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Abstract
This paper represents the exact solution for the properties of the conducting fluid that
is flowing past a rotating sphere immersed in a porous medium. It’s a continuation
of Sharma and Srivastava (Z Angew Math Mech 103:e202200218, 2022), where the
sphere is rotating in the clear fluid region. The solution to the problem was found
using Stokes’ equation. In this paper the solutions are found using the Brinkman
model in terms of special functions- Bessel’s function of the first and second kind. In
this problem, the drag force experienced by the rotating sphere is also calculated for
the less permeability of the porous medium. The model is solved using the asymptotic
expansion method for the prescribed boundary conditions. By this method, the model
consisting of partial differential equations is reduced into ordinary differential equa-
tions – modified Bessel’s equations. The results for fluid velocity, stream function, and
separation parameters are found in terms of Bessel’s functions and these results match
with the existing literature in the absence of Reynolds number. The graphs are plotted
for the drag force on the rotating sphere and separation parameter. It has been observed
that the separation of the particles occurs at the surface of the sphere more often for
high permeability and the drag was found to be decreasing for low permeability. Both
graphs were plotted for a range of Reynolds numbers.
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μ Dynamic viscosity
μe Effective viscosity
Re Reynolds number
BT Toroidal magnetic field
c Darcy’s number
ζ Taylor number
J Current density
� Angular velocity
ρ Density
K Permeability
μ0 Magnetic permeability

1 Introduction

Flow past a body tells about the behavior of fluid as it progresses throughout a body.
The fluid interaction with the body can have many outcomes which depend on the
properties of the body and of the flow. In the case of the rotating body, the fluid moves
around the rotating body, and in this circumstance, the complexity of the model is
increased as compared to the stationary body. The rotation of the body can impact the
patterns of the flow of the surrounding fluid. When the fluid flows past a rotating body
in the presence of a magnetic field, then in that case the study will be influenced by
magnetohydrodynamics (MHD).

Underwood (1969) studied fluid flow past a cylinder. He found that the separation
parameter takes place at the back of the cylinder for the Reynolds number 5.75. The
study was done for the range of Reynolds numbers from the value 0.4–10. Other than
separation parameters, other parameters like pressure coefficient, drag coefficient, and
streamlineswere found and comparedpositivelywith the existing literature. Later I Pop
(1996) studied the fluid flow past a sphere that is submerged in the permeable medium.
For this, he used the Brinkman model. The study was done for the flow separation
parameter. It was found for the considered structure that there was no flow separation
and in the neighborhood of the sphere there was a velocity surpass. Ovseenko and
Ovseenko (1968) considered an incompressible viscid fluid flow around a spinning
sphere. The flow parameters were calculated in the series expansion form in terms of
Reynolds numbers. The drag on the sphere, pressure, and torque were calculated and
it was noticed that the drag on the rotating sphere is higher than the drag on the sphere
at rest.

Ghoshal (1970) examined a non-viscous flow past a spheroid and a sphere in the
existence of a toroidal magnetic field. In the matter of a sphere, an electric dipole was
taken up alongside the axis of symmetry, and in the case of a spheroid, an electric
dipole and quadrupole were taken up along the axis of symmetry. It was seen that
the expression with flow velocity declined upstream exponentially and downstream
algebraically. Few more analyses were done at a far distance of the sphere and also for
the area at a far distance of the spheroid. He carried out the work which was done by
Ranger (1971). In the work done by Ranger (1971), he considered the presence of the
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magnetic field. Ranger (1971) noticed that there was an exponential declination of the
vorticity in the fluid at every part but leaving the area behind the sphere. In this wake
region, the vorticity went off algebraically. Srivastava and Srivastava (2005) examined
the flow past a permeable sphere. The model was separated into three sections—inside
the permeable sphere, at the interface, and at a distance from the sphere. The equations
for the considered model are—Brinkman equation, Stokes and Oseen. The stream
function was calculated for the three regions and was matched at the interface. The
authors also calculated the drag on the sphere and it was observed that it gets reduced
when the considered sphere is porous as well as when the permeability of the sphere
was increased. Afterward, both authors (Srivastava and Srivastava 2006) worked on
the flow past a permeable sphere a core rigid in nature. Also in this work, three regions
were considered which were governed by different equations. The study was done for
small Reynolds numbers. The result was found same for the stream function at the
interface. The result matched the previous conditions proposed by Ochoa – Tapia, and
Whitaker. The drag was found to be increasing with the increase of the ratio of the
radii of the concentric spheres and also with the increase in the Darcy number.

