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Abstract
The non-hydrostatic unified model of the ocean (NUMO) has been developed to
advance model capability to realistically represent the dynamics and ice/ocean inter-
actions in Greenland fjords, including an accurate representation of complex fjord
geometries. To that end, NUMO uses high-order spectral element methods on unstruc-
tured grids to solve the incompressible Navier–Stokes equations complemented with
heat and salinity transport equations. This paper presents the model’s description and
discusses the formulation of ice/ocean Neumann boundary conditions based on the
three-equationmodel.We validate the model on a range of test cases. The convergence
study on the classical Kovasznay flow shows exponential convergence with arbitrary
basis function polynomial order. The lock-exchange and density current cases show
that the model results of buoyancy-driven flows solved with 2D and 3D unstructured
meshes agree well with previously published findings. Finally, we show that a high-
order simulation of an ice block immersed in saline water produces results that match
both direct numerical simulation and laboratory experiments.
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1 Introduction

Numerical modeling of ice/ocean interactions has gained significant interest in the
climate modeling community due to the observed changes to Earth’s cryosphere. The
most rapid of those changes occur in the Arctic, where the mass loss of the Greenland
ice sheet accounts for a quarter of global sea-level rise (Jackson et al. 2014) and is
the fastest-growing contributor to this metric (Slater et al. 2019). One of the dominant
drivers of those changes is the melting of glacier termini by warming of the inflowing
Atlantic waters (Straneo and Heimbach 2013). Accurate representation of ice-ocean
interactions in regional andglobal oceanmodels is crucial, yet challenging, for accurate
sea-level rise predictions (Catania et al. 2020).

In recent years, there have been several attempts to simulate ice/ocean interactions in
the context of marine-terminating glaciers. A popular choice is to use a three-equation
formulation (Jenkins et al. 2001) of heat and salt balance to calculatemelt rate as a func-
tion of near-terminus conditions. This is often coupled with a well-established buoyant
plume theory (Morton et al. 1956; MacAyeal 1985), which calculates near-terminus
temperature and salinity based on the far-field properties. This parameterization is
used either as a stand-alone tool to quantify melt rate (Jenkins 2011; Slater et al. 2016)
or within a numerical ocean model to prescribe a boundary condition in an ocean
simulation (Xu et al. 2012; Sciascia et al. 2013; Kimura et al. 2014; Cowton et al.
2015; Carroll et al. 2017). This approach, however, was shown to underestimate the
observed melt rates (Jackson et al. 2017).

To avoid extensive parameterizations, some researchers use high-resolution, small-
scale models to resolve the turbulent plume near the ice/ocean interface. Gayen et al.
(2016) performed a direct numerical simulation (DNS) of an ice face immersed in
unstratified saline water that showed excellent agreement with experiments Josberger
andMartin (1981), Kerr andMcConnochie (2015). Mondal et al. (2019) took a similar
approach for sloping ice faces, while Ezhova et al. (2018) used DNS to simulate wall
plumes and compared them with existing parameterizations. While very accurate,
the DNS approach is unrealistic for fjord-scale simulations due to an excessive cost
dictated by the fine resolution.

In the long term, the non-hydrostatic unified model of the ocean (NUMO) aims
to bridge the gap between the parameterization-dependent models which can per-
form large-scale simulations and small-scale, accurate models. We believe that using
adaptive unstructured meshes combined with high-order numerical methods can both
realistically resolve key processes at the ice/ocean interface and represent the entire
fjord circulation. In this paper, we present the details of the model using arbitrarily
high-order element-based nodal Galerkin methods to discretize the three-dimensional,
incompressible Navier–Stokes equations on arbitrarily unstructured meshes. We vali-
date the model on standard test cases and compare a small-scale ice/ocean simulation
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with the DNS result of Gayen et al. (2016) and the laboratory experiment result in
Josberger and Martin (1981).

Previous approaches to modeling non-hydrostatic interactions between a vertical
ice face and ocean have used either the well-established MITgcm (Marshall et al.
1997) finite-volume model, Fluidity (Piggott et al. 2008) finite element model, or
other models based on the finite difference (with spectral algorithm in the spanwise
direction) for DNS simulations (Gayen et al. 2016). All of the above models use at
most second order numerical methods. Examples of high-order Galerkinmethods used
in non-hydrostatic ocean simulations are the Thetis coastal ocean model (Kärnä et al.
2018), and NEK5000 (Fischer 1997). To the authors’ knowledge, NUMO is the first
model which applies those methods for vertical ice/ocean interactions. This paper is
the first publication of the NUMO model.

