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Abstract
This work presents a methodology for combining deep learning with whole-core
computed tomography (CT) imaging and laboratory data for fast and high-frequency
estimationof porosity logs. Theproposedmethod trains a convolutional neural network
(CNN) model to predict laboratory-scale porosities by using core-scale CT images as
input. Despite the different scales, the model works well to predict the porosities mea-
sured at laboratory scales using the textures present in core-scale CT images. Themain
contribution of this work is the data-driven methodology for fast and high-frequency
characterization of porosity at the core scale. The proposed methodology can provide
a much more efficient porosity characterization than the traditional workflow based
on the qualitative and subjective evaluation of experts. The method was evaluated in
a well-based cross-validation process in 26 wells from 3 different Brazilian pre-salt
fields, using two distinct CNN architectures of varying complexity. The results show
that the models can make good predictions for new wells with acceptable margins of
error. The proposed method can be easily integrated into digital rock workflows as
it is based on data available for traditional petrophysical analyses and deep learning
models available in open source.
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1 Introduction

The oil and gas industry has adopted machine learning methods in several areas,
including exploration, production, drilling, among others (Choubey and Karmakar
2020; Tian et al. 2021; Osarogiagbon et al. 2020; Alakeely and Horne 2021; Cheraghi
et al. 2021).

At exploration stages, recoverable fluid volumes in a reservoir rock are usually esti-
mated by interpreting integrated well-logs, and 3D seismic data (Abiola and Obasuyi
2019; Paris and Stewart 2020). The interpretation of these data, including porosity logs
(derived from sonic, density, neutron, or nuclear magnetic resonances El Shayeb et al.
(2020)), depends on a series of factors, among them, matrix density, the saturating
fluid type, and the drilling fluid type to name a few (Singh et al. 2016). Some of these
parameters are not usually known and must be estimated from laboratory analysis
of extracted samples, which are time-consuming and expensive at the reservoir scale
(Singh et al. 2016). In the traditional approach, i.e., using plug samples for laboratory
analysis, a typical set of samples usually requires 4–6 months to process, with the
added downside that the process is destructive.

Furthermore, sample extraction involves highly localized data, which usually cover
tiny areas, and diagenetic processes on carbonate reservoirs prevent the application
of conventional upscaling methods. Determining porosity from well-logs is also com-
plicated when one considers their resolution, usually very coarse, which results in the
loss of fine details (Ghaleh and Kordavani 2019), compared to core plugs. Depending
on the tool, the maximum vertical resolution achieved for porosity logs is up to 1.82
m throughout Nuclear Magnetic Resonance (NMR) logs. Additionally, these method-
ologies are susceptible to fluid alterations in the invaded zone due to an unexpected
mixture of mud filtrate and formation fluids (Mondol 2015). Accordingly, porosity
estimation from well-logs involves uncertainties and is also affected by the logging
environment and logging tools (Elkatatny et al. 2018).

The reservoir characterization process requires data analysis from different sources,
such as well-logs and core samples, to mitigate indirect measurements and carbon-
ate heterogeneity uncertainties. Digital core sample analysis using X-ray Computed
Tomography (CT) data has become a routine technique used to acquire 3D images
for rocks that are difficult to characterize, such as carbonate rocks (Basso et al. 2020;
Chandra et al. 2019; Victor et al. 2017). The CT image grayscale level is a nonlinear
function of material density. Hence, since material porosity impacts medium thick-
ness, it can be estimated from image attenuation coefficients. Wolański et al. (2017)
found correlations between attenuation coefficients, formation bulk density, and the
total porosity index for 230 sandstone samples classified by lithofacies without indi-
vidualizing pore space.

Deep learning models, such as convolutional neural networks (CNNs) (LeCun
1989), have been used for automatic analysis of Micro Computed Tomography (μ-
CT) images in several tasks, including lithological classification of carbonate rocks
(dos Anjos et al. 2021); mineral segmentation of 2D and 3D data (Da Wanga et al.
2021); porosity, specific surface area, and average pore size quantification (Alqahtani
et al. 2020); and permeability estimation (Tembely et al. 2020; Sudakov et al. 2019;
dos Anjos et al. 2023). Despite the promising results for petrophysical characteriza-
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tion using deep learning models, the proposed approaches mostly use rock samples
without complex structures such as sandstone, employ high-quality μ-CT images of
rock samples as input, or apply complex simulation techniques or laboratory tests to
calculate the properties used as targets for model training. The μ-CT samples provide
only very localized information, which is not representative enough to upscale to the
reservoir scale, especially in heterogeneous rocks such as carbonates. Furthermore,
the methodology employed to estimate these properties from well-logs at the reser-
voir scale can be strongly influenced by data acquisition conditions and is plagued by
coarse resolutions.

An attempt to predict the petrophysical properties at thewell-scale at amore detailed
resolution is presented in Valentín et al. (2018). This proposal uses borehole image
logs and the petrophysical properties obtained through well-log analysis as training
pairs to adjust the neural network architecture. The main obstacle of this methodology
is that borehole images can present many artifacts requiring complex processingmeth-
ods for their generation. Another limitation stems from using well-log data to obtain
petrophysical properties since these are less accurate and display lower resolution than
laboratory tests. These factors can be problematic in heterogeneous samples.