Grosan et al. (2010) examined viscous fluid flow past a permeable sphere that is
immersed in a porous medium. The investigation was done by the Brinkman model
analytically. The streamlines are calculated for the interior and the exterior of the
sphere for the distinct values of the porous parameter which rely on the viscosity and
the permeableness of both the porous media. The non-dimensional shearing stress was
found to be periodic and itsmagnitude increases on the increment of porous parameters
for both the porous media. Satya Deo et al. (2010) considered a model which consists
of a fluid sphere which is submerged in a porous medium. The fluid’s movement in the
outer region of thefluid spherewasmodeled byBrinkman equationwhereas the interior
of the fluid sphere was by Stokes equation. The drag coefficient was calculated and
was found a favorablematchwith the existing literature. Leont’ev (2014) discussed the
fluid’smovement past a sphere and also a cylinder immersed in the permeablemedium.
Brinkman equation was used to find the exact solution for the no-slip constraints at the
interface. The usage of this condition can show the diversity in the flow arrangement
near the boundary. Jaiswal and Gupta (2015) considered a problem for which they
examined an incompressible viscous flow past a non-miscible Reiner–Rivlin liquid
sphere immersed in a porous medium, analytically. Important properties like shear
stress and fluid velocity were found on the surface of the considered sphere. They
also found similar to Grosan et al. (2010) that dimensionless shear stress is of a
periodic nature and its modulus gets reduced along with the permeability parameter.
And also this stress remainsmore or less constant for different values of the considered
dimensionless parameter. The separation parameter showed no separation takes place
for the considered problem. The drag coefficient was also evaluated. Nurul Farahain
Mohammad et al. (2017) examined a problem where boundary layer flow over a
sphere in a porous medium is considered unstable. The results for the governing
equations were found numerically by the Keller-Box method in the Octave program.
The solutions were found for velocity, surface friction, and separation time and it
was observed that the porosity can slow down the separation of flow and increase
the velocity at frontal and back stagnation points. The shear stress dominates the
turnaround of the flow. Madasu et al. (2021) studied the fluid’s slow movement past
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a spheroid in a porous medium. The slip flow boundary conditions were considered
at the interface. In this problem, prolate and oblate spheroids were examined. The
drag was found analytically and was seen as its dependence on permeability, and
deformity. The outcomes of slip have seen exceptional effects in the case of increasing
drag. The different models for which fluid properties were discussed are studied in
the papers (Kumar et al. 2016; Maneesha et al. 2017; Singh et al. 2019; Varghese
and Jayakumar 2017; Narayanan et al. 2021). These models can be associated with
atmospheric problems and also geo-dynamo.

Sharma and Srivastava (2021) examined the variety of fluid quantities for the fluid
that is flowing in the annular region made up by using two spheres that were rotat-
ing with different velocities in the existence of the toroidal magnetic field. It was
noticed that the impact of rotation is better in the first estimation of the velocity. It was
also observed that the stream function was reversely proportionate to the magnetic
parameter but this parameter didn’t have any impact on the velocity. Shreen El-Sapa
and Noura S. Alsudais (2021) considered the flow which is generated by two spheres
immersed in a porous medium. Both spheres are of different sizes and moving trans-
latory with different velocities. The hydrodynamic drag was found for both the sphere
which coincides with several values of Hartmann number and permeability parame-
ter. These numbers indicate the magnetic field’s presence; the separation parameter,
porosity, velocity, and the ratio of the size of both spheres respectively. Saad (2021)
looked into the impact of Magnetic regions on an incompressible viscous fluid flow.
The fluid is flowing past a porous sphere and it is kept in a spherical cell and they
are not concentric. The Brinkman equation is the governing equation for the porous
sphere and the spherical shell with clear fluid is governed by the Stokes equation. The
problem is solved for the different values of the Hartmann numbers. The drag, which is
hydrodynamic in nature was found on the porous sphere numerically. The streamlines
were seen all over the porous media for the Happel and Kuwabara unit cell models at
distinct values of applicable parameters.

A toroidal magnetic field is attributed to a magnetic field that is similar to the
shape of a torus. This torus is similar to a doughnut. This magnetic field is frequently
experienced inmanyphysical and engineering problems.Both the poloidal and toroidal
components of the field are important. The toroidal component of the Earth’s magnetic
field plays a very important role in the dynamics of the geodynamo. This component
develops and preserves the earth’s magnetic field.

In this paper, the effect of the toroidalmagnetic field is investigated for the fluid flow
past a rotating solid sphere immersed in a porous medium. The purpose of this work is
to show an analytical explanation of the fluid properties of the flow past a rotating solid
sphere. We have found an approximated solution through the perturbation technique.
The results are shown through graphs.

