1

Nx

∑
j¼1

Nx

p i; jð Þlog p i; jð Þð Þ

Inverse difference moment (InvDfMom)
InvDfMom ¼ ∑

i¼1

Nx

∑
j¼1

Nx
1

1þ i− jð Þ2 p i; jð Þ

Sum of squares (SumOfSqs)
SumOfSqs ¼ ∑

i¼1

Nx

∑
j¼1

Nx

i−μxð Þ2p i; jð Þ

Sum entropy (SumEntrp)
SumEntrp ¼ − ∑

2Nx

i¼1
pxþy ið Þlog pxþy ið Þ

� �

Sum average (SumAverg)
SumAverg ¼ ∑

2Nx

i¼1
ipxþy ið Þ

Sum variance (SumVarnc)
SumVarnc ¼ ∑

2Nx

i¼1
i−SumAvergð Þ2pxþy ið Þ

Difference entropy (DifEntrp)
DifEntrp ¼ −∑

i¼1

Nx

px−y ið Þlog px−y ið Þ
� �

Difference variance (DifVarnc)
DifVarnc ¼ ∑

Nx−1

i¼0
i−μx−y

� �2
px− y ið Þ

5. Autoregressive model-based parameters a

a No texture feature with significant value in this study; cf. Table 3.
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standardization were enrolled in linear discriminant analysis
(LDA), which is a type of multivariate analysis for classifica-
tion and dimension reduction [9]. The results of LDA were
shown as the most discriminating features (MDF) and the
nearest neighbor method (k=1) was used for the MDF.

Statistics

All the continuous data were written as mean±1 SD. The
Mann-Whitney U-test was employed to make a comparison
between means of selected texture features of ADC and
SqCC, or male and female. Selected texture features were
evaluated correlation with SUVmax and tumor size using the
Pearson correlation coefficient (r). When |r| was higher than
0.7, we regarded that there was strong correlation between two
parameters. A p value of 0.05 was regarded as a threshold for a
certain statistical significance. We used software SPSS v.18.0
(SPSS, Chicago, IL, USA) for statistic calculation. The use-
fulness of LDA results for clustering tumor was expressed as
linear separability, which was calculated by B11 software.
When linear separability changes from 0.0 to 1.0, the result
becomes more separable.

Results

Patients

Of the 30 patients (median age, 67; range, 42-88) included, 16
patients were men and 14 patients were women. Overall, 17
ADCs and 13 SqCCs were involved in the analysis. On
18F-FDG PET images, the mean diameter of ADC was
37.8±18.3 mm and that of SqCC was 49.9±14.1 mm. Sum-
marized characters of the patients are presented in Table 2.

Comparison of Automatically Selected Texture PET
Parameters Between ADC and SqCC

Six texture parameters selected by F, PA and MI texture
feature selection subsets were overlapped, so that, overall,
24 parameters were included in this analysis. There were
one gray-level histogram-based parameter (Variance), two
Gr-based parameters, variance of absolute gradient
(GrVariance) and ratio of non-zero absolute gradient values
(GrNonZeros), and 21COM-based parameters. There was no
run-length matrix-based parameter or autoregressive model-
based parameter in the automated parameter selection. Mann-
Whitney U-test revealed that 16 quantitative PET parameters
including SUVmax and 15 texture parameters, composed of
one Gr-based parameter and 14 COM-based parameters,
showed significant difference of mean values between ADC

and SqCC (Table 3). SUVmax showed the most significant
association to tumor pathology in these data (p=0.001).

Correlation Between Automatically Selected Texture PET
Parameters and SUVmax

Fifteen of 24 automatically selected texture parameters have
significant correlation to SUVmax (p<0.05, respectively).
Range of calculated |r| levels with significance in these pa-
rameters was 0.33–0.62. Among the texture parameters which
have significant mean level difference between ADC and
SqCC, there were 12 texture parameters with significant cor-
relation to SUVmax. The results of simple correlation analysis
were described in Table 4.