Another method that attempts to predict a set of petrophysical properties, such as
porosity, density, formation factor, and clay volume, at the well-scale is presented
in Jouini and Keskes (2017). In that work, texture features are extracted from the
tomography image using the steerable pyramids decompositionmethod. The extracted
characteristics are used to predict the desired petrophysical characteristics using mul-
tilayer perceptron networks. Once trained, the authors use these models to create
continuous profiles of the desired petrophysical properties using the textural features
extracted along the core. Although the results were satisfactory, the method was tested
only on sandstone samples. Unlike that approach, our proposal explores a deep convo-
lutional model’s ability to directly estimate the set of relevant features from the image
to determine the desired property in complex carbonate samples. This proposal stems
from carbonate samples having a wide range of textural attributes that are difficult to
characterize using traditional texture analysis methods.

Considering the previous limitations, the primary purpose of this work is to com-
binemachine learningmethods,whole-coreCT images, and laboratory data to estimate
porosity logs from whole-core CT images using a deep neural network. The main idea
behind this work is to merge the different scales (whole-core and plugs) and measure-
ment sets (CT images and laboratory results) to reduce uncertainties when upscaling
laboratory data to the reservoir scale. The dataset used in this work is composed of
Brazilian carbonate rock samples. However, the method employed is not specific for
this type of rock and can be used for other types of rock formations.

An additional advantage of the proposed method is the time reduction compared
with conventional porosity analysis since ours is almost instantaneous (depending only
on machine time).

The main contributions of this work are:

• an end-to-end method for porosity prediction using multiple scales data currently
available in the petrophysical workflow;
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• a realistic experimental validation method using 26 wells of a Brazilian pre-salt
carbonate reservoir based on well-based cross-validation to assess model general-
ization capabilities;

• the method employs widely available CNN models such that practitioners can
easily deploy it on their own data.

The remainder of the paper is organized as follows. The next Sect. 2 presents the
theoretical background ofX-ray computed tomographies. Section 3 details thematerial
and methods used in this work. Section 4 presents the results and discussion, while
Section 5 the conclusions.

2 Theoretical background

2.1 X-ray computed tomography

CT is a non-destructive spatial imaging technique that was originally developed for
medical diagnostics but has been extensively applied in the industrial environment
since the 1970s (Wevers et al. 2018).CThas beenwidely used in the oil and gas industry
given its outstanding potential in reservoir engineering since it enables analysis of the
internal structure of rock samples while also preserving a digital record of the core
prior to other destructive analysis.

Based on internal variations inmaterial density, CT images are used for quantitative
and qualitative analysis of rocks. In the qualitative sphere, the technique allows facies
evaluation (Odi and Nguyen 2018) and fracture mapping (Remeysen and Swennen
2008), among others. Concerning quantitative evaluations, high-resolution CT data
allows 3D pore structures to be individualized, enabling estimation of a series of
petrophysical properties (Andrä et al. 2013; Faisal et al. 2019). Additionaly, laboratory
and well-log scales can be correlated using CT images, which can also be easily
associated with electrical and acoustic borehole image logs.

Detailed descriptions of acquisition systems and imaging processing can be found
in Hanna and Ketcham (2017) and Ketcham and Carlson (2001).

2.2 Multi-scale analysis

The rock characterization process consists of determining the different physical, chem-
ical and petrophysical characteristics of rock samples. The determination of these
characteristics is done on a scale that allows us to interconnect with well data and a
resolution that allows in detail the heterogeneity of the well, to later be used in the
characterization of oil and gas reservoirs. Some of the most important characteris-
tics determined in this process are porosity and permeability, which are related to the
amount of fluid contained in the sample and its ability to flow. To determine these
characteristics, data obtained from various sources are used in different scales such as
well profile data, rock sample analysis, among others, this makes this process chal-
lenging. The idea of this paper is to combine data coming from different scales. Let’s
first detail these scales:
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Fig. 1 Depiction of the different scales involved in a typical workflow

• whole-Core: Cylindrical rock sample extracted from the well with a conventional
height of 30m, used to perform a more detailed analysis compared to the well
profile data. These samples are taken only from some regions of interest to the
well;

• whole-Core Section: Cut of 90cm from the Whole-Core sample made to facilitate
the manipulation and the digitalization of the rock. The problem with this scale is
that it is not feasible to perform laboratory tests in rock samples of this size and
digital images obtained by CT equipment have a very low resolution (around 200
μm), which makes it impossible to model the porous system in detail, especially
in heterogeneous samples such as carbonates;

• plug/μ-Plug: Sub-samples of the Whole-Core extracted from some regions of
interest. Plugs usually have between 5 and 10 cm in height and 3cm in diameter,
while μ-plugs have 3 to 5mm in height and from 1 to 2mm in diameter. These
sub-samples are the ones used for laboratory tests and to obtain μ-CT images.
Plugs are usually digitized with low-resolution (around 40µm), whileμ-plugs are
obtained with high-resolutions (typically between 1 to 5 µm). From these images
it is possible to know in detail the internal structures of the rock controlling some
of the petrophysical properties.