2 Model description

NUMOuses the incompressibleNavier–Stokes equationswith theBoussinesq approx-
imation for buoyancy processes, which we write as follows

∂u
∂t

+ u · ∇u − ν�u + 2� × u = − 1

ρ0
∇ p + ρ

ρ0
gk, (1)

∇ · u = 0, (2)

where u = (u, v, w)T is a velocity vector, T is the transpose operator,∇ is the gradient
operator, � the Laplacian, ν is the viscosity, � is the Earth’s angular velocity vector,
ρ = ρ0 + ρ′ is the density of water split into reference constant density ρ0 and the
variation ρ′, p is the pressure, g is the gravitational acceleration magnitude and k is
the unit vector of the direction along which the gravitational acceleration acts (in this
paper k = (0, 0, 1)T).

Equations (1)–(2) are complemented with the transport equation for temperature T
and salinity S

∂

∂t

[
T
S

]
−

[
κT�T
κS�S

]
= −u · ∇

[
T
S

]
, (3)

where κT ,S are diffusivities of temperature and salinity. To compute the density vari-
ation in the buoyancy term in the test cases presented in the paper, NUMO uses a
linearized equation of state

ρ′ = ρ0 (αT (T − T0) + αS(S − S0)) , (4)

where αT ,S are temperature and salinity expansion coefficients, and T0 = T0(z) and
S0 = S0(z) are temperature and salinity reference profiles.Another option in themodel
is the simplified equation of state developed by Roquet et al. (2015) to fit the UNESCO
EOS for seawater Intergovernmental Oceanographic Commission (2010). The non-
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linear EOS is not used here to remain consistent with the reference simulations we
compare against.

In Eq. (1) we split the density into a constant reference component ρ0, and a
perturbation ρ′. Let us now split the pressure

p = p0 + p′, (5)

such that
∇ p0 = ρ0gk, (6)

i.e., the gradient of the reference pressure, p0, balances the gravity term due to the
reference density, ρ0. This allows us to use a simplified form of (1):

∂u
∂t

+ u · ∇u − ν�u + 2� × u = − 1

ρ0
∇ p′ + ρ′

ρ0
gk. (7)

Similarly to pressure, we separate the temperature and salinity fields into reference
and perturbation parts:

T = T0 + T ′, S = S0 + S′. (8)

This separation leads to the following reorganization of Eq. (3):

∂

∂t

[
T ′
S′

]
−

[
κT�T ′
κS�S′

]
= −u · ∇

[
T ′ + T0
S′ + S0

]
+

[
κT�T0
κS�S0

]
. (9)

The last term on the right-hand-side represents the diffusion of the reference state. In
the cases presented in this paper both T0 and S0 are constant, so we omit these terms.

2.1 Boundary conditions

The domain sides and ocean bottom are modeled as either no-slip (u = 0) or free-slip
walls (n · ∇u = 0, where n is the outward pointing normal vector). Unless otherwise
stated, all walls are adiabatic (n · ∇T = 0), and do not allow for salinity transport
(n · ∇S = 0). One exception to this rule is the ice-ocean interface, where we compute
the heat and salinity flux to the domain using balance equations for heat and salinity.

2.1.1 Heat and salinity balance

The heat conservation equation is

QT
i − QT

w = QT
latent , (10)

where QT
i is the heat transported to the ice, QT

w the heat transported from the water,
and QT

latent = −ρi V Li the latent heat. V is the melt rate with units of velocity [m/s]
and Li the latent heat of ice fusion. Holland and Jenkins (1999) discuss various choices
for modeling QT

i . Since in the cases explored in this paper QT
i is small compared to
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QT
latent due to a small difference between the initial temperatures of ice and water

(Kerr and McConnochie 2015), we assume no heat flux into the ice, and express the
heat flux from water as

QT
w = −ρ0cwκTn · ∇T

∣∣
b, (11)

where cw is the specific heat of water, κT thermal diffusivity of water, n the unit vector
normal to the ice boundary and the symbol |b indicates that the temperature gradient
is taken at the ice boundary. Equations (10) and (11) result in a Neumann condition
for water temperature at the ice/ocean boundary

n · ∇T
∣∣
b = ρi Li

ρ0cwκT
V . (12)

