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Abstract
In the process of reproducing the state dynamics of parameter dependent distributed
systems, data from physical measurements can be incorporated into the mathemati-
cal model to reduce the parameter uncertainty and, consequently, improve the state
prediction. Such a data assimilation process must deal with the data and model misfit
arising from experimental noise aswell asmodel inaccuracies and uncertainties. In this
work, we focus on the ensemble Kalman method (EnKM), a particle-based iterative
regularization method designed for a posteriori analysis of time series. The method
is gradient free and, like the ensemble Kalman filter (EnKF), relies on a sample of
parameters or particle ensemble to identify the state that better reproduces the physi-
cal observations, while preserving the physics of the system as described by the best
knowledge model. We consider systems described by parameterized parabolic partial
differential equations and employ model order reduction techniques to generate surro-
gate models of different accuracy with uncertain parameters. Their use in combination
with the EnKM involves the introduction of the model bias which constitutes a new
source of systematic error. To mitigate its impact, an algorithm adjustment is proposed
accounting for a prior estimation of the bias in the data. The resulting RB-EnKM is
tested in different conditions, including different ensemble sizes and increasing levels
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of experimental noise. The results are compared to those obtained with the standard
EnKF and with the unadjusted algorithm.

Keywords Inverse problems · Ensemble Kalman method · Model order reduction ·
Representation error

Mathematics Subject Classification 65M32 · 76M21 · 62M20 · 35Q86

1 Introduction

The problem of estimating model parameters of static and dynamical systems is
encountered in many applications from earth sciences to engineering. In this work
we focus on the parameter estimation of dynamical systems described by parameter-
ized parabolic partial differential equations (pPDEs). Here, we assume that a limited
and polluted knowledge of the solution is available at multiple time instances through
noisy local measurements.

For solving this kind of inverse problem, countless deterministic and stochastic
methods have been proposed. Among them, a widely used technique is the so-called
ensemble Kalman filter (Evensen 2003), a recursive filter employing a series of mea-
surements to obtain improved estimates of the variables involved in the process. The
idea of using the EnKF for reconstructing the parameters of dynamical systems traces
back to Anderson (2001) and Lorentzen et al. (2001), in which trivial artificial dynam-
ics for the parameters was assumed tomake the estimation possible. This was naturally
accompanied by efforts for improving the performance of the method in terms of sta-
bility, by introducing covariance inflation (Hamill et al. 2001; Anderson and Anderson
1999) and localization (Hamill et al. 2001; Houtekamer and Mitchell 2001), and in
terms of computational cost. Relevant to the latter have been the development of multi-
level (Hoel et al. 2016) and multi-fidelity Popov et al. (2021) and Donoghue and Yano
(2022) methods, the use of model order reduction (MOR) techniques with offline
(Pagani et al. 2017; da Silva and Colonius 2018) and with on-the-fly (Donoghue and
Yano 2022) training, as well as the introduction of further surrogate modeling tech-
niques (Popov and Sandu 2022). The use of approximated models inevitably led to
the study of the impact of model error on the EnKF (Mitchell et al. 2002; Mitchell and
Carrassi 2015), alongside with other data assimilation methods (Calvetti et al. 2018;
Huttunen and Kaipio 2007).

Although ensemble Kalman methods were originally meant for sequential data
assimilation, i.e., for real-time applications, they proved to be reliable also for asyn-
chronous data assimilation (Sakov et al. 2010). The first paper proposing to adapt
the EnKF to a retrospective data analysis was (Skjervheim et al. 2007). For analysis,
the data are employed all at once at the end of an assimilation window, which is in
common with a series of methods, e.g., variational methods (Li and Navon 2001) such
as 4D-VAR (Thepaut and Courtier 1991) and other smoothers (Anderson and Moore
1979). Compared to those approaches, the EnKF is particularly appealing since it
does not require the computation of Fréchet derivatives, a major complication for data
assimilation algorithms.
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In Iglesias et al. (2013), Iglesias et al. introduced what they called the ensemble
Kalman method, an EnKF-based asynchronous data assimilation algorithm. Depend-
ing on the design of the algorithm, this method has connections to Bayesian data
assimilation (Schillings and Stuart 2018) and tomaximum likelihood estimation (Chen
and Oliver 2012). In particular, in the latter case, the method constitutes an ensemble-
based implementation of so-called iterative regularization methods (Kaltenbacher
et al. 2008). In the case of perfect models, the EnKM has already been analyzed in
depth in Schillings and Stuart (2018) and Evensen (2018) and convergence and iden-
tifiability enhancements have been proposed in Wu et al. (2019) and Iglesias (2016).
Due to the iterative nature of the EnKM, dealing with high-dimensional parametric
problems is often computationally challenging. In Gao andWang (2021) a multi-level
strategy has been proposed to improve the computational performance of the method.

In this work we propose an algorithm, called reduced basis ensemble Kalman
method (RB-EnKM), that leverages the computational efficiency of surrogate models
obtained with MOR techniques to solve asynchronous data assimilation problems
via ensemble Kalman methods. The use of the EnKM allows us to avoid adjoint
problems that are often difficult to reduce and intrinsically depend on the choice
of measurement positions. Model order reduction, already employed in other data
assimilation problems (Gong et al. 2019; Nadal et al. 2015), is used as a key tool for
accelerating the method. However, the use of approximate models within the EnKM
introduces amodel error that could hinder the convergence of themethod. In this work,
we propose to deal with this error by including a prior estimation of the bias in the
data. Specifically, we incorporate empirical estimates of the mean and covariance of
the bias in the Kalman gain. In some instances, those quantities can be computed at
a negligible cost by employing the same training set used for the construction of the
reduced model.

The paper is structured as follows: in Sect. 2 we introduce the asynchronous data
assimilation problem together with the standard ensemble Kalman method (Algo-
rithm 1). Subsequently, in Sect. 3.1, we present an overview on reduced basis (RB)
methods and describe how to use them in combination with the ensemble Kalman
method to derive the RB-EnKM (Algorithm 2). In Sect. 4, we test the new method on
two numerical examples. In the first example, we estimate the diffusivity in a linear
advection-dispersion problem in 2D (Sect. 4.1), while in the second, we estimate the
hydraulic log-conductivity in a non-linear hydrological problem (Sect. 4.2). In both
cases, we compare the behavior of the full order and reduced order models in different
conditions. Section5 provides conclusions and considerations on the proposedmethod
and on its numerical performance.

2 Problem formulation

Let (U ,H) be a suitable pair of function spaces and let P ⊂ R
Np , with Np ∈ N

+,
be a set of model parameters. We consider the pPDE: for any parameter μ ∈ P , find
u(μ) ∈ U such that ∂t u(μ) = Fμu(μ), u(0,μ) = u0(μ). Here Fμ is a generic
parameterized differential operator, ∂t is the first order partial time derivative and
u0(μ) ∈ H is a parameterized initial condition. This pPDE provides the constraint
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to the inverse problem of estimating the unknown parameter μ� ∈ P from data or
observations given by

y(μ�, η) = Lu(μ�) + η s.t .

∂t u(μ�) = Fμ�u(μ�), u(0,μ�) = u0(μ
�).

(1)

Here,L : U → R
Nm , with Nm ∈ N

+, maps the space of the solutions to the space of the
measurements, simulating the observation process, and η is an unknown realization of
a Gaussian random variable with zeromean and given covariance,� ∈ R

Nm×Nm . Note
that both the observed data y and the additive experimental noise η are Nm-dimensional
vector-valued quantities and that � is a symmetric positive-definite matrix defining
the inner product ‖ · ‖2

�−1 := ‖�−1/2 · ‖2 onRNm , where ‖ · ‖2 is the Euclidean norm.
To solve this inverse problem, we must explicitly solve the pPDE (1). This is done

using a suitable discretization, in space and time, of the differential operators Fμ and
∂t . To this end, we introduce the approximation spaces Vh ⊂ U and Hh ⊂ H and the
discretized initial condition uh,0(μ) ∈ Hh so that the approximate problem reads:

find uh(μ) ∈ Vh s.t. ∂t uh(μ) = Fh
μuh(μ), uh(0,μ) = uh,0(μ). (2)

The discretization of the pPDE can be chosen according to the specific problem of
interest. In all numerical examples proposed in this work, we employ a space-time
Petrov–Galerkin discretization of (1) with piecewise polynomial trial and test spaces,
as described in Sect. 4, and we assume (2) to be sufficiently accurate such that we can
take y(μ�, η) = Luh(μ�) + η.

To characterize the observation of the solution, we introduce the forward response
map G : P → R

Nm defined as G(μ) := Luh(μ) for any solution of the pPDE
(2). Although the use of the map G results in a more compact notation, omitting its
dependence on the solution of the pPDE conceals a key aspect of the method, i.e., the
mapping from the parameter vector to the corresponding space-time pPDE solution.
For this reason, and because it makes it harder to introduce the problem discretization,
it will be used with caution.