A schematic representation of the distinct scales utilized in our study can be seen in
Fig. 1. In this light, the idea of this paper is to merge the coarse information obtained
in the scale of the Whole-Core with the more granular information obtained from the
laboratory tests done in the plug scale.
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Fig. 2 Overview of the proposed workflow

3 Materials andmethods

In Fig. 2, we summarize the approach proposed in this work. This approach uses CT
images and laboratory porositymeasures (orange points) as input and targets formodel
training and validation. Once the model is trained, a porosity curve (blue line) can be
extracted from the CT images. The proposed approach consists of 3 phases: the first
phase consists of building the tomographic profile image of the rock; the second phase
corresponds to training themachine learningmodel; and the last step refers to using the
model to infer the desired porosity curve. Although deep learningmodels are proposed
in this work, a linear regression model trained on the averages of grayscale lines was
used as a simple baseline for comparison. The elements of the proposed approach are
explained in detail in this section.

3.1 Dataset

This work uses CT images of 26 wells from 3 Brazilian carbonate fields. The 16-bit
images were acquired on a GE BrightSpeed Elite Select 16 0.49×0.49×1.25 with
a spatial resolution of approximately 490 µm. The number of cores, CT images, and
laboratory tests for each field are presented in Table 1. The laboratory data corresponds
to porosity values obtained by a gas porosimeter.

3.2 Data preparation

The tomographic profile is extracted by unwrapping the external cylindrical shell from
the volumetric tomography as displayed in Fig. 3c. This view was selected because it
is the closest portion of the volumetric data to the logged formation.
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Table 1 Dataset description

Well Core/Images Samples Well Core/Images Samples

R1/W0 8/204 503 R1/W13 3/91 233

R2/W1 1/56 118 R3/W14 3/88 233

R2/W2 3/87 158 R3/W15 2/57 135

R2/W3 3/190 413 R3/W16 1/30 76

R2/W4 6/214 461 R3/W17 2/67 139

R2/W5 2/69 109 R3/W18 1/31 72

R3/W6 2/69 97 R3/W19 5/165 416

R3/W7 3/90 228 R4/W20 1/34 86

R3/W8 2/68 67 R4/W21 2/31 69

R3/W9 1/35 89 R4/W22 1/33 73

R3/W10 1/27 66 R4/W23 11/220 509

R3/W11 2/68 160 R4/W24 2/11 25

R1/W12 3/91 236 R4/W25 4/105 325

Total core 75

Total Images 2231

Total Plugs 5096

Fig. 3 a Three-dimensional CT
data and the derived
bi-dimensional views: b
transversal, c tomographic
profile, and d longitudinal layer

Before extracting the tomographic profile, the volumetric CT data are pre-processed
to correct possible artifacts generated during the acquisition process, such as beam
hardening. Boas and Fleischmann (2012) shows an overview of common CT artifacts
and the respective correction method. It is important to note that the acquisition equip-
ment should be calibrated to make sure that the output image values correspond to the
Hounsfield scale, which is a scale used by radiologists to interpretmedical tomography
(DenOtter and Schubert 2023). All images used in this work have the same acquisition
settings.

Once the tomography profile image is extracted, the porosity measurements of
the available horizontal plug samples performed at the laboratory are aligned with
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Fig. 4 Depth adjustment of laboratory porosity measurements used for model training and evaluation based
on a colored photographs; b the tomography profile image; c crop generation by using a sliding window
with a stride of 45 pixels (each dashed line rectangle represents a crop), and d crop data augmentation
(the top rectangle is a crop taken from c and the remaining two rectangles are the resulting crops after the
flipping and the 180 degrees rotations)

the CT image (Fig. 4b) using the depth information available for core photographs
(Fig. 4a). Using these points as a reference, crops of dimensions [91× 501] (adjusted
so the height is similar to the sample’s diameter, 3.8 cm, and with a length spanning
the entire whole-core) are generated from the tomographic profile image (Fig. 4c).
Naturally, the length of the tomographic profile varies from well to well, thus, we
used a sliding window with a stride of 45 pixels to create the desired crops. Using this
methodology, 22,000 crops were generated.

Finally, two traditional data augmentation techniques were applied to each crop:
flipping and rotation by 180 degrees as depicted in Fig. 4d. The goal is to increase
the diversity of the database and decrease the risk of overfitting the neural network
model. Following the beforementioned process, input–output pairs, i.e. images crops
and laboratory measures, are formed to be used in the deep learning models.

For the linear regression model, that will be used as baseline, at each depth of the
CT images containing a plug, a row of pixels with the same width as the image is
considered and its average grayscale value is calculated. These average values are
used as input to the linear regression model. The target, as in the case of the deep
learning models, is the laboratory-measured porosity.