Similarly, we derive a boundary condition for salinity from the conservation equa-
tion

QS
i − QS

w = QS
brine, (13)

where QS
w = −ρ0κS n · ∇S|b is the flux of salt from the water and QS

i the flux of
salt to the ice. This is balanced by the brine salinity flux QS

brine = ρ0V (Si − Sb)
required to maintain the ice/ocean interface salinity Sb, which corresponds to the
melting/freezing temperature Tb (see Eq. (15)). We neglect the salinity flux to the ice,
and assume Si = 0, which leads to a Neumann condition for salinity

n · ∇S
∣∣
b = ρi

ρ0κS
SbV . (14)

2.1.2 Three-equation formulation

Conditions (12) and (14) are defined in terms of the melt rate V and salinity of the
ice/ocean interface Sb. We compute those quantities using the three-equation formu-
lation (Holland and Jenkins 1999). The three-equation formulation involves using the
freezing temperature Tb dependence on the interface salinity

Tb = aSb + b + cpb, (15)

where pb is the pressure at the interface, and a, b, c are constants. Following Gayen
et al. (2016), we use a simplified version Tb = aSb with a = −0.061/psu, where
salinity is expressed in practical salinity units (psu), which are equivalent to parts per
thousand (0/00) or [g/kg]. This simplification is valid for the test case used in this paper,
where the 1m domain depth does not provide a significant variation in pressure pb.
For more general cases we use empirical values for a, b, c from Holland and Jenkins
(1999). In addition, we use Eqs. (10), (13) with approximations to temperature and
salinity gradients (Jenkins et al. 2001)

ci V (Ti − Tb) + cwγT (Tw − Tb) = V Li , (16)

γS(Sw − Sb) = V Sb, (17)
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where Ti is the internal temperature of ice, γT and γS are thermal and salinity exchange
velocities, ci and cw are the specific heats of ice and water. Tw and Sw are the tem-
perature and salinity of water at a certain distance from the interface. In the results
presented in this paper, we chose Tw = T

∣∣
b and Sw = S

∣∣
b, meaning that for the

purpose of Eqs. (16) and (17) we take the water properties at the ice boundary as our
Tw and Sw and note that they are not equal to the interface properties Tb and Sb. This
approximation is only used to compute the melt-rate and interface salinity required
by boundary conditions (12), (14), which will affect the near-interface conditions
simulated by the Navier–Stokes equations.

2.1.3 Restoring condition

The restoring condition introduces an additional body force in the selected volume
which forces a quantity q (e.g., T , S) to a prescribed profile q0:

Fr (t) = 1

�tr
(q0 − q), (18)

where �tr is the time-scale (restoring time) over which the restoring happens. The
restoring term is added to the right-hand-side of Eq. (3) only for the elements which
belong to the restoring volume. This condition is typically used near the outflow from
the domain, either to stabilize the flow close to the no-stress outflow, or whilemodeling
the interaction of the fjord water with the open ocean, where we prescribe restoring
to the reference T0 and S0 profiles.

2.2 Time integration

NUMO follows the classical fractional step method with a stiffly-stable pressure cor-
rection scheme (Karniadakis et al. 1991). It consists of breaking the time-step into three
sub-steps. First, we take the explicit step involving only the non-linear and forcing
terms to form an intermediate variable q̂ = [ûT, T̂ ′, Ŝ′]T:

q̂ − ∑Ji
k=0 αkqn−k

�t
=

Je∑
k=0

βk

(
−un−k · ∇qn−k + G(qn−k)

)
(19)

where q = [uT, T ′, S′]T is a vector of variables, �t is the time-step, constants Ji and
Je define the order of the integration scheme, and αk, βk are the coefficients of the
stiffly-stable scheme. Throughout the paper we use Ji = Je = 2 for second-order
time accuracy. Superscript n symbolizes the quantity taken at a time-level tn , and the
values of the coefficients are given in Karniadakis et al. (1991). The source terms are
defined as G(q) = [( ρ′

ρ0
gk − 2� × u)T, 0, 0]T.
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Next, we find the pressure gradient, which when applied to the preliminary velocity
û will result in a divergence-free velocity field

ˆ̂u − û
�t

= − 1

ρ0
∇ p′n+1

, (20)

where p′n+1 is the solution of the Poisson equation

1

ρ0
�p′n+1 = ∇ ·

(
û
�t

)
(21)

with high-order boundary conditions (Karniadakis et al. 1991)

n · ∇ p′n+1 = n ·
(Je−1∑

k=0

βk

(
−un−k · ∇un−k + G(un−k) + ν∇ × (∇ × un−k)

))
,

(22)
where ν is the dynamic viscosity coefficient. This approach circumvents the LBB
stability condition when using equal order approximations to u and p (Karniadakis
et al. 1991).