2 Problem

The problem consists of a rotating sphere that is immersed in a porous media (Fig. 1).
The conducting fluid flow past this sphere is examined. The stream velocity is uniform
at infinity. The radius of the sphere is a.
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Fig. 1 Schematic diagram of the
stated problem
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2.1 Mathematical modeling of the stated problem

The fluid is flowing with the velocity q for the linear and rotating motion in the
cylindrical polar coordinates (w, φ, z) given as follows:

q � ∇ ×
(−ψ

w
ê∅
)
+
V

w
ê∅, (2.1)

With the toroidal magnetic field, with no component in the direction of the radius

BT � V

w
ê∅ (2.2)

Here qz and qw are the velocity’s components along with the unit vectors êz and
êw respectively, and given as follows:

qz � 1

w

∂ψ

∂w
, qw � −1

w

∂ψ

∂z
, (2.3)

And w � r sin θ and z � r cos θ are considered in the spherical polar coordinate
system.

The vector form of the governing equation, taken up from Srivastava and Srivastava
(2005) with some modification due to the presence of magnetic is defined as follows:

ρ
[
(q · ∇)q

] � μe∇2q + (J × BT ) − ∇ p − μ

K
q, (2.4)

Here J: current density and μ0 J � ∇ × BT .

123



    5 Page 6 of 20 GEM - International Journal on Geomathematics             (2024) 15:5 

3 Boundary conditions

The conditions for the governing equation are described as follows:

ψ � 0 and ∂ψ/∂r � 0 at r � a, (3.1a)

ψ ∼ 1

2
r2 sin2 θ as r → ∞, (3.1b)

V � r2 sin2 θ at r � a. (3.1c)

Non-dimensional quantities are defined as follows:

V � �aV ∗, ψ � aUψ∗, (3.2a)

Re � aUρ/μe, ζ � ρ

μ0

�2a

U
, r � ar∗, w � aw∗, z � az ∗ . (3.2b)

Here ζ : Taylor number and Re: Reynolds number.
The boundary conditions in dimensionless form can be written as follows:

ψ � 0 and ∂ψ/∂r � 0 at r � 1, (3.3a)

ψ ∼ 1

2
r2 sin2 θ as r → ∞, (3.3b)

V � sin2 θ at r � 1 and
V

r2 sin2 θ
→ 0 as r → ∞ (3.3c)

Boundary conditions are considered at the interface and also far from the rotating
sphere. Since the sphere is solid so the velocity at surface of the sphere is taken as
zero. The governing equations in non dimensionalized form are as follow:

ζ
1

w2

∂V 2

∂z
+ Rew

∂
{
ψ ,
(
D2(ψ)

w2

)}
∂{z, w} � D4(ψ) − c2D2(ψ), (3.4)

Re
1

w

∂{ψ , V }
∂{z, w} + c2V � D2(V ), (3.5)

where D2 ≡ ∂2

∂z2
+ ∂2

∂w2 − 1
w

∂
∂w

, γ 2 � μe
μ
, and c � a

γ
√
K
is a Darcy number.

Figure 1 illustrates the stated problem. It shows the fluid flow past a rotating solid
sphere. The toroidal magnetic field’s presence is being taken in this model.
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4 Analytic solutions

The properties of fluid—velocity and stream function are considered as an expansion
in the terms of Re as follows:

V � V0 + ReV1 + O
(
Re2

)
, (4.1a)

ψ � ψ0 + Reψ1 + O
(
Re2

)
. (4.1b)

4.1 First approximation

Substituting the expansion (4.1a) in Eq. (3.5), and equating the terms independent of
Re, we get the following equation.

D2(V0) � c2V0. (4.2a)

Assuming V0 � f (r)
(
1 − η2

)
, where η � cos θ , and D2 ≡ ∂2

∂r2
+
1 − η2

r2
∂2

∂η2

(4.2b)

This assumption for the fluid velocity for the fluid flow past a rotating sphere is
a simplified form of velocity. This assumption has only the radial component which
provides an easy model although representing some of the effects of rotation.

Substituting the assumption (4.2b) in Eq. (4.2a), we get the modified Bessel’s
equation as follows:

f ′′(r) −
(
2

r2
+ c2

)
f (r) � 0, (4.3a)

Where c2 � a2

Kγ 2 (4.3b)

The solution of (4.3a) can be written as follows:

f (r) � C1
√
rcI3/2

(rc) + C2
√
rcK3/2

(rc), (4.4a)

where I3/2
(rc) �

√
2

πrc

(
cosh rc − sinh rc

rc

)
, and K3/2

(rc) �
√

π
2rc e

−rc
(
1 + 1

rc

)
.