3.3 Deep learningmodels

In this work, two distinct network topologies were utilized: a simpler convolutional
neural network, henceforth referred to as the Shallow CNN (SCNN), which aims to
establish a baseline model with a low computational cost, and a deeper convolutional
neural network, termed the Deep CNN (DCNN). The DCNN is based on the well-
known VGG19 architecture (Simonyan and Zisserman 2014) and it was initialized
with its weights pre-trained on the ImageNet dataset (Deng et al. 2009). Its last layer
was replaced with new fully-connected layers that were randomly initialized. After
this modification, all layers of the DCNN were jointly trained on our dataset.
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Table 2 Architecture of the deep learning models: k corresponds to the size of the convolutional filters, F
is the number of filters in each layer, and S is the stride of the max-pooling layer

SCNN DCNN
7 weight layers 19 weight layers

ct image

Convolution (k = 5,F = 64) Convolution (k = 3,F = 64)

Batch normalization Convolution (k = 3,F = 64)

Max-pooling (k = 2,S = 2) Max-pooling (k = 2,S = 2)

Convolution (k = 5,F = 64) Convolution (k = 3,F = 128)

Batch normalization Convolution (k = 3,F = 128)

max-pooling (k = 2,S = 2) Max-pooling (k = 2,S = 2)

Convolution (k = 3,F = 64) Convolution (k = 3,F = 256)

Batch normalization Convolution (k = 3,F = 256)

Max-pooling (k = 2,S = 2) Convolution (k = 3,F = 256)

Convolution (k = 3,F = 64) Convolution (k = 3,F = 256)

Batch normalization Max-pooling (k = 2,S = 2)

Max-pooling (k = 2,S = 2) Convolution (k = 3,F = 512)

Convolution (k = 3,F = 64) Convolution (k = 3,F = 512)

Batch normalization Convolution (k = 3,F = 512)

Max-pooling (k = 2,S = 2) Convolution (k = 3,F = 512)

Flatten Max-pooling (k = 2,S = 2)

Dense layer (128, elu) Convolution (k = 3,F = 512)

Dropout Convolution (k = 3,F = 512)

Dense layer (1, linear) Convolution (k = 3,F = 512)

– Convolution (k = 3,F = 512)

– Max-pooling (k = 2,S = 2)

– Flatten

– Dense layer (512, elu)

– Dropout

– Dense layer (256, elu)

– Dropout

– Dense layer (1, linear)

Parameters: 461.569 Parameters: 28.020.801

All convolutional layers of both topologies used Rectified Linear Unit (ReLU)
(Goodfellow et al. 2016) as an activation function. The SCNN features a single fully-
connected layer after the convolutional layers, which employs ELU activation, and is
succeeded by a final linear layer. The DCNN, while maintaining a similar structure
until the convolutional layers, includes 2 hidden fully-connected layers rather than 1.
Both the SCNN and DCNN employ dropouts in these fully-connected layers. Table 2
summarizes the configuration of the proposed topologies.
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3.4 Training and validation setup

Before training, validating, or testing the model, the input images must be properly
normalized. For the SCNNand the linear regressionmodels, this normalization process
consists of dividing each pixel by the maximum possible value for a 16-bit image
(namely, 65.536). For the DCNN model, given that the model was pre-trained on the
ImageNet dataset they need to follow the same normalization process used in the pre-
training step, which consists of normalizing the pixels range to the [−1, 1] interval.
Additionally, since the ImageNet (and thus the pre-trained network) uses 3-channel
images we need to convert our CT images, in grayscale, to a 3-channel representation.
This is done by replicating the original channel in all the 3-channels.

To assess the proposed method generalization capabilities, a cross-validation
scheme was devised. In each fold, in a total of 26, an entire well is separated to
act as a blind test, while the remaining 25 wells are used for training and validation.
This type of validation simulates the following real case scenario: given an oil field
with several, already established, wells are found a new one is to be built. The model
trained on the established fields is thus used to perform predictions for the new well.
The training and validation sets correspond to 80% and 20% of the generated CT
crops while the test set is composed of the remaining, separated, well. The training
set is used to adjust the models weights. The validation set is used to stop the model’s
training early to prevent overfitting. The test set is used to guage performance.

The Huber loss is used as the cost function of the SCNN and DCNNmodels (Eq.1).
This loss function is selected based on the presence of outliers in the dataset that are
associated with low CT image resolution, which leads to poor structural details and
in turn leads to outlier targets. Besides, the Adam optimization algorithm was used
with a learning ratio of 1e-4. All models were trained in an environment with four
Nvidia V100 GPUs using TensorFlow and scikit-learn as frameworks. On average,
an epoch of the SCNN model took approximately 26s, while the DCNN model took
222s. To evaluate the model’s performance, two figures of merit were selected: the
root mean square error (RMSE) (Eq.2) and the Pearson correlation coefficient (PCC)
(Eq.3).