To complete the time-step, we apply the diffusion term to the updated variable
vector ˆ̂q = [ˆ̂uT , T̂ ′, Ŝ′]T

γ0qn+1 − ˆ̂q
�t

=
⎡
⎣ ν

κT
κS

⎤
⎦ ◦ �qn+1, (23)

where the ◦ symbol represents the Hadamard product ((a ◦ b)i = aibi ), κT , κS are
the thermal and salinity diffusivities, ν = [ν, ν, ν]T a vector of viscosity coefficients,
and γ0 is another coefficient of the stiffly-stable scheme. Rearranging (23) leads to a
Helmholtz equations for qn+1 with boundary conditions defined by the physics of the
problem (see Sect. 2.1). Since the Helmholtz problems for each velocity component,
temperature, and salinity are decoupled (except for some choices of velocity boundary
conditions, not used in this paper), we can solve them separately rather than as one
monolithic system. This means that at each time-step we solve one Poisson problem
for pressure, and five Helmholtz problems for the components of q.

2.3 Spatial discretization

NUMO is part of the Galerkin Numerical Modeling Environment (GNuME) (Giraldo
2016) framework, which offers a choice of continuous Galerkin (CG) and discontin-
uous Galerkin (DG) methods. The details can be found in Abdi and Giraldo (2016).
Here we summarize the implementation of the Neumann boundary conditions in the
CG method, as it was used to model the ice/ocean boundary.

We divide the domain 
 ∈ R
3 into Ne non-overlapping hexahedral elements.

In the case of two dimensional simulations, we use quadrilateral elements. Within
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each element 
e, we create a grid of M nodal points using Legendre–Gauss–Lobatto
distribution (Giraldo 2020), and define Lagrange polynomial basis functions ψ j such
that their value is 1 at the corresponding node j , and 0 on all other nodes. We use the
basis functions to expand the solution q(x, t) inside the element 
e:

q(x, t) ≈ q(e)
N (x, t) =

M∑
j=1

ψ j (x)q
(e)
j (t), (24)

where superscript (e) denotes the element-based entity and q(e)
j is the expansion coef-

ficient corresponding to node j .
We will demonstrate the CG method on the example of the Poisson equation

∇2q(x) = f (x), (25)

which is a generic version of the pressure equation (21) and can be easily adapted to the
Helmholtz Eq. (23). To complete the system, we include the boundary conditions of
both Dirichlet and Neumann types prescribed at boundaries �D and �N respectively:

q
∣∣
�D

= gD(x), n · ∇q
∣∣
�N

= gN (x). (26)

We expand both the solution q(x) and the right-hand-side f (x) using approximation
(24), substitute the approximations to Eq. (25), multiply by a test function ψi and
integrate within each element:

∫

e

ψi∇2q(e)
N d
e =

∫

e

ψi f
(e)
N d
e. (27)

Next, we use integration by parts and the divergence theorem on the left-hand-side
of (27) to obtain

∫
�e

n · (ψi∇q(e)
N )d�e −

∫

e

∇ψi · ∇q(e)
N d
e =

∫

e

ψi f
(e)
N d
e. (28)

The first term on the left-hand-side is used to impose Neumann boundary conditions
on the element faces which are also domain boundaries

∫
�e/�N

n · (ψi∇q(e)
N )d�e −

∫

e

∇ψi ·∇q(e)
N d
e =

∫

e

ψi f
(e)
N d
e −

∫
�N

ψi gNd�N .