2.1 The ensemble Kalmanmethod

The data assimilation problem presented above can be recast as a minimization prob-
lem for the cost functional, �(μ | y) := ‖y(μ�, η) − Luh(μ)‖2

�−1 , representing the
misfit between the experimental data, y(μ�, η), and the forward response. The optimal
parameter estimate μopt(y) is thus given by

μopt(y) = arg min
μ∈P

�(μ | y) s.t .

∂t uh(μ) = Fh
μuh(μ), uh(0,μ) = uh,0(μ).

(3)

This is equivalent to a maximum likelihood estimation, given the likelihood function,
l(μ | y) = exp{− 1

2�(μ | y)}, associated with the probability density function of the
data, y|μ, i.e., the probability of observing y if μ is the parametric state. The shape
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of the function follows from the probability density function of the Gaussian noise
realization.

Among various methods proposed to solve this optimization problem, the EnKM
relies on a sequence of parameter ensembles En , with n ∈ N

+, to estimate the mini-
mumof the cost functional. Each ensemble consists of a collection {μ( j)

n }Jj=1 of J ∈ N
+

parameter vectors μ
( j)
n , hereby named ensemble members or particles, whose inter-

action, guided by the experimental measurements, causes them to cluster around the
solution of the problem as iterations proceed. At the beginning of each iteration, the
solutionof the pPDEand its observations are computed for each j ∈ {1, . . . , J }. Subse-
quently, the ensemble is updated based on the empirical correlation among parameters
and betweenparameters andmeasurements, aswell as on themisfits between the exper-
imental measurements y(μ�, η) and the particle measurements Luh(μ( j)

n ). A single
iteration, equivalent to the one in Iglesias et al. (2013), is formalized in the following
pseudo algorithm:

Algorithm 1 Iterative ensemble method for inverse problems.

Input. Let E0 be the initial ensemble with elements {μ( j)
0 }Jj=1 sampled from a given

distribution �0(μ). Let � be the a priori known noise covariance and y the vector of
noisy measurements collected from the physical system. Let τ � 1 be the termination
tolerance.

For n = 0, 1, . . .

(i) Prediction step. Compute the synthetic measurements of the solution over a time
interval I for each particle in the last updated ensemble:

G(μ
( j)
n ) = Luh(μ( j)

n ) for all j ∈ {1, . . . , J } s.t .

∂t uh(μ
( j)
n ) = Fh

μ
( j)
n
uh(μ

( j)
n ), uh(0,μ

( j)
n ) = uh,0(μ

( j)
n ).

(4)

(ii) Intermediate step. From the last updated ensemblemeasurements andparameters,
compute the sample means and covariances:

Pn = 1

J

J∑

j=1

G(μ
( j)
n )G(μ

( j)
n )

� − GnG�
n with Gn = 1

J

J∑

j=1

G(μ
( j)
n ) (5)

Qn = 1

J

J∑

j=1

μ
( j)
n G(μ

( j)
n )

� − μnG�
n with μn = 1

J

J∑

j=1

μ
( j)
n . (6)

(iii) Analysis step. Update each particle in the ensemble: for all j ∈ {1, . . . , J }

γ
( j)
n ∼ N (0,�), (7)

μ
( j)
n+1= μ

( j)
n + Qn(Pn + �)−1 (

y − G(μ
( j)
n ) − γ

( j)
n

)
. (8)

(iv) Termination step. Stop the algorithm when the termination criterion is satisfied.
Here, we terminate when the relative change in the mean parameter is less than
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the tolerance:

‖μn+1 − μn‖2 ≤ τ‖μn+1‖2 with μn+1 = 1

J

J∑

j=1

μ
( j)
n+1. (9)

In the last step of the algorithm, the cross correlation matrices Pn and Qn are used
to compute the Kalman gain Kn := Qn(Pn + �)−1. This modulates the extent of
the correction: a low-gain corresponds to conservative behavior, i.e., small changes
in the particle positions, while a high-gain involves a larger correction. Note that the
experimental data are perturbedwith artificial noise sampled from the samedistribution
assumed for the experimental noise η. This leads to an improved estimate over the
unperturbed case.

A termination criterion for the algorithm is essential for the proper implementation
of the method. The one presented in Iglesias et al. (2013) is based on the discrepancy
principle and consists in stopping the algorithm when the error between the experi-
mental data and the measurements is comparable to the experimental noise, that is,
when ‖y − G(μn)‖2�−1 ≤ σ‖η‖2

�−1 for some σ ≥ 1. An alternative approach is to set
a threshold for the norm of the parameter update, i.e., to terminate the algorithm when
‖μn+1 − μn‖2 ≤ τ‖μn+1‖2 for some τ � 1. The latter criterion is more robust to
model errors and is therefore used in our numerical experiments.

Equally important for the method is the choice of the distribution �0 from which
the initial ensemble (or first guess) E0 is sampled. In most of the cases, including
those considered in our numerical experiments, the distribution �0 comes from an a
priori knowledge of the range of admissible parameters. In other scenarios, e.g., when
the parameters live in an infinite-dimensional space, it may be necessary to define
additional criteria on how to treat the parameter space. The initial ensemble plays
a fundamental role in stabilizing the inverse problem. Indeed, it has been shown in
Iglesias et al. (2013) that all the ensembles generated by Algorithm 1 are contained in
the space spanned by the initial ensemble, that is

En ∈ A := span {μ( j)
0 }Jj=1 for all n ∈ N

+. (10)

Furthermore, in the mean-field limit, i.e., in the case of infinite particles, and assuming
an affine relationship between parameters and syntheticmeasurements, the distribution
�0 plays the same role as the Tikhonov regularization in variational data assimilation,
see (Asch et al. 2016). In particular, the stabilization term is given by − loge �0(μ).

The main sources of error of the EnKM are associated with the ensemble size and
with the evaluation of G(μ

( j)
n ) = Luh(μ( j)

n ). Indeed, while the observation of the
solution is accurate and computationally cheap to evaluate, due to the linearity of the
operator, the accuracy in the computation of the pPDE solution intrinsically depends
on the quality of the numerical discretization. High order numerical discretizations
might require prohibitively large computational costs, especially if the pPDE (2) is
solved for many values of the parameter and over long temporal intervals.

The other steps of Algorithm 1 involve the following operations: (i) the assembly
of Pn andQn in (5)-(6), with computational complexity of orderO(J N 2

m), and (ii) the
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inversion of the matrix Pn + � in the analysis step (8) with complexity O(N 3
m). The

solution of the pPDE (2), for all j ∈ {1, . . . , J }, in the prediction step of Algorithm 1
is thus the computational bottleneck of the EnKM algorithm.

3 Surrogatemodels

3.1 Reduced basis methods

Given the need to solve the pPDE (2) for several instances of the parameter, the use of
MOR techniques appears an ideal choice. Model order reduction has allowed excep-
tional computational speed-ups in settings that require repeated model evaluations,
such as multi-query simulations. In MOR the high-dimensional problem is replaced
with a surrogate model of reduced dimensionality that still possesses optimal or near-
optimal approximation properties but that can be solved at a considerably reduced
computational cost. In this work, we focus on a particular class of MOR techniques,
known as reduced basis methods (Prud’homme et al. 2002).

The reduced basis method typically consists of two phases: an offline phase and
an online phase. In the computationally expensive offline phase a low-dimensional
approximation of the solution space, namely the reduced space, is constructed and
a surrogate model is derived via projection of the full order model onto the reduced
space. Then, the resulting low-dimensional reduced model can be solved in the online
phase for many instances of the parameter at a computational cost independent of the
size of the full order model.

To be more precise, let M := {uh(t,μ) ∈ Vh | ∂t uh(μ) = Fh
μuh(μ), uh(0,μ) =

uh,0(μ) for allμ ∈ P, t ∈ I} be the solution set which collects the solution of the
discretized pPDE (2) evaluated at times t ∈ I := (0, T ], with T ∈ R

+, for a set
of parameters μ ∈ P . The parametric problem (2) is said to be reducible if the
solution set M can be well approximated by a low-dimensional linear subspace.
In this case, such a subspace is obtained as the span of a problem-dependent basis
derived from a collection of full order solutions or snapshots, {uh(tn,μs)}S,R

s,n=1, with

S, R ∈ N
+, at sampled values, {μs}Ss=1, of the parameter, and at discrete times,

{tn}Rn=1. The set PTRAIN := {μs}Ss=1 ⊂ P of training parameters is a sufficiently rich
subset of the parameter space that can be obtained by drawing random samples from a
uniformdistribution inP orwith other sampling techniques, such as statisticalmethods
and sparse grids, see (Quarteroni et al. 2015, Chapter 6) and references therein. The
extraction of the basis functions from the snapshots is usually performed using SVD-
type algorithms such as the proper orthogonal decomposition (POD) (Berkooz et al.
1993) or greedy algorithms. For problems that depend on both time and parameters,
the so-called POD-Greedy method (Grepl and Patera 2005; Haasdonk and Ohlberger
2008) combines a greedy algorithm in parameter space with the proper orthogonal
decomposition in time at a given parameter. In the numerical tests of this work, we
rely on the Weak-POD-Greedy algorithm, which is the preferred method whenever
a rigorous error bound can be derived, while the POD and the Strong-POD-Greedy
are often used when a bound is unavailable, i.e., for most non-linear problems. Note
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that, under the same choice of training parameters, the latter are more accurate but
computationally less efficient.