• Huber Loss

lossδ(y, f (x))

=
{
0.5(y − f (x))2, |y − f (x)| ≤ δ

δ(| y − f (x) | −0.5δ), otherwise
,

(1)

where lossδ(y, f (x)) is the loss value for a target value y and a prediction f (x)
using a hyperparameter δ. If the absolute error between the target and the model
prediction is less than the δ value, then the loss calculates the Mean Squared Error
(MSE); otherwise, it calculates the Mean Average Error (MAE). The limitation of
this loss function is the definition of the hyperparameter δ.
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• Root Mean Squared Error (RMSE)

RMSE =
√√√√ 1

N

N∑
i=1

(xi − yi )2, (2)

where xi are the predicted values, yi are the target values and N is the number of
samples.

• Pearson Correlation

Pearson =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

(3)

where x , y are the predicted and target mean values.

3.5 Model inference at the core scale

Once the model is trained, the porosity for each well depth can be inferred from the CT
images alone without the need of the information obtained through laboratory tests.
Thus, it is possible to perform model inference at the level of whole-core sections.
Using these predictions, a porosity curve is constructed at the core scale with an
approximate resolution of 490µm following the process summarized in Algorithm 1
and detailed below:

• for each depth at the whole-core sections a prediction is generated. These predic-
tions are subsequently stacked to generate a whole-core section log. Here, only
the central crop of the CT image is used as the input of the model. To generate a
model prediction with the same dimension as the input the top and bottom edges
are padded. In this case, the padding is performed with a 45-pixel square mirroring
operator;

• before stacking the whole-core section predictions to generate the logs, the top
and bottom edges are filtered-out to reduce the edge effect generated by the con-
volutional operators and the mirror technique used in the previous step. This filter
corresponds to the function edge_filter in Algorithm 1, and consists of replacing
the first and last 45 pixels with the closest valid prediction made by the model;

• due to rock sample integrity, discontinuities or overlaps may occur when stacking
predictions based on depth information, especially in fractured samples, where the
dimensions of each section sample is exactly standard. Therefore, to work around
this problem 3 operations are made: first, fractures with a length greater than 80%
of the core sample length are discarded; second, samples with a height greater than
90cm are cropped to conform with the standard height; and finally, the model’s
last prediction is repeated untill the target dimension of 90cm is reached;

• after the previous steps, the predictions of each sub-core sample are stacked to
form the predicted porosity log.Given that the obtained log displays high frequency
components, it undergoes a smoothingprocess.This is alsodone inorder to perform
direct comparisons with other property profiles obtained by well drilling tools,
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which are usually smooth. The smoothing process consists of applying a six-order
Butterworth filter with a cutoff frequency.

Algorithm 1Model inference at the core scale
Input : A list [ai ], i = 0, 1, · · · , n − 1, where each element is a sub-core CT image sample.
Output: Inferred porosity at the core scale.
core_scale_log = [ ]
for i ← 0 to n − 1 do

I = data_preparation(ai ) // Preparing data function
case_scale_log = model(I ) // Inference
case_scale_log_ f iltered = edge_filter(case_scale_log)
case_scale_log_ f iltered = remove_fractures(case_scale_log_ f iltered)

case_scale_log_ f iltered = height_adjustment(case_scale_log_ f iltered)

core_scale_log.expand(case_scale_log_ f iltered) // Stack model prediction to
generate a whole-core scale log.

end
core_scale_log = smooth_filter(core_scale_log)
return core_scale_log

The analysis of the predicted porosity curve at the core scale is essential to achieve
the upscaling objective of the present work; thus, in addition to the direct comparison
between the predictions of the model and the measurements made in the plug scale, a
second evaluation approach was proposed, which consists of a comparative analysis
between the porosity curve predicted by the model and the porosity log derived from
the NMR log. This comparison is only performed because no other result concerning
the porosity curve (with the same high-frequency components as the predicted curve)
may serve as a reference. Our objective is not to match the referenced porosity log
perfectly but to obtain a high-frequency porosity curve in the core scale that exhibits
the same behaviour.

One of the main limitations of this comparison is the limited availability of tomog-
raphy images with corresponding porosity logs in well-scale for research purposes.
Thus, in this work, porosity logs could only be obtained for a single well, including
an 8-meter section of the core images (not included in Table 1). However, the well-log
data still exhibits obstacles even after being acquired. First, these data are strongly
influenced by acquisition conditions, such as tool calibration, the presence of drilling
fluid, vugular porosity, and magnetic minerals. These factors reduce the reliability
of the data, which in some cases causes significant changes from the laboratory data
hindering the process of comparing the data at different scales. The second obstacle
is related to the low resolution of these data (in the scale of centimeters) compared to
the tomography data (in the scale of micrometers), which can lead to the non iden-
tification of certain levels of heterogeneity in the sample that are noticeable at the
tomography scale but not on the well-scale. Furthermore, this mismatch may generate
errors in the alignment between the log data and the data extracted from CT images.
Thus, this process usually uses complementary information from well-logs acquired
from different logging tools. Even the profile predicted by the model can be used as a
reference to perform this adjustment automatically.
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Table 3 RMSE results for each fold of the well based cross validation scheme