Table 2 Patient Characteristics

Patient no. Sex Age (years) Histopathology Tumor size (mm)

1 M 78 ADC 41.9

2 M 69 ADC 50.1

3 M 71 ADC 92.3

4 F 76 ADC 39.8

5 F 52 ADC 25.8

6 M 46 ADC 20.8

7 F 61 ADC 19

8 F 63 ADC 21.8

9 F 74 ADC 36.5

10 F 64 ADC 25.1

11 F 52 ADC 22.8

12 M 59 ADC 52.9

13 F 75 ADC 44.6

14 F 73 ADC 21.3

15 F 74 ADC 37.1

16 F 42 ADC 30

17 F 59 ADC 60.5

18 M 76 SqCC 62.8

19 M 63 SqCC 69.7

20 M 88 SqCC 33.4

21 F 67 SqCC 31.7

22 M 67 SqCC 73.3

23 M 57 SqCC 54

24 M 73 SqCC 25.2

25 M 64 SqCC 49.7

26 M 70 SqCC 43.7

27 M 62 SqCC 49.1

28 M 79 SqCC 48.5

29 F 73 SqCC 63.3

30 M 59 SqCC 44.1

Tumor size measured by longest diameter of ROI from selected PET
image slices
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Relationship With Texture Features and Clinical Data

Each of 24 automatically selected texture features was com-
pared with clinical data, including gender and tumor size.
There was no texture feature which has significant difference
of mean values according to patient gender (p>0.05, respec-
tively, Table 4). Linear correlation analysis revealed that 19 of
24 texture features had significant correlation to tumor size
(Table 4). Seven texture features had |r| values more than 0.7.
Size itself did not have association to tumor pathologies
(p>0.05).

Autoclustering by Linear Discriminant Analysis

Autoclustering by LDA with those 15 texture parameters
which had significant difference between tumor subclassifica-
tion calculated that MDF values as follows: ADC, -0.097±
0.071; SqCC, 0.127±0.096. Twenty-five of 30 lesions were

correctly clustered to their own tumor type (classification
accuracy 83.33%). Two ADC and three SqCC lesions were
misclassified. Linear separability was 0.64 (Fig. 2a). When
analyzing with all the selected 24 parameters, each MDF
value of ADC and SqCC, calculated by LDA, was -0.120±
0.044 and 0.157±0.049. LDA clustered lesions accurately
according to their pathology between ADC and SqCC, with
a classification accuracy of 100%. The linear separability of
this autoclustering was 0.90 (Fig. 2b).

Discussion

18F-FDG PET/CT scan is a well-established hybrid-functional
imaging technique for cancer evaluation in the clinical field.
18F-FDG PETscan enables non-invasive tumor evaluation for
grading, staging and measuring the response to treatment with