(29)
The boundary term on the left-hand-side will vanish on the inter-element edges due

to the direct stiffness summation operation (not shown), which enforces continuity
across element interfaces and results in the global representation of the discretiza-
tion. For details of the implementation of the Dirichlet condition and direct stiffness
summation, we refer the reader to Giraldo (2020).
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2.4 Unstructuredmesh

The goal of the NUMO project is to create a model which is capable of model-
ing complex and relatively small-scale fjord geometries using unstructured meshes
and high-order CG/DG methods. The numerical methods in GNuME are capable of
supporting arbitrary unstructured meshes (Marras et al. 2015) both as static and non-
conforming adaptive grids (Kopera and Giraldo 2014, 2015). The mesh connectivity
and information is handled by the parallel p4est library (Burstedde et al. 2011). In this
paper we focus on static unstructured meshes only. We use the GMSH (Geuzaine and
Remacle 2009) mesh generator, which is capable of creating 2D quadrilateral unstruc-
tured meshes, and also 3D hexahedral meshes by subdividing tetrahedral grids, or
extruding 2D quadrilateral meshes in the third dimension. We use GMSH’s ability to
label physical boundaries and elements to prescribe boundary conditions and restoring
zones.

3 Results

To validate the model, we present the results of several test cases. The Kovasznay flow
test (Sect. 3.1) checks the convergence rates of the CG method compared with the
analytic solution. The lock-exchange (Sect. 3.2) and density current (Sect. 3.3) cases
compare buoyancy-driven flow in 2D and 3D domains with results in the literature.
Finally, we compare the ice/ocean interaction simulation (Sect. 3.4) against a direct
numerical simulation and laboratory experiment.

3.1 Kovasznay flow

TheKovasznay flow (Kovasznay 1948) is a steady-state analytic solution to the incom-
pressible Navier–Stokes equations given by

u(x, y) = 1−eλx cos(2π y), v(x, y) = λ

2π
eλx sin(2π y), p(x, y) = 1

2
(1−e2λx ),

where λ = Re
2 −

√
Re2
4 + 4π2 and Re = 40 is the Reynolds number. We run it in the

domain [−0.5, 1] × [−0.5, 0.5], with the initial condition equal to the exact solution.
We then take a single time-step to assess the spatial convergence error. Starting the
simulation from u = 0 initial condition gives the same result.

Figure1a shows the streamlines and domain extent of this test. We run three
sequences of simulations with increasing element resolution, each for different poly-
nomial expansion order Np. We repeat the same experiment on a structured mesh of
square elements (6 × 4 elements in the least refined case) and an unstructured mesh
shown in Fig. 1b. The unstructured mesh was generated such that the grid is refined
near the strong gradient in the solution, located close to the left end of the domain. We
have specified the element size on the left end to be three times smaller than on the
right boundary.
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Fig. 1 Streamlines of the Kovasznay flow (a) and a sample of an unstructured mesh used in the test (b).
Higher resolutions were obtained by subdividing elements of the mesh

(a) Structured mesh (b) Unstructured mesh

Fig. 2 Spatial convergence of the L2 error for different polynomial orders using the Kovasznay flow test
with (a) structured and (b) unstructuredmesh. The error is plotted against the square root of the total number
of nodal points. In panel (b) the dashed lines represent the convergence lines from panel (a). The numbers
by the lines are the slopes in a log-log plot

In Fig. 2, the L2 error between the numerical and analytic solution for horizontal
velocity is plotted against the square root of the total number of nodal points (Npts).
We use this measure for resolution to be able to directly compare the convergence on
structured (panel (a)) and unstructured (panel (b)) meshes. We expect the L2 error to
decline at a rate of Np + 1 (Deville et al. 2002, sec. 2.6). The values of computed
convergence rates are plotted above the lines corresponding to each Np sequence.

We obtain the convergence rates close to the theoretical expectation, except the
Np = 3 simulation in panel (a). The important takeaway from this test is that the
convergence rates for the unstructured mesh are comparable to those for the structured
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mesh. In fact, the values are slightly higher, which may be due to increased resolution
in the left part of the domain, where the wake of the Kovasznay flow occurs.

3.2 Lock-exchange

The lock-exchange test case simulates the interaction of twobodies ofwater of different
density initially placed next to each other in a tank of dimensions 0.8m × 0.1m. The
density perturbation is achieved by setting the temperature difference between the
fluids �T = 1◦C . We use a Grashof number Gr = g�ρH3ν−2 = 1.25× 106, where
�ρ is the density difference corresponding to �T , H = 0.1 m is the height of the
domain, and ν = 10−6 m2s−1 is the fluid viscosity. We use thermal conductivity
αT = 10−3 in the linearized equation of state (4). We run the simulations for two
different choices of Prandtl number Pr = νκ−1

T = 6.74 and Pr = 0.71.
We used a structured, uniform mesh of 512 × 64 elements and basis functions of

order Np = 4, giving a total number of nodal points Npts = 819, 200. Taking the
average distance between nodal points as an effective resolution, we get �x = �y ≈
0.0015 m. The time-step was �t = 0.0025 s. All the walls were modeled as free-slip
adiabatic boundaries, except the bottom wall where we applied the no-slip condition.