Well RMSE Well RMSE

LR SCNN DCNN LR SCNN DCNN

W0 4.309 3.655 3.563 W13 2.669 4.246 4.111

W1 4.243 3.625 3.612 W14 4.406 3.692 3.776

W2 4.252 4.165 4.206 W15 4.775 3.319 3.615

W3 3.516 3.144 3.327 W16 4.108 3.582 3.467

W4 3.259 2.794 2.976 W17 5.201 4.779 4.343

W5 4.352 3.434 3.327 W18 3.720 3.497 3.303

W6 3.982 3.567 3.402 W19 5.090 4.741 4.635

W7 3.592 3.696 3.608 W20 5.046 3.748 3.667

W8 5.126 3.400 3.793 W21 3.383 3.128 2.775

W9 3.768 1.959 2.231 W22 4.423 4.253 4.299

W10 5.337 4.159 4.220 W23 4.309 3.808 3.574

W11 3.586 3.553 3.669 W24 2.788 2.031 2.393

W12 3.610 3.158 3.208 W25 4.419 3.811 3.624

LR 4.126 ± 0.720

SCNN 3.575 ± 0.659

DCNN 3.566 ± 0.567

The bold numbers show the best (lowest and biggest for respectively) result achieved for each well used in
the study, when these are the test set
LR indicates the results for the linear regression model

To solve the problem of scaling the profile, a cubic interpolation process is per-
formed to generate a profile with the same resolution as the core image (490μm), the
resulting record is called the filtered log. Then, to correct the misalignment problem
between the predicted porosity log and the filtered porosity log, a manual alignment
process was performed. Given the above considerations, matching the porosity values
perfectly is not as relevant as matching its behavior (which in the end is our goal);
thus, the correlation analysis between the available logs (ours and the ones coming
from NMR) is important to validate this result.

4 Results

4.1 Well based cross-validation scheme

Tables 3 and 4 present the results obtained by the proposed models in terms of the
RMSE and PCC in the cross-validation scheme introduced in Sect. 3.4. The metrics
presented correspond to the model’s performance when the corresponding well is used
as a blind test for the model.

These tables indicate some interesting facts: firstly, themodels are able to generalize
on the blind test dataset; secondly, the deep learning models show better results on
average compared to the linear regression model, with the DCNN model presenting
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Table 4 PCC results for each fold of the cross-validation scheme

Well PCC Well PCC

LR SCNN DCNN LR SCNN DCNN

W0 0.617 0.728 0.742 W13 0.782 0.811 0.793

W1 0.705 0.778 0.783 W14 0.359 0.512 0.501

W2 0.710 0.735 0.719 W15 0.201 0.627 0.537

W3 0.650 0.724 0.701 W16 0.500 0.758 0.799

W4 0.848 0.881 0.870 W17 0.622 0.693 0.755

W5 0.635 0.756 0.789 W18 0.558 0.613 0.665

W6 0.449 0.537 0.613 W19 0.674 0.747 0.758

W7 0.534 0.552 0.561 W20 0.038 0.380 0.360

W8 0.111 0.376 0.272 W21 0.687 0.753 0.797

W9 0.053 0.284 0.160 W22 0.483 0.484 0.486

W10 0.605 0.718 0.711 W23 0.647 0.741 0.774

W11 0.653 0.668 0.668 W24 0.600 0.831 0.754

W12 0.725 0.815 0.816 W25 0.569 0.709 0.734

LR 0.539 ± 0.218

SCNN 0.662 ± 0.153

DCNN 0.658 ± 0.178

The bold numbers show the best (lowest and biggest for respectively) result achieved for each well used in
the study, when these are the test set
LR indicates the results for the linear regression model

the smallest RMSE on average. Besides, it is possible to notice that, when we analyse
the results for each well, the deep learning models have the best RMSE for almost
every well and the best PCC for every well. On the other hand, the linear regression
model has the best RMSE for only two wells.

In order to check the differences between the deep learning models and the lin-
ear regression model a histogram, per well, of the RMSE of the tested models was
conducted and is shown in Fig. 5. It is possible to notice that for the linear model the
errors concentrate on larger values of RMSE, while the the deep learning models have
a greater concentration of smaller values of RMSE. Another interesting fact is that the
difference between the deep models is small which means that the models are robust
considering the topology.

Even though the difference of the average results of SCNN and DCNN is small,
the DCNN model was chosen for the application described in this article since it has
a smaller RMSE on average with smaller variance. Thus, all the results presented
hereafter will refer to the DCNN architecture.

Figures 6 and 7 show the scatter plots for each well for the fold in which this
well is used as the blind test. In these images, apart from the scatter plot itself, two
lines were plotted. These lines represent the maximum desired error of the method,
stipulated here to be 5%. The 5% accuracy limit was defined by experts based on a
tolerable margin of error for reservoir characterization, considering the uncertainties
involved in the process. Visual inspection of these figures confirms the overall good
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Fig. 5 Histogram per well of the RMSE for the LR, SCNN and DCNN models

performance of the model, with relatively few cases where the model’s predictions go
over the stipulated images. These cases allows us to better understand the source of
errors in these problematic wells. In the rest of this section, we try to understand the
reasons why the model’s performance dropped for these particular wells.