Once an Nε-dimensional set of spatial reduced basis functions {ψi }Nε

i=1 is obtained

and a set of time basis functions {υn}Nt
n=1 is selected, the reduced spaces Hε =

span{ψi }Nε

i=1 ⊂ Hh and Vε = span{υn⊗ψi }Nε,Nt
i,n=1 ⊂ Vh are constructed. The full

model solution uh(μ) and the initial condition uh,0(μ), for a given μ, are approxi-
mated by the functions uε(μ) in Vε and uε,0(μ) inHε,

uε(μ) =
Nε,Nt∑

i,n=1

ui,n(μ) υn ψi , uε,0(μ) =
Nε∑

i=1

ui,0(μ) ψi , μ ∈ P,

where (u1,1(μ), . . . , uNε,Nt (μ))� ∈ R
NεNt and (u1,0(μ), . . . , uNε,0(μ))� ∈ R

Nε

denote the vectors of expansion coefficients in the reduced basis. The reduced model
thus reads:

find uε(μ) ∈ Vε s.t. ∂t uε(μ) = Fε
μuε(μ), uε(0,μ) = uε,0(μ), (11)

where the operator Fε
μ is obtained by projecting the full order operator Fh

μ onto the
reduced space Vε. Note that we set Nt = R in the sequel since we do not consider a
temporal compression. However, choosing R < Nt is also possible.

The computational gain derived from solving problem (11) instead of the full order
model (2) hinges on the feasibility of a complete decoupling of the offline and online
phases. A computational complexity of the online phase independent of the size of the
full order problem can be achieved under the assumption of linearity and parameter-
separability of the operator Fh

μ. To deal with general non-linear operators, hyper-
reduction techniques are required. These include methods for approximating the high-
dimensional non-linear term Fh

μ with an empirical affine decomposition, such as the
EIM (Barrault et al. 2004), and methods for reducing the cost of evaluating the non-
linear term, such as linear program empirical quadrature (Yano and Patera 2019) and
empirical cubature (Hernández et al. 2017).

3.2 A reduced basis ensemble Kalmanmethod

In this section, we discuss the implications of replacing the high-fidelity model in
the prediction step of the EnKM by a surrogate model derived via model order
reduction, as described in Sect. 3.1. The use of MOR for particle-based methods is
particularly desirable in multi-query contexts since it allows us to significantly reduce
the computational cost of solving the inverse problem. However, the approximation
introduced by the model order reduction inevitably produces (small) deviations of
the reduced solution from the full order one. This constitutes a problem for data
assimilation algorithms, as already documented and investigated in Calvetti et al.
(2018) and in other works. Indeed, the error in the solution results in discrepancies
between approximated and exactmeasurements.Althoughwe can expect themismatch
δε(μ) := Luh(μ) − Luε(μ) to decrease with the approximation error of uε(μ), this

123



GEM - International Journal on Geomathematics (2023) 14 :24 Page 9 of 31 24

bias will inevitably entail a distortion of the loss functional obtained by simple model
substitution, i.e.,

�̃(μ| y) := ‖y(μ�, η) − Luε(μ)‖2
�−1 . (12)

Note that this cost function does not vanish in the parameter μ we are trying to
estimate, not even in noise free conditions. This systematic error, independent of the
magnitude of the experimental noise, can be mitigated by modifying the cost function
and consequently the EnKM. Amodified algorithm, which we refer to as adjusted RB-
EnKM is presented in the following sections. This algorithm is in contrast to what we
refer to as the biased RB-EnKM, i.e., the algorithm obtained by the simple substitution
of the full order model with the reduced order model in Algorithm 1, as presented in
(12).

The modification of the algorithm can proceed in two ways. One possibility is to
rewrite the exact cost function in terms of the surrogate model and the measurement
bias, namely substituting Luh(μ) = Luε(μ) + δε(μ) in the minimization problem
(3) to obtain

�1(μ| y) := ‖y(μ�, η) − Luε(μ) − δε(μ)‖2
�−1

= ‖Luh(μ�) − Luh(μ) + η ‖2
�−1 ≡ �(μ| y). (13)

A second option is to correct the experimental data involved in the biased cost function
(12) so that, at least in noise free conditions, its minimum coincides with the minimum
of the exact cost function. This means subtracting δε(μ

�) instead of δε(μ), and results
in the new cost function

�2(μ| y) := ‖y(μ�, η) − Luε(μ) − δε(μ
�)‖2

�−1

= ‖Luε(μ
�) − Luε(μ) + η ‖2

�−1 ≡ �(μ| y). (14)

In noise free conditions, i.e., if η = 0, both cost functions vanish at the exact value
μ�. Since the cost functions �1 and �2 are non-negative, the minimum attained in μ�

is necessarily also a global minimum.
In the following, we focus on the second approach. The reason is that the first

approach requires the evaluation of the bias at all parameter values μ ∈ P which is
too expensive to perform. Furthermore, at the algorithmic level, the substitution of
the true model with the sum of the surrogate model and its bias would significantly
change the computation of Pn and Qn , and thus the algorithm structure. By contrast,
the second approach is based on the assumption that the true model is incorrect and
on the subsequent correction of the experimental data. This implies that δε(μ

�) is the
only bias involved and it requires just a single full order evaluation. However, since
the argument μ� is unknown, this is clearly not possible, and we must instead exploit
the prior epistemic uncertainty on μ�, encoded in �0(μ), to modify the cost function.

If μ� is treated as a random variable with probability measure �0, then the data
bias δ�

ε = δε(μ
�) is in turn a random variable with probability measure �0 ◦ δ−1

ε . The
moments of this distribution, henceforth denoted by δε and �ε, can be empirically
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estimated via pointwise evaluations of the bias without further assumptions on the
nature of the distribution itself. However, the assumption of Gaussianity, although
improperly implying the linearity of δε : P → R

Nm , is consistent with the other
assumptions of Gaussianity and linearity required for the derivation of the EnKF
(Evensen 2003). Furthermore, it allows us to obtain closed-form results, as shown in
the next paragraphs.

In view of the fact that δ�
ε is considered as a random variable, we change (14) to

make the dependence of the cost function �2 on δ�
ε explicit; i.e.

�ε(μ | y, δ�
ε) := ‖y(μ�, η) − Luε(μ) − δ�

ε‖2�−1 . (15)

In order to make the estimate of μ dependent only on the experimental data, we must
remove the conditioning on δ�

ε, i.e., marginalize out the random variable. The easiest
way to do this is by employing Bayesian statistics and particularly recovering the same
marginal distribution y|μmentioned at the beginning of Sect. 2.1. To this end, we con-
sider the likelihood function l(μ | y, δ�

ε) := exp{− 1
2�ε(μ | y, δ�

ε)}, proportional to the
density of (y | μ, δ�

ε) ∼ N (δ�
ε +Luε(μ),�). Employing (Särkkä 2013, Lemma 1.A),

concerning the mean and covariance of the joint distribution of Gaussian variables, it
can be easily proven that, if δ�

ε ∼ N (δε, �ε), then y | μ ∼ N (δε + Luε(μ),� + �ε)

and consequently we derive the marginalized cost functional

�ε(μ | y) := ‖y − Luε(μ) − δε‖2(�+�ε)−1 . (16)

Hence, by analogy with Sect. 2.1, we can adapt the EnKM to optimize the new cost
function under the surrogate model constraint (11). The resulting adjusted RB-EnKM
is summarized in Algorithm 2. Unlike the reference EnKM,we distinguish between an
offline and an online phase. In the offline phase, the training set of full order solutions is
generated and used both to construct the surrogate model and to estimate the moments
of δ�

ε. In the online phase, the actual optimization is performed.

Algorithm 2 Iterative ensemble method with reduced basis surrogate models and
accounting for the associated measurements bias.
Offline:
Input. LetPTRAIN be a set of S parameters {μ(s)

0 }Ss=1 sampled from a given probability

distribution �0(μ) and let {uh(μs)}Ss=1 be the associated training set of full order
solutions. Let ε ∈ R

+ be a prescribed tolerance.