Figure 3 shows three snapshots of the temperature field at times 250 s, 500 s and
1000 s (panels (a), (b), (c), respectively). Blue color represents cold fluid and red
represents warm fluid. Panel (a) compares well visually with similar results reported
in Hiester et al. (2011). To provide a more quantitative comparison, we compared the
velocities of hot/cold fronts at the top (free-slip) and bottom (no-slip) walls. Figure 4
presents a comparison of the front speeds u f , reported as a non-dimensional Froude

number Fr = u f

(√
�ρ
ρ0

gH
)−1

, as a function of the distance from the initial front

(a) t = 250s

(b) t = 500s

(c) t = 1000s

Fig. 3 Snapshots of the temperature field of the lock-exchange test case for different times (a) t = 250s,
(b) t = 500s, (c) t = 1000s
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Fig. 4 Front velocity Froude number for no-slip and free-slip boundary conditions as a function of the
distance from x = 0. We compare NUMO (lines) with the results reported in Hiester et al. (2011) (markers)

Table 1 Comparison of the average Froude number (Fr ) in the steady front velocity regime for different
Prandtl numbers (Pr )

Gr Pr Fr
×106 No-slip Free-slip

NUMO 2D 1.25 6.74 0.420 0.482

Hiester et al. (2011) 2D 1.25 – 0.417 0.482

Fringer et al. (2006) 2D 1.25 – 0.396 0.428

Simpson and Britter (1979) EXP 4.8 7 0.432 –

NUMO 2D 1.25 0.71 0.407 0.475

Härtel et al. (2000) 2D 1.25 0.71 0.406 0.477

Cantero et al. (2007) 3D 1.5 0.71 0.407 –

Two-dimensional (2D) and three-dimensional (3D) results are reported from the literature, both numerical
simulations and an experimental result (EXP). Fr reported for no-slip and free-slip boundary conditions.
We also list the Grashoff number (Gr ) for every study

position. Lines represent the NUMO results with Pr = 6.74 for no-slip (dashed line)
and freeslip (solid line) fronts, which compare very well with the results by Hiester
et al. (2011) (markers) throughout the entire length of the domain. It is worth to
note that the Hiester et al. (2011) simulation was performed with no explicit thermal
diffusivity, so nominally Pr = ∞.

Table 1 compares the average Fr computed for the steady front velocity regime
between x = 0.2 m and x = 0.3 m for different settings of Pr number. NUMO
compares well with the simulation by Hiester et al. (2011), even though the reference
result was obtained using much higher resolution (0.25 × 10−3 m). The result by
Fringer et al. (2006), even though run with no explicit thermal diffusivity, shows a
slower front than other results, which can be attributed to relatively high numerical
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diffusion of the finite volumemethod. Our result is also quite close to the experimental
study by Simpson and Britter (1979), which used a similar Pr . Higher Gr in this case
explains a slightly faster front. NUMO compares well with the DNS simulation Härtel
et al. (2000) for the lower value of Pr , as well as the three-dimensional simulation in
Cantero et al. (2007) with slightly higher Gr .

3.3 Density current on a slope

The density current on a slope test case was previously used byÖzgökmen et al. (2004)
in both two- and three-dimensional configurations to investigate the overflow-induced
mixing and benchmark the development of a three-dimensional non-hydrostatic ocean
model capable of simulating bottomgravity currents.Herewe compareNUMOagainst
this result to further validate themodel in a fully three-dimensional testwith a vertically
unstructured mesh, representative of a Greenland tidewater fjord.