By boundary condition (3.3c), the first estimation for fluid velocity is found as
follows:

V0 �
√
r

K3/2
(c)

K3/2
(rc) sin2 θ , (4.5)
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where C1 � 0 and C2 � 1√
cK3/2

(c)
.

Now substituting the expansion (4.1b) in Eq. (3.4), we get the following equation,
independent of Re

D4(ψ0) − c2D2(ψ0) � ζ
2

w2 V0
∂V0
∂z

(4.6a)

Assume the following form for ψ0:

ψ0 � F(r)
(
1 − η2

)
, where η � cos θ. (4.6b)

Substituting the (4.6b) in Eq. (4.6a) can be rewritten as:

{
χ ′′(r) −

(
2

r2
+ c2

)
χ(r)

}
� 0, (4.7a)

where χ(r) � F ′′(r) − 2

r2
F(r). (4.7b)

Equation (4.7a) is a modified Bessel’s equation, whose solution is given as follows:

χ(r) � A0
√
rcI3/2

(rc) + B0
√
rcK3/2

(rc). (4.7c)

Equation (4.7b) can be written as follows:

F ′′(r) − 2

r2
F(r) � A0

√
rcI3/2

(rc) + B0
√
rcK3/2

(rc). (4.8a)

The solution of Eq. (4.8a) is given as follows:

F(r) � L0r
2 + M0

1

r
+ B0

√
r

c
√
c
K3/2

(rc). (4.8b)

The constant A0 which make the stream function infinite is considered zero.
For evaluating the remaining constants of integration, consider (3.3a) for (4.8b),

we get the solution of stream function as follows:

ψ0 �
⎧⎨
⎩
1

2
r2 − 1

2

⎛
⎝1 +

3K3/2
(c)

cK1/2
(c)

⎞
⎠1

r
+

3

2cK1/2
(c)

√
r K3/2

(rc)

⎫⎬
⎭ sin2 θ. (4.9a)

The solution exactly goes with the result found by Pop (1996) for ψ0.
It is noticed that the first estimation matches with the condition (3.1a) as r → ∞

and for large c i. e. in this stream function can be written as:

ψ0 � 1

2
r2 sin2 θ. (4.9b)
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4.2 Second approximation

The second estimation for the solution in the exterior area of the rotating sphere is
found using the recommended boundary conditions. The terms which are dependent
on Re of order 1 after substituting the expansion (4.1a) in the Eq. (3.5), give the
following equation

γ 2D2(V1) − 1

K
V1 � 1

ω

∂ψ0

∂z

∂V0
∂ω

− 1

ω

∂ψ0

∂ω

∂V0
∂z

. (4.10a)

Assuming the following form forV1 suggestedby equation (Vasudeviah andMalathi
1995)

V1 � g(r)
(
1 − η2

)
+ h(r)η

(
1 − η2

)
. (4.10b)

Substituting the above assumption in Eq. (4.10a), the LHS gives the following term

{
g′′(r) −

(
2

r2
+ c2

)
g(r)

}(
1 − η2

)
+

{
h′′(r) −

(
6

r2
+ c2

)
h(r)

}
η
(
1 − η2

)
.

(4.10c)

The coefficient of
(
1 − η2

)
of the Eq. (4.10a) give the following equation.

g′′(r) −
(
2

r2
+ c2

)
g(r) � 0. (4.11a)

The solution of Eq. (4.11a), which is amodifiedBessel’s equation is given as follow:

g(r) � A1
√
rcI3/2

(rc) + B1
√
rcK3/2

(rc). (4.11b)

And also the coefficient of η
(
1 − η2

)
of the Eq. (4.10a) is given by

h′′(r) −
(
6

r2
+ c2

)
h(r) � 1

γ 2

√
π

2c

1

K3/2
(c)

e−rc
(
c +

3

r
+

3

r2
− 2cH1

r3

)
, (4.12a)

where H1 � 1
2

(
1 +

3K3/2
(c)

cK1/2
(c)

)
.

The homogeneous solution of Eq. (4.12a), which is non – homogeneous modified
Bessel’s equation, is given as follow:

h(r) � A2
√
rcI5/2

(rc) + B2
√
rcK5/2

(rc), (4.12b)
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where

I5/2
(rc) �

√
2rc

π

((
3

r3c3
+

1

rc

)
sinh rc − 3 cosh rc

r2c2

)
,

K5/2
(rc) �

√
π

2rc
e−rc

(
1 +

3

rc
+

3

r2c2

)
.