Table 3 PET Texture Parameter Analysis

PET parameters Feature selection Comparison of mean values between ADC and SqCC

Fisher PA MI ADC SqCC p value

S(1,0) Entropya, c 1.5999 - 0.3545 2.20±0.21 2.41±0.12 0.004*

S(1,0) SumEntrpa, c 1.4775 - 0.396 1.67±0.12 1.78±0.05 0.006*

S(0,1) Entropya, c 1.4501 - 0.3308 2.18±0.21 2.38±0.11 0.008*

S(0,3) SumOfSqsa, c 1.3838 - 0.3335 113.47±10.31 102.25±9.26 0.004*

S(0,1) AngScMoma, c 1.3329 - 0.3185 0.0084±0.0036 0.0052±0.0012 0.017*

GrNonZerosa 1.3267 - - 0.98±0.02 0.95±0.03 0.004*

S(1,0) AngScMoma 1.2776 - - 0.0080±0.0037 0.0048±0.0013 0.006*

S(2,0) SumOfSqsa 1.2748 - - 109.57±7.47 101.11±8.11 0.007*

S(1,-1) AngScMoma 1.269 - - 0.0072±0.0033 0.0044±0.0013 0.007*

S(0,4) SumOfSqsa 1.2516 - - 118.95±13.62 105.39±10.95 0.006*

S(4,0) DifEntrpb - 0.4096 - 1.37±0.087 1.41±0.041 0.133

S(1,-1) SumOfSqsb - 0.4487 - 107.40±4.93 101.78±5.58 0.006*

S(0,4) InvDfMomb - 0.4528 - 0.074±0.023 0.096±0.030 0.039*

S(5,0) SumVarncb - 0.4569 - 157.33±67.81 181.17±39.16 0.245

S(5,5) SumOfSqsb - 0.4651 0.3289 80.18±33.74 106.83±12.84 0.079

S(2,2) SumOfSqsb - 0.477 - 113.30±11.39 102.92±8.52 0.01*

S(5,-5) InvDfMomb - 0.4777 - 0.108±0.107 0.079±0.022 0.68

S(3,3) DifEntrpb - 0.479 - 1.35±0.96 1.39±0.039 0.17

Varianceb - 0.4829 - 1,908,612±2,770,149 10,944,950±16,414,211 0.183

S(2,2) DifVarncb - 0.6 - 53.48±19.38 40.77±11.89 0.039*

S(5,0) DifEntrpc - - 0.4344 1.35±0.11 1.44±0.04 0.002*

S(0,3) DifVarncc - - 0.3304 50.93±22.40 40.38±9.62 0.263

S(5,0) DifVarncc - - 0.3225 96.99±36.74 82.57±15.73 0.432

GrVariancec - - 0.3205 1.43±0.49 1.65±0.73 0.432

SUVmax
d 10.06±5.18 16.95±4.52 0.001*

* p<0.05, statically significant
a, b, c Parameters selected by Fisher coefficient, PA, and MI, respectively
d SUVmax values were suggested for comparison with texture parameters
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high sensitivity and specificity in certain cancers [10]. 18F-
FDG PET data allow a quantitative evaluation of glucose
metabolism of tumor. Although a lot of previous studies have
reported the clinical usefulness using SUVmax and volumetric
parameters, these conventional parameter-based analyses

have several limitations [4, 5, 11–13]. These parameters are
classified into histogram-based parameters, so they also have
the short-comings of histogram analysis. Histogram-based
parameters cannot describe the gross texture coming from
relationships of two or more voxels. For example, SUVmax

Table 4 Comparison to Other Parameters

PET parameters Correlation to SUVmax Difference of texture features between genders Correlation to Size