(i) Model order reduction. Relying on the training set {uh(μs)}Ss=1, construct a
surrogate model of accuracy ε as explained in Sect. 3.1 and compute the set of
reduced basis solutions {uε(μs)}Ss=1.

(ii) Data bias estimation. Define the training biases as

δε(μ(s) ) = Luh(μ(s) ) − Luε(μ(s) ) for all s ∈ {1, ..., S} (17)
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and the associated empirical moments

�ε = 1

S

S∑

s=1

δε(μ(s) )δε(μ(s) )� − δεδ
�
ε with δε = 1

S

S∑

s=1

δε(μ(s) ). (18)

Online:
Input. Let E0 be the initial ensemble with elements {μ( j)

0 }Jj=1 sampled from a given
distribution �0(μ). Let � be the a priori known noise covariance and y the vector of
noisy measurements collected from the physical system. Let τ � 1 be the termination
parameter.

For n = 0, 1, . . .

(i) Prediction step. Compute the biased measurements of the approximated solution
over a time interval I for each particle in the last updated ensemble:

Gε(μ
( j)
n )= Luε(μ

( j)
n ) for all j ∈ {1, . . . , J } s.t .

∂t uε(μ
( j)
n )= Fε

μ
( j)
n
uε(μ

( j)
n ), uε(0,μ

( j)
n ) = uε,0(μ

( j)
n ).

(19)

(ii) Intermediate step. From the last updated ensemblemeasurements andparameters,
define the sample means and covariances:

Pn,ε = 1

J

J∑

j=1

Gε(μ
( j)
n )Gε(μ

( j)
n )

� − Gn,ε G�
n,ε with Gn,ε = 1

J

J∑

j=1

Gε(μ
( j)
n ),

(20)

Qn,ε = 1

J

J∑

j=1

μ
( j)
n Gε(μ

( j)
n )

� − μnG�
n,ε with μn = 1

J

J∑

j=1

μ
( j)
n . (21)

(iii) Analysis step. Update each particle in the ensemble: for all j ∈ {1, . . . , J }

γ
( j)
n ∼ N (δε,� + �ε), (22)

μ
( j)
n+1= μ

( j)
n + Qn,ε

(
Pn,ε + �ε + �

)−1 (
y − Gε(μ

( j)
n ) − γ

( j)
n

)
. (23)

(iv) Termination step. Stop the algorithm when the termination criterion is satisfied:

‖μn+1 − μn‖2 ≤ τ‖μn+1‖2 with μn+1 = 1

J

J∑

j=1

μ
( j)
n+1. (24)

By employing the same training set for constructing the surrogate model and for
evaluating δε and �ε, we provide the largest possible training set to the model order
reduction algorithm for a fixed value of S. However, we also introduce a bias in the
estimation of the moments of δε(μ

�) due to the underestimated values of δε(μ(s) ).
The bias could be removed, e.g., by partitioning the training set {μ(s)

0 }Ss=1 into two
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sub-sets (or by introducing two independent sets with cardinality S/2), one for the
construction of the surrogate model and one for the independent estimation of δε and
�ε. The disadvantage of this approach (for fixed S) would be a a smaller training
set for the surrogate model construction, and a poorer yet unbiased statistics for the
moments’ estimation.

We note from the offline part in Algorithm 2 in the data bias estimation that the RB
approximation needs to approximate the full order model uniformly well globally, i.e.,
over the entire parameter domain. We can thus not replace the classical offline-online
decomposition by an on-the-fly adaptation of the reduced basis (Donoghue and Yano
2022), which is beneficial if only local approximations, e.g. along the optimization
path, are required.

In Algorithm 2, the prior probability�0(μ) used for the estimation of the moments
of δ�

ε could be substituted at every iteration by an updated probability measure of
μ. However, the computation of the updated probability measure might compromise
the computational gain obtained with the use of reduced models. One possibility to
address this shortcoming is to use a Gaussian process regression of the initial ensemble
biases to estimate the moments of δ�

ε with respect to the new probability measure of
μ. The development and study of this strategy together with its effect on the accuracy
and performances of the RB-EnKM will be investigated in future studies.

4 Numerical experiments

In the following section, we consider two data assimilation problems for the estimation
of model parameters in pPDEs. The first problem involves a linear advection disper-
sion problem with unknown Péclet number. The corresponding model is linear in the
observed state c(μ), but it is non-linear in the parameter to estimate. The second prob-
lem concerns the transport of a contaminant in an unconfined aquifer with unknown
hydraulic conductivity. It involves two coupled PDEs: a stationary non-linear equation
which describes the pressure field induced by an external pumping force and a time-
dependent linear equation describing the advection-dispersion of the contaminant in
a medium whose properties depend non-linearly on the pressure field.

Both models describe 2D systems, and each exhibits ideal characteristics to test
the proposed algorithms. The first, while leading to a non-linear inverse problem,
is sufficiently simple to allow for a comparison between the adjusted and biased
RB-EnKM and the reference full order EnKM. Moreover, its affine dependence on
the parameter enables the use of error bounds for the efficient construction of the
reduced space. The second problem, which is non-linear and non-affine in the six-
dimensional parameter vector, is complex enough to serve as a non-trivial challenge
for the proposed RB-EnKM algorithm, while the reference EnKM cannot even be
tested due to the computational cost. From an a priori estimate, performing full order
tests with the same statistical relevance as the reduced basis ones would have taken
up to 20 days on our machine.

The two problems are presented in Sects. 4.1 and 4.2. We first introduce the pPDE,
then present the full order discretization followed by the reduced basis approxima-
tion. The measurement operator is then introduced, and a first analysis of the inversion

123



GEM - International Journal on Geomathematics (2023) 14 :24 Page 13 of 31 24

Fig. 1 Spatial domain of the Taylor–Green problem. On the left: the initial condition c0 in blue, the sensor
shape functions ηi , and the Neumann and Dirichlet boundaries, �N , �D . On the right, the velocity field,
β, with four Taylor–Green vortices

method is carried out. Finally, we study the impact of the ensemble size, of the exper-
imental noise magnitude, and of the error of the reduced model on the reconstruction
error of the EnKM. All the computations are performed using Python on a computer
with 2.20 GHz Intel Core i7-8750H processor and 32 GB of RAM.

4.1 Taylor–Green vortex problem

Let us consider the dispersion of a contaminantmodeled by the 2Dadvection–diffusion
equation with a Taylor–Green vortex velocity field (Kärcher et al. 2018).We introduce
the spatial domain  = (−1, 1)2 with Dirichlet boundary �D := (−1, 1) × {−1} and
Neumann boundary �N := ∂\�D , and the time domain I := (0, T ] with T = 2.5.
We consider the problem of estimating the inverse of the Péclet number μ = 1/Pe
in the interval P := [1/50, 1/10]. The governing pPDE is given by: find c(μ) :
 × (0, T ] → R such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t c − μ�c + β · ∇c = 0, in × I,

∇c(x, t;μ) · n = 0, on�N × I,

c(x, t;μ) = 0, on�D × I,

c(x, 0;μ) = c0(x;μ), in.

(25)

Here, the velocity field β := (sin(πx1) cos(πx2),− cos(πx1) sin(πx2))�, x =
(x1, x2), is a solenoidal field, and the initial condition c0(μ) :  → R is given
by the sum of three Wendland functions ψ2,1 (Wendland 1995) of radius 0.4 and cen-
ters located at (−0.6,−0.6), (0, 0), and (0.6, 0.6). The velocity field and the initial
condition are shown in Fig. 1.

The full ordermodel is obtained by anodal finite element discretization of (25) using
piecewise continuous polynomial functions, ζi :  → R, i = 1, . . . , Nh , of degree 2
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Fig. 2 Solution of the advection–diffusion equation for three increasing values of Pe at four time instances
t . Snapshots normalized to unitary L∞() norm

over a uniform Cartesian grid of width h = 0.04, for a total of Nh = 10, 100 degrees
of freedom. The resulting system of ordinary differential equations is integrated over
time using a Crank–Nicolson scheme with uniform time step �t = 0.01. As shown
in (Thomée 2006, Chapter 12), this is equivalent to performing a Petrov–Galerkin
projection of (25)with trial and test spaces defined as follows:we consider the partition
of the temporal interval I into the union of equispaced subintervals, In := (tn−1, tn

]
,

of length �t with n = 1, . . . , Nt and Nt := T /�t . Let ωn : I → R be a piecewise
constant function with support in In , and let υn : I → R be a hat function with
support in In ∪ In+1. We define the trial space Vh := span{υn · ζi }Nh ,Nt

i,n=1 and the test

space Wh := span{ωn · ζi }Nh ,Nt
i,n=1 , respectively.