The solution is obtained only for homogeneous form because of large c.
Therefore,

V1 �
{
A1

√
rcI3/2

(rc) + B1
√
rcK3/2

(rc)

}
sin2 θ

+

{
A2

√
rcI5/2

(rc) + B2
√
rcK5/2

(rc)

}
sin2 θ cos θ. (4.12c)

After using boundary condition in Eq. (4.12c) defined for V1 as follow:

V1 � 0 at r � 1 and
V1

r2 sin2 θ
→ 0 as r → ∞,

Gives the result for the fluid velocity, which can be written as follows:

V1 � √
rc

(
K5/2

(rc) − c2 + 3c + 3

c(c + 1)
K3/2

(rc)

)
η
(
1 − η2

)
. (4.13)

The terms which are dependent on Reof order 1 after substituting the expansion
(4.1b) in the Eq. (3.4), give the following equation

γ 2D4(ψ1) − 1

K
D

2

(ψ1)

� ζ
2

w2

(
V1

∂V0
∂z

+ V0
∂V1
∂z

)

+

⎧⎪⎨
⎪⎩

3
w3

∂ψ0
∂w

∂ψ0
∂z − 3

w2
∂ψ0
∂z

∂2ψ0
∂w2 − 2

w2
∂ψ0
∂z

∂2ψ0
∂z2

+ 1
w

∂ψ0
∂z

∂3ψ0
∂w3

+ 1
w

∂ψ0
∂z

∂3ψ0
∂w∂z2

− 1
w

∂ψ0
∂w

∂3ψ0
∂z∂w2 − 1

w
∂ψ0
∂w

∂3ψ0
∂z3

+ 1
w2

∂ψ0
∂w

∂2ψ0
∂z∂w

⎫⎪⎬
⎪⎭. (4.14)

Assuming ψ1 in the following form:

ψ1 � G(r)
(
1 − η2

)
+ H(r)η

(
1 − η2

)
. (4.15a)

This assumption for the stream function involves the influence of the rotating sphere
on the fluid flow and also upholding the complexity of the model.
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The LHS of (4.14) leads to

{
χ ′′
1 (r) −

(
2

r2
+ c2

)
χ1(r)

}(
1 − η2

)
+

{
χ ′′
2 (r) −

(
6

r2
+ c2

)
χ2(r)

}
η
(
1 − η2

)
,

(4.15b)

where χ1 � G ′′(r ) − 2/r2G(r ) and χ2 � H ′′(r ) − 6/r2H (r )
The Eq. (4.14) takes the following form:

χ ′′
1 (r) −

(
2

r2
+ c2

)
χ1(r) � 0, (4.16a)

And χ ′′
2 (r) −

(
6

r2
+ c2

)
χ2(r) � 105

2γ 2

(
1

r4
− 1

r7

)
. (4.16b)

The solution of (4.16a) is written as follow:

χ1(r) � G ′′(r) − 2

r2
G(r) � A3

√
rcI3/2

(rc) + B3
√
rcK3/2

(rc), (4.17a)

Which is a non – homogeneous Cauchy’s Euler equation whose solution is given
by,

G(r) � L1r
2 + M1

1

r
+

1

c2

{
A3

√
rcI3/2

(rc) + B3
√
rcK3/2

(rc)

}
. (4.17b)

After using the boundary conditions (3.3a) and (3.3b), the solution (4.17b) after
assuming L1 and A3 zero, is given as follow:

G(r) � B3

c
√
c

{
−1

r
K3/2

(c) +
√
r K3/2

(rc)

}
, (4.17c)

where B3 is an arbitrary constant.
The solution of (4.16b) can be written as follows:

χ2(r) � H ′′(r) − 6

r2
H(r) � A4

√
rcI5/2

(rc) + B4
√
rcK5/2

(rc) + (χ2)p, (4.18a)

where (χ2)p is the particular integral of (4.16b).
Due to the complexity of solution to the Eq. (4.16b), only the homogeneous part is

considered.

H(r) � L2r
3 + N2

1

r2
+

1

c2

{
A4

√
rcI5/2

(rc) + B4
√
rcK5/2

(rc)

}
. (4.18b)
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After using the conditions (3.3a) and (3.3b) in (4.18a), the solution (4.18b) after
assuming L2 and A4 zero, is given as follow:

H(r) � B4

c
√
c

{
− 1

r2
K5/2

(c) +
√
r K5/2

(rc)

}
, (4.18c)

where B4 is an arbitrary constant.
Therefore, the stream function is given by,

ψ1 � B3

c
√
c

{
−1

r
K3/2

(c) +
√
r K3/2

(rc)

}(
1 − η2

)

+
B4

c
√
c

{
− 1

r2
K5/2

(c) +
√
r K5/2

(rc)

}
η
(
1 − η2

)
(4.19)

It is noticed that the stream function is not influenced by the magnetic parameter at
this level as well.