r p value Male Female p value r p value

S(1,0) Entropy 0.589 0.001* 2.31±0.17 2.27±0.24 0.759 0.861 <0.001*

S(1,0) SumEntrp 0.579 0.001* 1.73±0.09 1.70±0.13 0.697 0.826 <0.001*

S(0,1) Entropy 0.584 0.001* 2.29±0.17 2.25±0.23 0.728 0.858 <0.001*

S(0,3) SumOfSqs -0.471 0.009* 106.57±10.05 110.93±12.41 0.355 -0.655 <0.001*

S(0,1) AngScMom -0.585 0.001* 0.006±0.002 0.008±0.004 0.473 -0.783 <0.001*

GrNonZeros -0.284 0.128 0.97±0.03 0.97±0.03 0.759 -0.748 <0.001*

S(1,0) AngScMom -0.622 <0.001* 0.006±0.002 0.007±0.004 0.667 -0.741 <0.001*

S(2,0) SumOfSqs -0.504 0.004* 104.65±7.62 107.34±9.95 0.355 -0.602 <0.001*

S(1,-1) AngScMom -0.529 0.003* 0.006±0.002 0.006±0.004 0.580 -0.819 <0.001*

S(0,4) SumOfSqs -0.465 0.010* 110.60±12.45 115.90±15.75 0.448 -0.683 <0.001*

S(4,0) DifEntrp 0.386 0.035* 1.39±0.05 1.39±0.10 0.728 0.302 0.105

S(1,-1) SumOfSqs -0.397 0.030* 0.006±0.002 0.007±0.004 0.120 -0.495 0.005*

S(0,4) InvDfMom 0.252 0.179 104.65±7.62 107.34±9.95 0.423 0.394 0.031*

S(5,0) SumVarnc 0.207 0.272 170.97±60.95 163.87±55.51 0.637 0.525 0.003*

S(5,5) SumOfSqs 0.219 0.244 91.28±26.78 92.23±33.58 0.790 0.478 0.008*

S(2,2) SumOfSqs -0.380 0.039* 105.95±10.05 112.06±12.24 0.154 -0.609 <0.001*

S(5,-5) InvDfMom -0.368 0.046* 0.084±0.033 0.11±0.12 0.984 -0.325 0.080

S(3,3) DifEntrp 0.589 0.001* 1.37±0.09 1.37±0.07 0.728 0.185 0.327

Variance 0.333 0.072 7.11±1.43 4.35±7.98 0.667 0.027 0.888

S(2,2) DifVarnc -0.236 0.209 44.49±14.55 51.94±20.20 0.313 -0.636 <0.001*

S(5,0) DifEntrp 0.542 0.002* 1.38±0.07 1.39±0.12 0.667 0.611 <0.001*

S(0,3) DifVarnc -0.191 0.312 41.97±11.62 51.38±23.65 0.498 -0.574 0.001*

S(5,0) DifVarnc -0.246 0.190 87.35±25.46 94.61±35.06 0.667 -0.520 0.003*

GrVariance 0.077 0.687 1.45±0.56 1.62±0.66 0.525 0.187 0.323

SUVmax 12.93±5.86 13.19±6.26 0.951 0.318 0.087

* p<0.05, statically significant

Fig. 2 Clustering analysis with PET texture features. LDA with 15
selected texture features which had significant association with tumor
subtypes showed 0.64 of linear separability. There were 5 of 30
misclassified lesions (a). LDAwith 24 selected texture features showed

accurate discrimination between ADC and SqCC without misclassifica-
tion. The linear separability of LDA is 0.90 (b). MDF 1 is the most
discriminating feature presented by LDA. In these figures, ADC was
marked as ‘1’, and SqCC was marked as ‘2’
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only reflects the highest value of metabolic activity in a tumor,
and volumetric parameters such as metabolic tumor volume
only reflect overall tumor burden.

Histopathological characteristics of tumor may compose
the gross texture of the tumor not only on the tissue, but also
on the images. Previous researches have investigated the
potential of texture analysis in anatomical imaging such as
US, CT and MRI, and presented the data supporting the
hypothesis that texture features on images can discriminate
the tissue types [14–16]. Regardless of these successes of
texture analysis in anatomical imaging, developments in
PET image analysis have been delayed because of its relative-
ly poorer spatial resolution than that of anatomical images. To
date, there have been only a few studies investigating the PET
texture analysis, and these studies have been localized to
prediction of prognosis and evaluation for radiotherapy plan-
ning [15]. However, these studies have some ambiguous
points about the relationship between textural features and
histopathologic characteristics of tumors [17].

Personalized medicine have become the issue of this era
since targeted drugs proved clinical impact with survival
prolongation, especially in NSCLC [18]. Image-mediated tu-
mor characterization has potentials as non-invasive biomarker
evaluation. Several previous PET quantitative analysis
showed correlation of value of SUVmax and histopathological
features including tumor subtypes, Ki-67 expression, EGFR
mutation and Alk rearrangement [19, 20]. However, there are
also some studies showing negative data to the relationship
between SUVmax and tumor subtypes or EGFR expression in
lung cancer [21].

Metabolic heterogeneity is a remarkable feature of malig-
nancy, and the texture analysis provides quantifying analysis
tools for evaluating tumor heterogeneity [22]. In our study, 15
extracted raw texture parameters of 18F-FDG PET were sig-
nificantly associated with histological subtypes of NSCLC in
univariate analysis. Especially, 14 of the 15 texture parameters
which had significant different values between ADC and
SqCC were COM-based texture parameters. This is well
consistent with previous studies by texture analysis on MRI
and CT scans, which reported that the COM-based texture
parameter looks like most valuable parameter for tissue char-
acterization [14, 23]. COM-based texture parameter is a kind
of second order texture feature which describes neighborhood
gray-tone difference, and was generally interpreted to reflect
the metabolic heterogeneity of entropy, energy, and contrast of
tumor, so that these COM-based texture parameters have high
association with tumor pathology stands to reason [17, 24].