To solve the spatial problems arising at each time step, we use the sparse splu
function implemented in the scipy.sparse.linalg1 package. The computa-
tional time to obtain a single full order solution is on average 0.56s. Snapshots
of the solution at times t ∈ {0.2, 0.8, 1.4, 2.0} and for the three parameter values
μ ∈ {1/10, 1/30, 1/50} are shown in Fig. 2.

The high-fidelity model is used in combination with the time-gradient error bound
�

pr
R (μ) introduced in Aretz (2021) to implement a Weak-POD-Greedy algorithm for

the selection of the reduced basis functions. To this end, we consider the training set
�

μ
TRAIN with parametersμ(s) = 1/(9.5+0.5s) for all s ∈ N∩[1, S] of size S = 81.We

1 https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html.
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prescribe a target accuracy of 10−2 for themaximum time-gradient relative error bound
and we obtain an RB space of size 42. We can construct surrogate models of different
accuracy by selecting Nε ∈ N basis functions ψi :  → R, for i = 1, . . . , Nε, out of
these 42. Each choice corresponds to a relative error for the model given by

εc := sup
μ∈D

‖ch(μ) − cε(μ)‖L2(I,H1())

‖ch(μ)‖L2(I,H1())

. (26)

Once the reduced basis has been computed, we construct a reduced model via a
Petrov–Galerkin projection of (25) in the same way as we did for the full order model.
For this purpose, we define the trial space Vε := span{υn⊗ψi }Nε,Nt

i,n=1 and the test space

Wε := span{ωn⊗ψi }Nε,Nt
i,n=1 .

We then look for a reduced solution of the form

cε(μ) =
Nε∑

i=1

Nt∑

n=1

cn,i (μ) υn ψi , (27)

where the expansion coefficients c0,i , for i = 1, . . . , Nε, result from the projection of
the initial condition onto Vε, while the remaining coefficients cn,i , with i = 1, . . . , Nε

and n = 1, . . . , Nt , satisfy the equation

Nε∑

j=1

(
Mi j + �t

2
(Ai j + μKi j )

)
cn, j =

Nε∑

j=1

(
Mi j − �t

2
(Ai j + μKi j )

)
cn−1, j .

(28)

Here the matricesM,K,A ∈ R
Nε×Nε denote the mass, stiffness, and advection matrix,

respectively, and are given by

Mi j :=
∫



ψ jψi d, Ki j :=
∫



∇ψ j · ∇ψi d, Ai j :=
∫



(β · ∇ψ j )ψi d.

(29)

The solution of the system of equations (28), equivalent to a Crank–Nicolson
scheme, can be obtained iteratively solving Nt linear systems of size Nε for an
online complexityO(N 3

ε + Nt N 2
ε ). This complexity can be achieved due to the time-

independence of the pPDE by performing the LU factorization of the left-hand side
before entering the time integration loop. Employing all Nε = 42 basis functions,
the computational time for a reduced basis solution (online cost) is on average 5.4ms,
significantly less than the approximately 0.56s required for a full order solution. The
acceleration achieved is over 100, which justifies the 47s necessary for the construction
of the RB model (offline cost), considering that the online phase requires computing
up to 150 reduced basis solutions per iteration. Let us remark that such a cheap training
phase is due to the low-dimensionality of the parameters space P and the availability
of a tight error bound for this class of linear problems.
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Fig. 3 Left: maximum relative time-gradient error and error bound of the advection–diffusion solution
versus Nε . Center: maximum L2(I, H1()) relative error of the projection and of the solution versus Nε .
Right: maximum L∞(I, L∞()) relative error of the projection and of the solution versus Nε . Projections
based on the L2() inner product of the gradients

Note that both the online computational cost and the accuracy of the solution depend
on �t and on Nε. The first is kept fixed, �t = 0.01, while the latter varies in some of
the experiments. In order to keep track of the error associated with different choices
of Nε, we proceed with the characterization of the error between the surrogate model
solution cε(μ) and the full model solution ch(μ) for different values of Nε. This
analysis is provided in Fig. 3, depicting the maximum relative errors in L2(I, H1()),
L∞(I, L∞()) and the time-gradient norm versus the reduced basis size. It shows
a nearly exponential error decay as Nε increases. The maxima are computed on an
independent test set,�μ

TEST := {1/(9.75+0.5s), for all s ∈ N∩[1, 80]}. Furthermore,
the reduced solutions do not appear to deviate significantly from the projection of their
full order counterparts onto the associated RB space, and the error bound employed
demonstrates a good effectivity.

For the implementation of the EnKM as presented in Sect. 2.1, it is necessary to
provide amathematicalmodel for themeasurement process.We take 40measurements
in time at the three sensor locations, ηi , i ∈ {1, 2, 3}, shown in Fig. 1. For this purpose,
we introduce the measurement operator L : L2(I, L2()) → R

120, which can be
seen as a vector of linear functionals �k : L2(I, L2()) → R for all k ∈ N∩[1, 120].
Each of those linear functionals has a unique Riesz representer ρk : I × → R, with
respect to the L2(I, L2()) norm, that can be written as

ρk = ν j · ηi with k = 3 j + i for all j ∈ N ∩ [1, 40], i ∈ N ∩ [1, 3],

where the spatial fields ηi :  → R are Wendland functions ψ2,1 of radius 0.1 and
center coordinates (xi , yi ) ∈ {(0.1, 0.7), (−0.1,−0.5), (0.5, 0.1)} (see Fig. 1), while,
for each j ∈ N ∩ [1, 40], ν j : I → R is a piecewise linear function supported over
the interval I j := [t j − 2�t, t j + 2�t], where t j := �t(33 + 5 j); ν j is assumed to
be symmetric with respect to t j and constant between t j − �t and t j + �t .
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Table 1 Comparison of reference FE ( ·h)—biased RB ( ·ε)—adjusted RB ( ·∗ε ) EnKM in low-noise con-
ditions σ 2 = 10−6. The test was performed by averaging 25 estimations obtained employing ensembles
of 150 particles and using reduced basis models of size Nε = 42 (εc ≈ 0.001). H refers to the mean of
the estimation error, while S denotes the standard deviation of the estimation error. t.c. and o.c. indicate the
total and online cost of one parameter estimation, respectively

Iter Hh Sh Hε Sε H∗
ε S∗

ε

0 1.962e−2 2.168e−3 1.927e−2 1.740e−3 2.021e−2 1.931e−3

1 1.549e−6 1.039e−6 2.510e−4 2.584e−6 1.655e−5 1.737e−6

2 1.035e−7 6.405e−8 1.641e−5 2.336e−7 8.685e−7 1.335e−7

3 7.273e−8 5.152e−8 1.600e−5 1.317e−7 8.300e−7 6.766e−8

4 5.827e−8 3.835e−8 1.585e−5 1.048e−7 8.379e−7 6.469e−8

5 4.301e−8 2.840e−8 1.578e−5 8.631e−8 8.249e−7 5.630e−8

t.c. / o.c. 6′ 58′′/ 6′ 58′′ 55′′/8′′ 1′ 33′′/8′′

Given this description of the observation process and the surrogate model, we
next test the data assimilation scheme. We start with the estimation of the unknown
parameter μ� = 0.04 given the experimental measurements y(μ�, η) ∈ R

120, with
noise η ∼ N (0, �). We compare the performances of the EnKM employing a full
order model and a surrogate model of accuracy εc = 10−3 with Nε = 42. In order to
obtain reliable statistics, we consider 25 ensembles E0 of size J = 150 with particles
sampled from the uniform prior distribution, �0(μ) = U (0.02, 0.10). The results
obtained for a fixed value of σ 2 = 10−6, at different iterations of the algorithm, are
shown in Table 1. We observe a quick stabilization of the error means Hh , Hε and
H∗

ε , and of the error covariances, Sh , Sε and S∗
ε , after just a few steps. The full order

algorithm performs significantly better than the biased reduced basis algorithm, while
the adjusted version of the algorithm exhibits an excellent performance, very close to
the full order one.

The comparison of the ensemble standard deviation, reported in Table 2, with
the average error, reported in Table 1, shows a positive correlation between the two
quantities in the reference and the adjusted case. Contrarily, it is clear a decorrelation
between the two quantities in the biased case as the iteration index increases. From
this observation, we infer that, at least in this case, the ensemble covariance can be
used as an error indicator when the reference or the adjusted algorithm is employed.