Hence the stream function (4.1b) can be written as follows:

ψ �
⎧⎨
⎩
1

2
r2 − 1

2

⎛
⎝1 +

3K3/2
(c)

cK1/2
(c)

⎞
⎠1

r
+

3

2cK1/2
(c)

√
r K3/2

(rc)

⎫⎬
⎭
(
1 − η2

)

+Re

[
B3

c
√
c

{
−1

r
K3/2

(c) +
√
r K3/2

(rc)

}(
1 − η2

)

+
B4

c
√
c

{
− 1

r2
K5/2

(c) +
√
r K5/2

(rc)

}
η
(
1 − η2

)]
(4.20a)

B3 and B4 are considered as 1 for the simplicity of the form (4.20a). Hence

ψ �
⎧⎨
⎩
1

2
r2 − 1

2

⎛
⎝1 +

3K3/2
(c)

cK1/2
(c)

⎞
⎠1

r
+

3

2cK1/2
(c)

√
r K3/2

(rc)

⎫⎬
⎭
(
1 − η2

)

+Re

[
1

c
√
c

{
−1

r
K3/2

(c) +
√
r K3/2

(rc)

}(
1 − η2

)

+
1

c
√
c

{
− 1

r2
K5/2

(c) +
√
r K5/2

(rc)

}
η
(
1 − η2

)]
.

(4.20b)

The stream function ψ � 0 at r � 1. So, there are no stream lines on the surface of
the sphere.
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5 Result and discussions

5.1 Separation parameter

The dimensionless vorticity is calculated for the outer region of the sphere. This
parameter examines the separation of fluid from the surface of the sphere.

∂2(ψ0 + Reψ1)

∂r2
� (F ′′(r) + ReG ′′(r))

(
1 − η2

)
+ ReH ′′(r)η

(
1 − η2

)
. (5.1)

As stated by Underwood (1969), the separation parameter SEP is given as follows:

SEP � F ′′(1) + ReG ′′(1) + ReH ′′(1),

SEP � 3

2
(c + 1) + Re

{√
cK3/2

(c) +
√
cK5/2

(c)

}
, (5.2a)

SEP � 3

2
(c + 1) + Re

√
π

2
e−c

{(
2 +

4

c
+

3

c2

)}
. (5.2b)

The separation parameter matches with the result given by I Pop (1996) for Re � 0.
The tangential velocity can be found as follows:

v � 1

sin θ

∂(ψ0 + Reψ1)

∂r

� 1

sin θ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r +
1

2

⎛
⎝1 +

3K3/2
(c)

cK1/2
(c)

⎞
⎠ 1

r2
+

3

2cK1/2
(c)

√
π

2c

(
−ce−rc

(
1 +

1

rc

)
+ e−rc

(
− 1

r2c

))

+Re

(
1

c
√
c

{
1

r2
K3/2

(c) +

√
π

2c

(
−ce−rc

(
1 +

1

rc

)
+ e−rc

(
− 1

r2c

))})

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(
1 − η2

)

+Re

(
1

c
√
c

{
2

r3
K5/2

(c) +

√
π

2c

(
−ce−rc

(
1 +

3
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+

3

r2c2

)
+ e−rc

(
− 3

r2c
− 6

r3c2

))})
η
(
1 − η2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.3a)

The above expression, at the boundary of the sphere r � 1 is

∂(ψ0 + Reψ1)

∂r

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 +
1

2

⎛
⎝1 +

3K3/2
(c)

cK1/2
(c)

⎞
⎠− 3

2cK1/2
(c)

(
−cK3/2

(c) +
1

c
K1/2

(c)

)

+Re

(
1

c
√
c

{
K3/2

(c) − cK3/2
(c) − 1

c
K1/2

(c)

})

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(
1 − η2

)

+Re

(
1

c
√
c

{
2K5/2

(c) − cK5/2
(c) − 3

c

(
1 +

2

c

)
K1/2

(c)

})
η
(
1 − η2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.3b)
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5.2 Drag on the rotating sphere

To calculate the drag force on the rotating sphere, normal stress and the shear stress
are found by using the following form in spherical coordinates, respectively

τrr � −p + 2μ
∂qr
∂r

, (5.4a)

τrθ � μ

(
r

∂

∂r

(qθ

r

)
+
1

r

∂qr
∂θ

)
. (5.4b)

For large c, we have very less permeability and in that case the pressure on the
sphere due to the fluid flow in porous medium is considered negligible.