There has been reported clinical usefulness of PET texture
analysis in recent years. However, clinical application of PET
texture parameter is still controversial. One of these concerns
is about the unclear point of relationship to conventional
parameters such as SUVmax. Furthermore, the analysis results
that the most associated PET parameter to tumor pathology

was SUVmax, not selected PET texture parameters, further
amplifies suspicion of the clinical usefulness of PET texture
parameters. For the solution, we evaluated linear correlation
between selected texture parameters and SUVmax to figure out
their relationships. In this study, although 15 of 24 texture
parameters were significantly correlated to SUVmax, there was
no highly correlated texture parameter with SUVmax (|r|≤
0.62). These results supported the validity of texture features
in PET data analysis, which had distinct value to SUVmax.
Additionally, we investigated the relationship of extracted
texture features to clinical data in order to figure out the
texture feature characteristics which were used in this study.
Genders did not have any relationship to extracted texture
features. On the other hand, many of extracted texture features
showed significant correlations to tumor size. Besides, seven
texture features had strong linear correlations to tumor size.
Correlation of texture features to tumor size should be con-
sidered for tumor characterization by texture analysis. In this
study, we did not use multivariate analysis including tumor
size for tumor characterization, because tumor size itself did
not have association to tumor histopathological feature in our
data.

Actually, a single texture parameter is not enough to rep-
resent the gross texture of tumor. In regard to gross texture, the
metabolic heterogeneity of tumor was composed of multiple
texture patterns. In view of this, a complex of integrated
different texture parameters is needed to describe the gross
texture of a tumor. The LDA, feature extraction method for
pattern recognition, was employed on PET texture features to
develop an autoclustering of tumor as ADC and SqCC [25].
LDAwith extracted texture parameters of 18F-FDG PETusing
automate-subsets of F, PA and MI clustered subtypes of
NSCLC with high accuracy. The clustering analysis outcomes
especially showed that the more texture parameters were
involved, the higher accuracy of clustering was obtained.
LDA with 24 texture features did not show misclassification
of tumor subtypes, although LDA with 15 texture features
misclassified 5 of 30 tumors. These results strongly supported
usefulness of PET texture feature complex for discrimination
of tumor subtypes.

Further study can be considered in the aspect of discrimi-
nation between lung cancer and inflammation using texture
analysis. This issue is clinically very important because these
two pathologic events show increased FDG uptake which can
mimic each other. However, the mechanisms of increased
FDG uptake were different. Tumor cells have characteristic
up-regulated altered glucose metabolism themselves, howev-
er, in the inflammatory lesion, increased FDG uptake is a
result of the infiltration of activated inflammatory cells [26].
It is clinically not easy to distinguish between those two
lesions based on FDG uptake on PET scan [27]. However,
the assumption that those two different lesions, which have
discriminating histopathologic features, show different
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metabolic heterogeneity is reasonable. Although a previous
study using texture analysis with COM-based parameters on
CT scan has reported data for assessing the possibility for
discrimination of tumor and inflammation, to our knowledge
there were no reported data using PET texture analysis [23].
We also convince that application of texture analysis with
clustering method to PET scan may be helpful to this clinical
issue.

Our study has several limitations. In our retrospective
study, we did not try to correct the partial volume effect.
However, we studied tumors with greater than 1 cm in size,
so that a partial volume effect may not significantly affect the
results of our study. Another weakness is manually drawn
tumor ROI for analysis. Automated drawing ROI methods
may reduce intra- and inter-observer variation. Likewise,
Galavis et al. [28] reported that some texture parameters
exhibited large variations when PET images are acquired
and processed with different modes. We included PET scans
acquired on a single PET/CT system not to make factors of
feature variability. However, this approach may restrict versa-
tile application of the results of our research to other institu-
tions which have different image acquisition and reconstruc-
tion systems for PET scans. Thus, the results obtained from
texture feature analysis should be carefully interpreted in
consideration of the PET imaging system.

Conclusions

Different subtypes of NSCLC, namely ADC and SqCC, have
different characteristics of metabolic heterogeneity in our
study. This preliminary study based on texture analysis and
histopathological characteristics supports the potential of met-
abolic heterogeneity as an imaging biomarker for NSCLC.
Texture analysis onmetabolic images may help the advance of
image-based personalized medicine.
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