We next investigate the sensitivity of the algorithm with respect to the accuracy
of the reduced model, to the effect of the ensemble size, and to the noise magnitude.
First, we repeat the estimation of the reference parameter μ� = 0.04 for different
values of the ensemble size J = 4k, with k ∈ N ∩ [1, 10]. In this experiment, we
employ the same surrogate model used before and consider the relative noise magni-
tude σ/‖G(μ�)‖∞ = 10−3. The results, shown in Fig. 4, indicate a larger sensitivity
to J for the full order algorithm than for the other two. It requires a larger number of
particles before stabilizing on a large-ensemble asymptotic behavior (or mean-field
behavior), while the reduced basis algorithms exhibit a much faster convergence, pos-
sibly as a consequence of a lower-dimensional state space. Among the three iterations
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Table 2 Same experimental conditions as in Table 1. E refers to the ensemble mean, � to the ensemble
standard deviation. Both quantities are computed as the average over 25 ensembles

Iter Eh �h Eε �ε E∗
ε �∗

ε

0 0.0599106 2.210e−2 0.0592677 2.339e−2 0.0602145 2.304e−2

1 0.0399985 1.740e−5 0.0402510 1.708e−5 0.0400165 2.076e−5

2 0.0400001 1.326e−6 0.0400164 1.332e−6 0.0400009 1.484e−6

3 0.0400001 9.354e−7 0.0400160 9.294e−7 0.0400008 1.051e−6

4 0.0400000 7.383e−7 0.0400159 7.571e−7 0.0400008 8.593e−7

5 0.0400000 6.357e−7 0.0400158 6.520e−7 0.0400008 7.472e−7

Fig. 4 Relative error in the parameter estimation versus ensemble size J for fixed noise magnitude, σ =
10−3‖G(μ�)‖∞. The standard full order EnKM is shown on the left, the biased RB-EnKM in the center,
and the adjusted RB-EnKM on the right. The solid lines represent the average error over 64 ensembles,
while the dashed lines correspond to the 10th and 90th percentiles

considered, the first appears to be the most affected, while, as the algorithm converges,
the ensemble size seems to become less relevant.

In a second experiment, we consider the same parameter estimation, but we let
the relative noise σ/‖G(μ�)‖∞ take values 10−i for i ∈ N ∩ [2, 6]. Moreover, we
employ J = 40 particles per ensemble and the same reduced basis model as before.
Each estimation is replicated 64 times for different noise realizations. The results are
shown in Fig. 5: for the full order EnKM we observe a linear dependence between the
reconstruction error and the experimental noise, while the results for the biased RB-
EnKM show that an untreated model bias introduces a systematic error independent
of the noise magnitude. The most important result is the one related to the adjusted
RB-EnKM: the error behavior achieved with this algorithm is comparable with the one
obtained using a full order model. This demonstrates the effectiveness of the proposed
method in compensating for the bias introduced by the reduced basis model, at least
in this case study.
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Fig. 5 Relative error in the parameter estimation versus relative noise magnitude σ/‖G(μ�)‖∞ for fixed
ensemble size J = 40. The standard full order EnKM is shown on the left, the biased RB-EnKM in
the center, and the adjusted RB-EnKM on the right. The solid lines represent the average error over 64
ensembles, while the dashed lines correspond to the 10th and 90th percentiles

This conclusion is further confirmed by the last experiment, in which the perfor-
mances of the biased and adjusted RB-EnKM are tested for all the parameters in the
test set �

μ
TEST already employed to test the reduced basis model. Each parameter

in the set is estimated using surrogate models of increasing sizes. Each estimation
is performed 64 times in very low-noise conditions, that is σ/‖G(μ�)‖∞ = 10−5,
employing J = 40 particles per ensemble. For each surrogate model employed, the
results from the 64 ensembles are averaged and the maximum over the test set is
computed. The results, shown in Fig. 6, demonstrate the ability of the correction to
compensate for the presence of a model bias very well. As a consequence, the worst-
case reconstruction error for the adjusted RB-EnKM barely depends on the reduced
model size and it is always significantly lower than its biased counterpart. These results
confirm the good performance of the adjusted RB-EnKM and its superiority over the
biased RB-EnKM.

4.2 Tracer transport problem

Wenow consider the tracer transport problem fromConrad et al. (2018), describing the
non-homogeneous andnon-isotropic transport of a non-reactive tracer in an unconfined
aquifer. We introduce the spatial domain  := (0, 1)2 divided into six sub-regions
 = ⋃6

r=1 r illustrated in Fig. 7 and defined as follows: (x, y) ∈  is in r if
the subscript r is the smallest integer for which xr0 < x < xr1 and yr0 < y < yr1
where the points {(xr0, yr0)}6r=1 and {(xr1, yr1)}6r=1 are defined in Table 3. We denote by
∂ the outer boundary of the domain and define the parallel walls �D := (0, 1) ×
{0, 1} and �N := ∂\�D . Based on this partition, we define the conductivity field
as the piecewise constant function k(μ) :  → R over the six sub-regions r . The
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Fig. 6 Parameter error versus reduced basis size for the biased and the adjusted RB-EnKM

conductivity can be affinely decomposed employing the coefficient vector μ ∈ R
6,

with components μr , and the indicator functions ηr :  → R

k(x;μ) =
6∑

r=1

eμr ηr (x) with ηr (x) =
{
1 if x ∈ r ,

0 if x ∈ \r .
(30)

We can now estimate the hydraulic log-conductivity μ, restricted to the orthotope
D :=�6

r=1(μ
min
r , μmax

r ) ⊂ R
6, relying on measurements of the tracer concentration

c(μ) collected over the time interval I := (0, T ], with T = 0.5. This field satisfies
the pPDE: find c(μ) :  × I → R such that

⎧
⎪⎨

⎪⎩

∂t c − ∇ · ((dmI + dlββ�(μ))∇c) + β(μ) · ∇c = fc, in × I,

∇c(x, t;μ) · n = 0, on ∂ × I,

c(x, 0;μ) = 0, in.

(31)

In this equation, the dispersion coefficients dl = dm = 2.5 · 10−3 correspond to the
flow-dependent component of the dispersion tensor and to its residual component,
respectively. The forcing term fc is assumed to be of the form fc := ∑

4
i=1 fc,i and it

models the injection of different amounts of tracer in four wells located at (ai , bi ) ∈
{0.15, 0.85}2; each fc,i is a Gaussian function centered in (ai , bi ), with covariance
�c = 0.005 and multiplicative coefficient pi where (p1, p2, p3, p4) = (10, 5, 10, 5).
The velocity field β(μ) :  → R

2 is linearly dependent on the hydraulic head u(μ) :
 → R through the relationβ(μ) = −k(μ)∇u. The latter fieldmust satisfy the second
constraint of the inverse problem, i.e., under the Dupuit–Forchheimer approximation
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Fig. 7 Domain of the tracer transport problem and injection wells

Table 3 On the left: coordinates of the corners of the sub-regions r . On the right: true values of the
parameters μr and boundaries of the uniform prior �0

Region xr0 xr1 yr0 yr1 (�) Ref Min Max μr

1 0.60 1.00 0.15 0.30 −0.75 −1.00 0.00 μ1

2 0.00 0.40 0.70 0.10 −0.25 −1.00 1.00 μ2

3 0.50 1.00 0.00 0.50 −0.50 −1.00 0.00 μ3

4 0.40 1.00 0.60 1.00 1.00 0.00 2.00 μ4

5 0.20 0.25 0.00 0.30 −0.25 −1.00 0.00 μ5

6 0.00 1.00 0.00 1.00 3.00 2.00 5.00 μ6

(Delleur 2016) it solves the non-linear elliptic pPDE: find u(μ) :  → R such that

⎧
⎪⎨

⎪⎩

∇ · (k(μ)u∇u) + fu = 0, in,

∇u(x;μ) · n = 0, on�N ,

u(x;μ) = 0, on�D.

(32)

Here, the forcing term fu := ∑4
i=1 fu,i models an active pumping action at the four

wells, each fu,i is a Gaussian function centered in (ai , bi ), of covariance �u = 0.02
and coefficient qi , where (q1, q2, q3, q4) = (10, 50, 150, 50). Due to the combination
of the quadratic dependence in u and the zero boundary conditions, the equation
always admits pairs of opposite solutions u+, u−. However, in our study, we are only
interested in the positive solution u+(μ) :  → R

+.
Full order solutions are obtained via a finite element approximation, employing

piecewise linear functions, ζi :  → R, for i = 1, . . . , Nh , with Nh = 44, 972
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Fig. 8 Reference solutions at log-conductivity μ� := [−0.75,−0.25,−0.5, 1,−0.25, 3]. On the left:
hydraulic head uh(μ�) and corresponding velocity field βh := −k(μ�)∇uh (in red). On the right: tracer
concentration ch(μ�), at time t = 0.4, and measurement wells (in red)

degrees of freedom (mesh size h ≈ 0.01). The discretization of the elliptic equation
(32) results in a discrete non-linear problem which is iteratively solved employing a
Newton schemewith tolerance 10−6. The approximate solution, uh , is used to compute
the velocity field, βh(μ) := −k(μ)∇uh , which is piecewise constant with Nh − 1
degrees of freedom. This is needed for the solution of the parabolic equation (31),
whose discretization leads to a system of ordinary differential equations integrated
over the time interval I using the Crank–Nicolson scheme with uniform time step
�t = 0.01. This is equivalent to performing a Petrov–Galerkin projection of Equation
(31), analogously to what have been shown for Equation (25) in Sect. 4.1.