Therefore, the components of stress tensor for r � 1 are given as follows:

τrr � μ

⎡
⎣
⎧⎨
⎩6
⎛
⎝1 +

3K3/2
(c)

cK1/2
(c)

⎞
⎠− 6

K5/2
(c)

K1/2
(c)

⎫⎬
⎭ cos θ

+
Re

c
√
c

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{
12K3/2

(c) − 4cK5/2
(c)

}
cos θ

+

{
8K5/2

(c) − 4cK5/2
(c) − 12

c
K3/2

(c) − 12

c2
K1/2

(c)

}
cos2 θ

−
{
4K5/2

(c) − 2cK5/2
(c) − 6

c
K3/2

(c) − 6

c2
K1/2

(c)

}
sin2 θ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(5.5a)

τrθ � μ
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√
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(c) − 6
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(c)
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,

(5.5b)

where qr � 1
r2 sin θ

∂ψ
∂θ

and qθ � − 1
r sin θ

∂ψ
∂r are the components of velocity in the

direction of unit vectors êr and êθ respectively in the spherical coordinates system.
The drag force on the surface of sphere is found using the following formula:

FD �
¨

S

(τrr cos θ − τrθ sin θ)r�ads � 2πUa2
π∫
0
(τrr cos θ − τrθ sin θ)r�a sin θdθ

(5.6a)
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FD � 6πμUa
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� 6πμUa

⎡
⎣
(
1 +

2
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√
c
Re

)⎧⎨
⎩
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(c)

cK1/2
(c)

+
2K5/2

(c)

3K1/2
(c)

(c − 2) +
2

c2

⎫⎬
⎭
⎤
⎦. (5.6b)

This drag force is calculated for the case when permeability of the medium is less
i.e.K → 0.

6 Discussion of different cases and conclusions

6.1 Three possible cases of rotating spheres

Our investigation is led by the following cases:

6.1.1 Case 1: slow flow past a rotating sphere

Ranger (1971) investigated the slow flow past a rotating sphere. The primary Stokes
flow past a non-rotating sphere together with an antisymmetric secondary flow in the
azimuthal plane induced by the spinning sphere were studied. He found that in the
azimuthal plane a region of reversed flow attached to the rear portion of the sphere is
seen.

The structure of the vortex is described and is shown to be confined to the rear
portion of the sphere. In this case the eddies were observed only for the rear region of
the sphere for R2

o > 6Re.
Whereas the case discussed byMajhi and Vasndevaiah (1982) for viscous parabolic

shear flow past a spinning sphere for low Reynolds number, the eddies are seen in rear
or front or both areas of the sphere for the distinct values of uniform stream, and the
ratio of R2

oandRewhere Ro is rotational Reynolds number and Re is Reynolds number.
The physical drag was also found and given as follows:

d � 2πρvβa3
(

−2 +
3U ′

βa2

)

It was observed that in the non – appearance of unform stream, the ratio of pressure
drag and skin-friction drag is 1:2 and also the drag was seen to be vanished when
uniform stream is 2/3.

In the absence of inertia term in the Navier–Stokes equations converts into Stokes
flow,which describes viscous-dominated fluid flow. Castillo et al. (2019) examined the
effect of the rotation on the drag. The study was done numerically and experimentally.
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They wanted to give further proofs for the changes in the drag because of the rotation
of the sphere in the absence of fluid inertia. It was seen that the drag on the sphere in a
viscoelastic fluid was getting decreased on the increment of the rotation of the sphere
and also due to elastic effects there was an increment in the settling velocity. In the
non-inertia stage, the drag was reduced at O(Wi2) for small values of De andWi. Here
De is Deborah Number, and Wi is rotational Weissenberg number.

6.1.2 Case 2: slow flow past a rotating sphere in Brinkmanmedium

Solomentsev and Anderson (1996) considered the case where a sphere is rotating in
the Brinkman medium. It was observed that the effect of the Brinkman term was very
less on the rotational motion as compared to translation motion. The drag force in
the porous medium in connection with Newtonian fluid is (given) considered. The
proportion of diffusion terms in the the Brinkman medium to the Newtonian fluid
comes as a reciprocal to the ratio of drag forces. Also since the Brinkman term has a
different impact on the rotation of the sphere, so the ratio of diffusion due to rotation of
the sphere depends in a different way on a/

√
k. The torque in the Brinkman medium

in connection with Newtonian fluid is found as an expansion in terms of small a/
√
k.

In the case of neglecting inertia term from the governing equation i.e., Brinkman
equation gives rise to Darcy’s law, which represents the flow through porous medium
typically for low Reynolds number. In such situation, the eddies, vortices are not being
considered. Vasudeviah andMalathi (1995) considered a model in which slow viscous
fluid was flowing past a spinning sphere with the permeable surface. They calculated
the drag coefficient and showed the correction in the existing literature for the same.
This drag coefficient follows the collective outcome of rotation and permeability for
very small values of Re (< 1). In the case of porous structure, the drag seems to be
reduced as compared to the case with an identical solid body.