By analyzing Fig. 6, an unusual porosity distribution can be identified in well W9,
which is mostly represented by low-porosity samples. Another characteristic of this
well, as well as W8, is a reduced number of samples, which results in poor statistical
relevance, containing approximately 1.37% and 1.72% of the total data. Notably,
despite the low correlations for wells W8 and W9, the RMSE values remain low at
3.793 and 2.231, respectively, when comparing to the LR baseline model, indicating
that the model can infer satisfactory porosity values for these wells.

To correlate the numerical results with texture patterns, some image slices of
sections with significant divergence between porosity predictions and laboratory mea-
surements are discussed in the followingfigures.Notably, to perform this visualization,
the contrast of each image is adjusted to facilitate expert analysis, allowing us to high-
light some textural attributes.

In Fig. 8, characteristics of silicification processes can be identified in both nodular
and laminated structures. The specific gravity of silica minerals is lower than that of
most of the minerals that compose carbonate rocks; therefore, such materials present
a darker gray tone in the tomography images, which can generate a texture that can be
confused with porous spaces in some cases, resulting in overestimations by the model
of the predicted porosity.

Concerning wells W20 and W22, crops of depths whose divergence between the
predicted porosity value and the laboratory measurements exceeds 5% are illustrated
in Fig. 9. In the first and second crops, regarding well W20, the presence of vugs and
release joints between the laminations is evident. In the remaining crops, as shown
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Fig. 6 Scatter plot for each fold of the cross-validation scheme (wellW2 is isolated in Fig. 7). The horizontal
axis of the plots corresponds to the target porosity value, and the vertical axis corresponds to the predicted
porosity

in Fig. 9, we illustrate vugs possibly not covered by sampling and laboratory mea-
surement, but may be interpreted as porous space by the CNN models, which could
explain the overestimation of the model. In cases where porosity was underestimated
(these cases are not shown in Fig. 9), especially in well W22, a pattern could not be
found in the images, but a probable explanation for this behavior is the presence of
sub-resolution porosity, suggesting pores with diameters smaller than the resolution of
the medical CT acquisition setup that are consequently not captured by CT imaging,
and, thus, cannot be seen by the model.

The models tend to underestimate the porosity values for well W13, as shown in
Fig. 6. This well is primarily composed of a laminated texture, as shown in Fig. 10.
In this example, the porosity of the laminated textures is predominantly composed of
subresolution porosity due to its fine depositional components. Furthermore, most of
the high porosity laminated texture in our dataset is found in this well, resulting in
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Fig. 7 Scatter plot of the
predicted porosity and
laboratory porosity of well W2.
Regions within the black dashed
lines correspond to the
laboratory porosity range of
[12–13%] and predicted porosity
range of [19–20%]. It is
interesting to notice that the
target porosity, although
restricted, spans the entire range
of predicted values, and
vice-versa

Fig. 8 Crops of size 44.4 mm × 244.6 mm from wells W8 andW9 showing laminated and nodular textural
patterns where divergence from the predicted porosity value was overestimated compared to laboratory-
measured porosity at the same depth
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Fig. 9 Crops of size 44.4 mm × 244.6 mm from wells W20 (first and second) and W22 (third and fourth)
where the predicted porosity exceeded the value of the laboratory measured porosity at the same depth by
more than 5%

model failure when this well is not included in the training set. Pointing once again to
the need for a representative dataset in machine learning models.

Some of the images outside the error range (±5%) from well W17 are listed in
Fig. 11,where the presence of a large amount of possibly non-sampled vugular porosity
can be observed. Due to the type of image used for this purpose (external area of the
core), we are unable to guarantee that these pores were adequately represented in the
sample extracted from the inner portion of the core used in laboratory tests, which
may be the main reason for overestimation of the predicted porosity. In Fig. 11, two
cases in which the contribution of sub-resolution porosity is probably large is shown.
In addition to W13, the model also recognizes a textural pattern on images, predicting
porosity values within a small range for similar images.

Likewise wells W13 and W17, well W19 also predict lower porosity values for
depths where laboratory porosity samples presented values greater than 15%. How-
ever, depths with porosities below 5% are overestimated, as shown in Fig. 6.W19. As
previously described, the overestimation is probably related to vugs that were possi-
bly not covered during the sampling process and were not measured by routine core
analysis, as listed in Fig. 12. In Fig. 13 cases in which the contribution of subresolution
porosity is probably large are depicted.

Finally, to understand the impact of the heterogeneity of the images in this method-
ology, from the data for well W2, two porosity intervals were selected: laboratory
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Fig. 10 Crops of size 44.4 mm × 244.6 mm from well W13 showing laminated textural patterns where
predicted porosity valueswere underestimated by themodel compared to the laboratory-measured porosities
at the same depth

porosity between 12% and 13% and predicted porosity between 19% and 20%, as
outlined in Fig. 7.