Each full order simulation is obtained employing a FreeFEM++ solver (Hecht 2012)
and takes roughly 2min to be computed. Figure8 shows the hydraulic head uh(μ�)

and the relative velocity field βh(μ
�) (on the left) and the tracer concentration field

ch(0.4;μ�) (on the right), both associated with the reference log-conductivity

μ� = [−0.75,−0.25,−0.50, 1.00,−0.25, 3.00]�. (33)

The same reference log-conductivity is used as the true parameter for the data assim-
ilation problem. Pointwise observations are collected at five successive times tm ∈
{0.1, 0.2, 0.3, 0.4, 0.5}, in 25 spatial location xi j = (xi , y j ) such that xi = 0.1+ 0.2i
and y j = 0.1 + 0.2 j for i, j ∈ {0, . . . , 4}. This operation is encoded in the measure-
ment operator L : H1() → R

125. Each noise-free measurement is polluted with
i.i.d. Gaussian noise with mean zero and covariance σ , resulting in a noise covariance
matrix � = σ 2I.

In order to solve the inverse problem with surrogate models of different accuracy,
various approximations of (32) and (31) must be produced. This requires the intro-
duction of spatial basis functions ψi , ϕ j :  → R, i ∈ N ∩ [1, Nε], j ∈ N ∩ [1, Mε],
selected by applying the method of snapshots (POD) to the two sets of full order
solutions,
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�u
TRAIN := {uh(μ(s) )}Ss=1 and �c

TRAIN := {ch(t (z);μ(s) )}Z ,S
z,s=1 ,

with snapshot parameters, μ(s) ∼ �0 :=�6
r=1U (μmin

r , μmax
r ), for all s ∈ N ∩ [1, S]

and sampling times t (z) = 0.01z for all z ∈ N ∩ [1, Z ], where S = 2, 000 and
Z = 50. The number of basis functions considered, Nε, Mε ∈ N, is the one required
to approximate the hydraulic head and the tracer concentration with relative accuracy
εu, εc ∈ R

+, where

εu := sup
μ∈D

‖uh(μ) − uε(μ)‖H1()

‖uh(μ)‖H1()

, (34)

εc := sup
μ∈D

‖ch(μ) − cε(μ)‖L2(I,H1())

‖ch(μ)‖L2(I,H1())

. (35)

Based on the first set of basis functions, the approximation space for the Galerkin
projection of (32) is defined as Uε := span{ψi }Nε

i=1 . From the second set of basis

functions, instead, the RB test space Wε := span{ωn⊗ϕi }Mε,Nt
i,n=1 and RB trail space

Vε := span{υn⊗ϕi }Mε,Nt
i,n=1 are defined for the Petrov–Galerkin projection of (31). We

look at reduced solutions of the form

uε(μ)=
Nε∑

i=1

ui (μ)ψi (36)

cε(μ)=
Mε∑

j=1

Nt∑

n=1

cn, j (μ) υn ϕ j , (37)

where the expansion coefficients cn, j and ui , with i ∈ N ∩ [1, Nε], n ∈ N ∩ [1, Nt ]
and j ∈ N ∩ [1, Mε], satisfy the systems of algebraic equations

Nε,Nε∑

p,q=1

Ni pq(μ)u puq = fi , (38)

Mε∑

k=1

(
M jk + �t

2
D jk(u,μ)

)
cn+1,k =

(
M jk − �t

2
D jk(u,μ)

)
cn,k + g j , (39)

given the initial conditions c0, j = 0 for all j ∈ N ∩ [1, Mε]. The scalar forcing
terms fi , g j are obtained by integrating their full order counterparts versus the basis
functions ψi and ϕ j , for all i ∈ N ∩ [1, Nε], j ∈ N ∩ [1, Mε]

fi :=
∫



fhψi d, g j := �t
∫



fcϕ j d. (40)

The mass and stiffness matricesM,K ∈ R
Mε are defined as in (29), while the param-

eter dependent tensors D(u,μ) ∈ R
M2

ε and N(μ) ∈ R
M3

ε depend affinely on the
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multidimensional arrays A ∈ R
6×N3

ε , B ∈ R
6×N2

ε ×M2
ε , and C ∈ R

6×Nε×M2
ε defined as

Ai pqr :=
∫



ηr

2

(
ψp(∇ψq · ∇ψi ) + ψq(∇ψp · ∇ψi )

)
d, (41)

B jkpqr :=
∫



ηr (∇ϕ j · ∇ψp)(∇ϕk · ∇ψq)d, (42)

C jksr :=
∫



ηr (∇ϕ j · ∇ψs)ϕkd. (43)

For a fixed value of the log-conductivity, μ, the tensors N(μ) and D(u,μ) can be
assembled. The latter, however, requires the evaluation of the discrete hydraulic head
u. They are respectively defined as

Ni pq(μ) :=
6∑

r=1

eμrAi pqr , (44)

D jk(u,μ) := dmK jk + dl

Nε,Nε,6∑

p,q,r=1

e2μrB jkpqr u puq +
Nε,6∑

s,r=1

eμrC jksr us . (45)

We emphasize that the accuracy of the solutions of (38) and (39), with the latter equiv-
alent to a Crank–Nicolson discretization, depends on the number of basis functions
and on the time step �t . In Fig. 9, on the left and on the right, we show the maximum
relative errors of the surrogate model (εu , εc) as a function of Nε and Mε. In the cen-
ter, we show the L∞(I; L∞()) relative error of the tracer concentration, bounding
from above the error on synthetic measurements. We compute these maximum rela-
tive errors on a set of parameters �

μ
TEST := {μ(s) ∼ �0(μ)}500s=1 independent of the

ones used for the model training. It can be observed that, for small values of Nε, the
error in the concentration stagnates after a certain value of Mε, suggesting that, in this
region, the error is dominated by the approximation of the hydraulic head. However,
for Nε = 40, this effect is no longer present, at least for the values of Mε considered,
and the tracer error only depends on Mε. This allows us to modify the accuracy of the
model by varying the dimension of the reduced model.

The constructionof the reducedmodel has anoffline cost of about 75h.This includes
the time required for the construction of a training set of 2, 000 full order solutions
(61h 16′ 40′′), the time for the computation of the POD basis functions (23′ 40′′), and
the time for assembling the RB model tensors (13h 32′ 47′′). This cost corresponds
roughly to the computational cost of 2, 500finite element solutions, eachofwhich takes
approximately 110s. The surrogate model obtained employing Nε = 40, Mε = 320
basis functions produces a solution in only 1.25s (online cost), which is about 1/90
of its full order equivalent. The same training set used for the POD is employed to
estimate, at negligible cost, the empirical moments of δ�

ε, i.e., δε and �ε.
Note that we admittedly used a “brute force” POD approach to generate the basis

for this nonlinear problem. Amore offline-efficient method, for example using a POD-
Greedy algorithm, could have beenused.However, thiswould have beenmore complex
in terms of both theory and implementation of the reduced model, and is beyond the
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Fig. 9 Left and center: maximum relative error of the solution and of the projection of the tracer concen-
tration versus Mε for different values of Nε ; projection—in space—performed with respect to the H1()

inner product. Right: maximum relative error of the projection and of the solution of the hydraulic head
versus Nε . Error norm shown above each plot

scope of this paper. Our focus here is on the EnKM and its modification in settings
where surrogate models are used.

We now turn our attention to the inverse problem, as discussed in Sect. 2.1. We start
by considering the estimation of the reference parameter μ� given the measurements
y(μ�, η) ∈ R

125, polluted by experimental noise of magnitude σ . To have a reliable
statistic, we consider 32 independent initial ensembles E0 of variable size, sampled
from the same distribution �0.