The domain dimensions are 10km × 2km in the horizontal directions x and y
respectively, with the ocean depth varying linearly from 400m at x = 0 to 1km at
x = 10km. The mesh, visible in Fig. 5, is generated initially in the vertical x-z plane,
and then extruded in the span-wise (y) direction. The smallest element size is 25m by
25m in x-z directions and 100m in the y direction. The largest element near the top
is approximately 100m in each direction. We used polynomial order Np = 4 which
results in the effective resolution varying between 6.25m near the bottom to 25m
near the surface in the x-z plane, and is uniformly 25m in the span-wise direction.
The time-step of 0.25 s results in a Courant number not exceeding 0.39 throughout
the simulation. In the reference simulation of Özgökmen et al. (2004), the smallest
effective resolution in a structured mesh was approximately 16m by 2m by 20m in
x , y, z directions, respectively. The authors report Courant number below 1 for a time
step of 0.85 s.

The initial condition (Fig. 5a, see Özgökmen et al. (2004) for details) for salinity is

S = 1

2
exp

[
−

(
x

1 + a sin(π y)

)20
]

×
[
1 − cos

(
π
1 − z

0.4

)]
.

The velocity is initially zero in the entire domain, however a time dependent velocity
profile is prescribed at the inlet (x = 0) boundary

uin = 0.8umax (−1.25 + 46.875z2 − 244.14z4),

where umax is the current front velocity (diagnosed as maximum velocity) in the
domain, and the total net flux to the domain is zero. The outflow boundary is set as a
no-stress outflow condition, the bottom is a no-slip wall, and the other boundaries are
free-slipwalls. This test also validates the anisotropic viscosity implementation, which
is a common feature in ocean models. Following Özgökmen et al. (2004), we chose
the horizontal viscosity νh = 1.17m2/s and vertical viscosity νv = 2.34×10−2m2/s.
The Schmidt number is Sc = ν

κS
= 1, so salinity diffusivities are equal to viscosities
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Fig. 5 Snapshots of the salinity field of the density current case. Only salinity S > 0.1 0/00 is visible, with
warm colors indicating more salt concentration up to 1 0/00. Panel a presents the initial condition, while
panel b shows volume rendering of salinity at t = 8000 s. The three-dimensional structure of the flow is
triggered by a slight span-wise perturbation of the initial condition.

in the horizontal and vertical directions. Additionally, we set the salinity expansion
coefficient to αS = 7 × 10−4 1/psu, which led to Rayleigh number Ra = 5 × 106.

To compare the results, in Fig. 6 we plot the normalized front velocity u f /uB over
time, where the front velocity is derived from the spanwise-averaged front position,
obtained by finding the maximum extent of a spanwise averaged S = 0.1 0/00 contour.
The velocity scale uB = (g′Q)1/3 is computed using the reduced gravity g′ = �ρ

ρ0
and spanwise-averaged volume flux of salty water into the domain Q. The results are
in good agreement with the reference simulation (Özgökmen et al. 2004) (circles).
The dashed (orange) band is the experimental result obtained for steady-state flow
(Monaghan et al. 1999). The NUMO result fits within the measurement uncertainty
bands, indicating good agreement with the laboratory experiment.
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Fig. 6 Normalized front speed u f /uB for the density current test. Comparison is made with the simulation
of Özgökmen et al. (2004) (circles) and the experiment of Monaghan et al. (1999) (dashed line - dotted
lines indicate measurement error)

3.4 Ice/ocean interface

Following Gayen et al. (2016), we constructed a simulation where an ice block is
immersed in the saltwater of initially constant temperature and salinity. We set the
initial T and S to the reference values T0 = 2.3 ◦C and S0 = 35 0/00. The extents
of the 2-dimensional domain are x ∈ [0, 0.5] m by z ∈ [0, 1] m with an ice face
at x = 0 and a restoring zone at x > 0.2 m where we relax the temperature and
salinity field to the initial values using restoring time �tr = 10s (see Sect. 2.1.3).
Our experimentation showed, however, that the restoring condition is not necessary
for such short simulation times. The velocity boundary conditions were free-slip at
all domain boundaries. We prescribed no-flux for both heat and salinity (n · ∇T = 0,
n ·∇S = 0) at all boundaries, except at the ice interface, where the ice/ocean boundary
condition described in Sect. 2.1 was used. The viscosity ν = 1.8 × 10−6 m2s−1 and
thermal and salinity diffusivities κT = 1.285× 10−7 m2s−1, κS = 1.8× 10−8 m2s−1

resulted in Prandtl number Pr = 14 and Schmidt number Sc = 100. At the ice
interface, to compute the boundary conditions (12), (14), we adjusted the salinity
diffusivity to Sc = 2500, following Gayen et al. (2016). The values for transfer
velocities γT = 1.68× 10−4 ms−1, γS = 5.05× 10−6ms−1 were computed from the
initial values of Tb, Sb in Gayen et al. (2016).