Some of the depth tomography images with porosity contained in the intervals
mentioned above are presented in Figs. 14 and 15,where extensive variability is evident
between the images of the same group. In Fig. 14, some images do not have visible
pores, in addition to fine granulometry. In contrast, some textures show visible pores,
and this variability in textures with the same porosity value measured in the laboratory
may cause confusion in the training process. In Fig. 15 it is shown that no pattern of
textures all from which the model associates the same range of porosity values, with
some cases showing extensive macro-porosity and other cases showing no apparent
macro-porosity, which reflects the heterogeneity of the training set.

Summarizing, a significant portion of the model’s errors seem to stem from 3 cases:
first, the textural attributes of the well were not present at training, in which case the
only solution is to retrain the model (althoughmachine learningmodels can generalize
they cannot do it for previously unknown features); second, the porosity is represented
in a finer resolution than the one used in the model, and, thus, invisible to it; third,
the plug samples extracted were not representative of the whole-core pore structure.
Apart from these the model achieved good results within the stipulated images.
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Fig. 11 Crops of size 44.4 mm × 244.6 mm from well W17 showing a similar textural pattern, where
predicted porosity values are similar, while the laboratory-measured porosities at the same depth range
from approximately 2 to 20%

4.2 Prediction at the core/well log scale

As referred to in Sect. 3.5, a comparison between the smoothed estimated porosity and
theNMR-derived porosity is performed. TheNMR-derived porosity is commonly used
for porosity estimation and pore size distribution analysis and with bulk density. These
logs were chosen due to their low depth of investigation (approximately 2–10cm),
which is ideal for a reasonable comparison with imaging data acquired from core
samples. Notably, to create a continuous porosity log fromNMR data, an interpolation
process was performed. This comparison is presented in Fig. 16; in this case, data from
an 8-meter sequence of a well were used to evaluate model performance in this task,
resulting in a RMSE of 2.656 and PCC of 0.768. As it can be seen the behaviour is
very similar.

5 Conclusion

Traditional laboratory methods for porosity analysis are accurate but punctual and
time-consuming. In this paper, a newmethodology is proposed based on artificial intel-
ligence to estimate porosity directly fromCT images of rock samples and subsequently
obtain a high frequency porosity well log. Two CNN models, with different depths,
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Fig. 12 Crops of size 44.4 mm × 244.6 mm where predicted porosity values were overestimated by the
model with respect to the values measured for well W19 in the laboratory at the same depth

were proposed to achieve this objective. The proposed method was compared against
a baseline linear regression model. The results using the proposed cross-validation
scheme show that all models are capable of generalization in blind sets. The DCNN
model, when measuring the RSME, displayed lower deviations and averages, sug-
gesting that the DCNN model takes into account not only the grayscale values but
also the texture of the image. These gains, aligned with the fact that these models are
trained once and used many times, justify the model’s increased complexity. How-
ever, the models may perform differently in wells with other textural characteristics,
considering the wide heterogeneity of carbonate rocks. This work mainly focused on
validating the proposed methodology rather than identifying the best neural network
architecture, such that other CNNmodels and different topologies could be employed
and tested in future works.

The proposed methodology can be used to generate a continuous core-scale poros-
ity log directly from CT images in a few seconds, depending on core dimensions and
computational resources. The results show that this prediction is helpful in conduct-
ing preliminary analysis of rock samples, providing valuable insight into reservoir
characteristics. Core-to-log correlation is a common practice used to calibrate log
measurements, providing a bridge between coarse-resolution data obtained at the well
log scale and laboratory data obtained in fixed intervals according to government rules.
The continuous porosity log (predicted by the model) overcomes the lack of resolution
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Fig. 13 Crops of size 44.4 mm × 244.6 mm where predicted porosity values were underestimated by the
model with respect to the values measured for well W19 in the laboratory at the same depth

of the previous data, reducing the uncertainty of the upscaling process in heteroge-
neous regions. The proposed approach also allows the possibility of automating the
alignment process between well log data and the data in the core-scale. Traditionally
this process involves the analysis of complementary information from different well-
logs. Some tests performed by the authors and subsequent comparison with manual
alignment show promising results.

Futureworksmay include efforts in automation and expanding the proposedmethod
to different petrophysical characteristics, such as permeability. In the automation front,
the identification of high-frequency stratigraphic cycles at the well-core scale, which
are associated with specific patterns of petrophysical attributes (Zhao and Li 2015).
Such automatic identification can accelerate the process of detailed well characteriza-
tion, thus avoiding human bias.
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Fig. 14 Crops of size 44.4mm×244.6mm from well W2 with porosity values measured in the laboratory
ranging from 12 to 13% whose predicted porosity values range from approximately 6 to 19% at the same
depth
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Fig. 15 Crops of size 44.4mm×244.6mm from well W2 with predicted porosity values ranging from 19
to 20% whose porosity values measured in the laboratory range from approximately 6 to 21% at the same
depth
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Fig. 16 a Log view of an 8-meter sequence of a tomography profile image and respective b porosity
logs (black—NMR-derived porosity; blue—predicted porosity log after postprocessing) and c density logs
(yellow − grayscale-based CT; orange—bulk density) (color figure online)
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