As a first experiment, we compare the performances of the two RB-EnKM employ-
ing J = 160 particles and a surrogate model with error tolerance εc ≈ 0.02 (obtained
with Nε = 40 and Mε = 320). The first test relies on the biased version of the RB-
EnKM, as presented in Sect. 2.1, while the second test corresponds to the adjusted
algorithm. For both simulations, we consider low-amplitude experimental noise, i.e.,
negligible if compared to the model error, supμ ‖L(ch(μ) − cε(μ))‖∞ ≈ 10−2 >

10−3 = σ , and we separately pollute the measurements employed by the ensem-
bles. In Table 4, we report the average properties of the ensembles after 4 iterations:
columns Eε and E∗

ε contain the mean parameter estimation, i.e., the particle mean,
averaged over the 32 ensembles. Here, columns �ε and �∗

ε contain the average stan-
dard deviation of the ensembles. We can observe that the correction term has the effect
of significantly lowering the reconstruction error from ‖Eε − μ�‖∞ = 6.437e-3 to
‖E∗

ε − μ�‖∞ = 7.870e-4. We also notice that the variability of the estimate increases
consistently with the presence of an additional term in the Kalman gain. At least in
this test, and contrary to the previous numerical experiment, the standard deviation
of the ensemble shows a good correlation with the reconstruction error for both the
biased and adjusted algorithm.

We note, for this example, that the total cost of estimating a single parameter with
the biased or the adjusted RB-EnKM is higher than with the FO-EnKM (approx.
75h 28′ for the former and 19h 37′ for the latter). This is due to the six-dimensional
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Table 4 Comparison of biased RB ( ·ε)—adjusted RB ( ·∗ε ) EnKM in low-noise conditions σ = 10−6.
The test was performed by averaging 32 estimations obtained employing ensembles of 160 particles and
4 iterations, and using reduced basis models of size Nε = 40, Mε = 320 (εc ≈ 0.02). E refers to the
average parameter estimation, while� denotes the average ensemble standard deviation, and H the average
estimation error. t.c. and o.c indicate respectively the total and online cost of one parameter estimation

Eε �ε Hε E∗
ε �∗

ε H∗
ε μ�

μ1 −0.75189 1.261e-3 1.970e-3 −0.75079 1.543e-3 1.385e-3 −0.75

μ2 −0.25644 1.860e-3 6.437e-3 −0.25040 2.785e-3 2.251e-3 −0.25

μ3 −0.50313 1.001e-3 3.134e-3 −0.50040 1.353e-3 1.130e-3 −0.50

μ4 0.99904 0.701e-3 1.018e-3 0.99976 1.016e-3 0.836e-3 1.00

μ5 −0.25111 0.898e-3 1.276e-3 −0.25033 1.221e-3 1.014e-3 −0.25

μ6 3.00013 0.630e-3 0.516e-3 2.99967 0.904e-3 0.775e-3 3.00

t.c. 75h 27′ 39′′ 75h 27′ 36′′
o.c. 13′ 32′′ 13′ 29′′

parameter space and the fact that the parameters are not highly correlated. We thus
require a fairly large training set of size 2,000 to obtain a sufficiently accurate reduced
order model over the whole parameter space. In combination with the “brute force”
POD approach—as mentioned above—the offline cost is thus considerable. However,
if one is interested in multiple parameter estimations, e.g., due to new data being
availabe, the RB-EnKM algorithm significantly outperforms the FO-EnKM in terms
of computational runtime since the online phase requires only 13′ 32′′. For example,
repeating the parameter estimation 32 times in order to obtain a better statistical
characterization of the method takes about 82h using the reduced basis method, but it
would require more than 627h using the FO-EnKM.

As an extension of the previous experiment, we estimate the reference parameterμ�

employing the same surrogate model, noise magnitude and number of ensembles as
before, but using ensembles of variable size J = 20k, with k ∈ N∩[2, 16]. This allows
us to study the effect of the ensemble size on the parameter estimation obtained with
the biased and adjusted RB-EnKM algorithms. The results shown in Fig. 10 indicate
that, for both algorithms, very small ensembles lead to large relative errors and entail a
large variability among the different samples. This behavior seems to be relevant only
for ensembles with less than 40 particles when the biased RB-EnKM is employed, and
with less than 80 particles when the adjusted version is used. Larger ensembles do not
exhibit relevant fluctuations; we can therefore assume an ensemble of size J = 160
to be sufficiently large to ensure the independence from this quantity of the results in
the upcoming tests.

A key quantity determining the performances of the method is the noise magnitude.
Its effect on the two reduced basis algorithms is investigated by looking at the variation
of the relative estimation error of the reference parameterμ� when the noisemagnitude
varies. To this end, we consider seven noise values, σ 2 = 10−m with m ∈ N ∩ [1, 7].
We employ the same RB-EnKM used before, with a fixed ensemble size J = 160, and
we average the results over 32 independent ensembles. The results, shown in Fig. 11,
reiterate the inadequacy of the biased method in dealing with the systematic bias
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Fig. 10 Biased and adjusted RB-EnKM parameter estimation relative error versus ensemble size, for fixed
noise magnitude σ = 10−3. The solid lines represent the average error over 32 ensembles at different
algorithm iterations. The dashed lines represent the 10th and the 90th percentiles

Fig. 11 Biased and adjustedRB-EnKMparameter estimation relative error versus absolute noisemagnitude,
for fixed ensemble size J = 160. The solid lines represent the average error over 32 ensembles at different
algorithm iterations. The dashed lines represent the 10th and the 90th percentiles

introduced in themeasurements by the surrogatemodel. In fact, the plot corresponding
to the biased method shows error stagnation for low-noise. On the contrary, the plot
corresponding to the adjusted method highlights a mitigation of this effect, with an
estimation error that keeps decreasing in low-noise conditions, although at a lower
rate than in high-noise conditions.

In our last experiment, we test the performances of the biased and adjusted RB-
EnKM by employing surrogate models of increasing accuracy. We fix the size of
the reduced space Uε to a sufficiently large value, Nε = 40, and we vary the size
of the approximation space associated with the concentration: Mε = 10k, with k ∈
N∩ [2, 32]. Employing the resulting approximated models, we estimate the reference
parameter μ� in low-noise conditions, σ = 10−3, averaging the results obtained over
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Fig. 12 Parameter error versus reduced basis size andmaximum relative error of the solution. The solid lines
represent the average error over 16 ensembles at different algorithm iterations. The dashed lines represent
the 10th and the 90th percentiles

16 ensembles of 160 particles each. In Fig. 12, we show the final relative error (after
three algorithm iterations) as Mε and εc change, both for the biased and the adjusted
RB-EnKM. For both, we observe that the relative estimation error decreases, almost
linearly, with the error of the surrogate model. Moreover, we observe that, with few
exceptions, the error of the adjusted algorithm is smaller than the error of the biased
algorithm. The few points where the two errors are very close can be explained by a
strongly unbalanced distribution of the measurement bias in a region away from the
reference parameter. Future developments that take into account, in the execution of
the algorithm, the parameter estimate to adjust the bias correction should dampen this
effect.

5 Conclusions

We proposed an efficient, gradient-free iterative solution method for inverse problems
that combines model order reduction techniques, via the reduced basis method, and
the Kalman ensemble method introduced in Iglesias et al. (2013). The use of surrogate
models allows a significant speed-up of the online computational cost, but it leads
to a distortion in the cost function optimized by the inverse problem. This in turn
introduces a systematic error in the approximate solution of the inverse problem. To
overcome this limitation, we have proposed the adjusted RB-EnKM which corrects
for this bias by systematically adjusting the cost function and thus retrieving good
convergence.

Using a linear Taylor–Green vortex problem, the performance of the method is
compared versus the full order model as well as to the biased RB-EnKM in which
no adjustment was made. The numerical results show that the biased method fails
to achieve the same accuracy as the full order method. Contrarily, the adjusted RB-
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EnKM attains the same accuracy as its full order counterpart for a large range of
noise magnitudes at a significantly lower computational cost, and even approaches the
mean-field limit faster as the ensemble size is increased. Furthermore, the dependence
on model accuracy of the reconstruction error is essentially removed over the range
of model accuracy considered.

The method was then applied to a non-linear tracer transport problem. The results
for this example show that, despite a decrease in the order of convergence at low-
noise, the stagnation of the reconstruction error observed in the biased RB-EnKM can
be removed by adjusting the algorithm. Regarding the model accuracy, a substantial
improvement of the adjusted EnKM with respect to the biased EnKM was observed,
although less pronounced than in the linear problem.

Overall, our numerical tests show that the proposed method allows for the use of
inexpensive surrogate models while empirically ensuring that the predicted result of
the inversion remains accurate with respect to the full order inversion.

Although the online computational cost is significantly lower than the reference
full order method, we do note that—depending on the problem at hand and the
implementation—the offline cost can be considerable. As a result, the overall cost
(offline plus online parameter inversion) for solving a single inversion problem may
not be competitive with a plain full order inversion as observed in the second case
study. However, if we consider the solution of multiple inverse problems, either due to
new data being analyzed or in order to obtain a better statistics, the method becomes
competitive also for the second numerical experiment considered.
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