6.1.3 Case 3: slow flow past a rotating sphere in the presence of the toroidal
magnetic field

Sharma and Srivastava (2022) considered the model which consists of slow flow past
a rotating sphere in the presence of the toroidal magnetic field.

They studied the separation phenomena evoked due to the rotation of a solid sphere.
The whole process is modeled in terms of a partial differential equation and solved
using the perturbation method. The following conclusion is being made during the
study:

1. The expression for the first approximation of velocity is same as that of Ranger.
This shows that there will not be any impact on the velocity due to the magnetic
field.

2. The expression for the first approximation of stream function is also the same as
that of Ranger, confirming zero impact of the magnetic field.

3. In the limit of r → ∞., the first approximation solution converges to the first term
of Oseen’s solution.
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4. Also, it has been observed that the second approximate solution, for the region
outside the sphere, is similar to the second approximation of the velocity seen in
Ranger’s solution.

5. The graph of separation phenomena occurring at the surface of the sphere. It has
been observed that the separation of particles occurs more frequently for the low
rotation parameter as compared to the high value of the rotation parameter.

6. We have plotted the graph of separation phenomena occurring at the surface of the
sphere. It has been observed that the separation of particles occurs more frequently
for the high magnetic field as compared to the lesser value of the magnetic field.
This may be because Lorentz’s force generated due to the magnetic field is trying
to retard the velocity of flow particles.

7. The angle with which the upstream strikes the surface of the sphere and the down-
stream angle with which it exits the surface of the sphere is given various values
of the Taylor number. It shows that with an increase in Taylor number, there is an
increase in the angle of exit, but the angle of entry will decrease.

Hence, overall, the impact of the magnetic field and the rotation is visible in the
flow field.

Chakraborty (1963) considered the conducting fluid flow past a rotating sphere
which conducting magnetized. The toroidal magnetic field is produced due to the
rotation of the sphere and its velocity component disappear as approaches to stagnation
point.

The rotation of the sphere doesn’t impact drag experienced by the sphere. Also
the torque was found which opposes the rotation of the sphere and is proportional to
the angular velocity of the sphere. This torque was also depending on the magnetic
property of the body.

Zhang and Fearn (1994) investigated the instabilities of the field in the case of
rotating spherical shells in the presence of toroidal magnetic field. The study for the
instabilities is being done in the presence and absence of inertia.

It was found that there was no change in the main characteristics of the instabilities
even after neglecting inertia term when Tm > 105 (Tm: Magnetic Taylor number).

6.2 Conclusions

The intention behind this paper is to study the drag force due to the fluid flow, expe-
rienced by a rotating solid sphere in the magnetic field’s existence. And also, the
separation parameter awakens because of the rotating solid sphere. The mathematical
model consists of partial differential equations, later converted in a set of ordinary
differential equations and solved analytically. The following conclusions are found:

1. The first approximation of the stream function (4.9a) is similar to the result found
by I Pop. Here, no influence of the magnetic parameter is seen. The result matches
with the considered boundary condition (3.1b) for r →∞.

2. The expression for the separation parameter depending on first estimation of the
stream function (4.9a) is similar to the result found by I Pop, which is given in
(5.2b), the term independent of Re. Here also, there is no impact of the magnetic
field is seen.
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c

Drag
Re=10
Re=40
Re=45

Fig. 2 Graph of drag versus c
(
α 1
permeability parameter

)

c

SEP
Re=10
Re=40
Re=60

Fig. 3 Graph of separation parameter versus c
(
α 1
permeability parameter

)

3. The drag force (5.6b) on the surface of the rotating sphere is calculated for the low
permeability of the porous medium. With the assumption that there is no pressure
of the fluid on the sphere due to low permeability (Fig. 2).

4. The Fig. 3 represents the graph for the separation parameter that appears at the
surface of the rotating sphere. The separation of the particles was seen more for
highpermeability of themedium than the lowpermeability in the rangeofReynolds
number (10 < Re < 60).

5. The Fig. 2 represents the graph for the drag force which is experienced by the
surface of the rotating sphere. The drag force is seen to be deteriorating for low
permeability of the medium in the range of Reynolds number (10 < Re < 45).

6. The impact of Taylor’s number is not seen in the solution because the results
are found for less permeability which was making the solution independent of
Taylor number. In case of large permeability, the problem becomes more complex
and finding the analytic solution is more complicated. However, in that case the
solutions for fluid properties depend on Taylor number.
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