The mesh consisted of 48 by 96 elements in the x and z directions, respectively,
with 8th order polynomial basis functions, resulting in an effective resolution of�x =
�z = 0.0012m. The simulation was run with a time-step�t = 0.013s corresponding
to Courant number 0.13. A plot of instantaneous T and S fields in Fig. 7 shows the
main features of this test case, including the geometric extents and the presence of
a turbulent plume at the ice/ocean interface. The temperature and salinity boundary
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Fig. 7 Temperature (left panel) and salinity (right panel) fields at time t = 72 s. Darker colors indicate T
and S below the reference values T0 = 2.3 ◦C and S0 = 35 0/00. The minimum value of salinity on the
color bar was adjusted from 20 0/00 to 33 0/00 to improve visibility of low salinity regions near the surface

layers are presented in Fig. 8, where we show time-averaged profiles of T and S as a
function of the distance from the ice/ocean interface.

NUMO presents a steeper temperature gradient in the thermal boundary layer in
Fig. 8(a). The resolution of the DNS simulation is much finer in the boundary region
than in our simulation. One 8th order element inNUMOhas dimensions 0.01×0.01m,
with 9 nodal points in each direction inside the element. This amounts to effective
resolution of 0.00125m. The DNS simulation has about 200 points in each direction
inside an 0.01m square. Assuming the smallest spacing, and neglecting the fact that
the distribution of points in the DNS simulation is not uniform, gives the resolution
of 0.00005m. Despite this difference, the salinity profiles in the boundary layer in
Fig. 8(b) are similar.

The discrepancy between the temperature profiles could be caused by a possible
difference in the implementation of the ice/ocean boundary condition. For the com-
putation of interface properties in the three-equation formulation, Eq. (17), we take
the water temperature Tw at the domain boundary (x = 0), and assume that Tb is
some temperature of the interface which is not present in the fluid domain. Gayen
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Fig. 8 Time averaged profiles of temperature T (a) and salinity S (b) as a function of distance from the ice
face near the ice/ocean interface, comparing the results of NUMO (solid blue line) with Gayen et al. (2016)
(dashed orange line). The averaging time was chosen such that it averages only the quasi-steady state after
the initial transients have passed (see Fig. 9). In dot-dash green line we include a NUMO result with double
the number of elements in each direction, for an effective resolution of �x = �z = 0.0006m

et al. (2016) does not provide details of the boundary condition beyond stating it is
formulated as heat and salinity flux. Other researchers, however, chose to use the
water temperature outside the boundary layer (Kimura et al. 2014, for example). Fur-
ther analysis in Fig. 11 shows that this discrepancy does not have a significant effect
on the melt rate and interface temperature computed across a range of initial water
temperatures T0.

To test this further, we doubled the number of elements in our simulation. The
result is shown as a green dotted line in Fig. 8. Both profiles are smoother, indicating
that the oscillations visible in the salinity profile in Fig. 8 are due to only a single
element resolving the boundary layer and it’s transition to far-field state. In the finer
resolution simulation, those oscillations are not present, but a much sharper transition
to far-field than in the DNS simulation persists, similarly like in the T profile. This
indicates a qualitative difference in how higher-order polynomials resolve boundary
layers compared to lower-order methods.

Figure9 shows a time history of themelt rate V (panel (a)) and interface temperature
Tb (panel (b)) at mid-depth. After the initial transients, the melt rate stabilized for
t > 50 s. This is in agreement with the reference result Gayen et al. (2016), but
our value of V is slightly higher than that of the DNS simulation. The interface
temperature takes longer to stabilize but eventually reaches the level about 0.1 ◦C
above the reference simulation. When running the finer resolution simulation we did
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Fig. 9 Melt rate V (a) and interface temperature Tb (b) as a function of time at mid depth (z = 0.5m).
NUMO results are shown by the solid blue line, and Gayen et al. (2016) results by the dashed orange line.
In green dot-dash line we include an increased resolution simulations with twice as many elements

not observe a significant change in the quasi-steady value of Tb, but the value of V
decreased to about 2μm/s.

The initial transients in NUMO simulation look different than for the DNS refer-
ence. Although the onset of turbulence happens in about the same time, the value of
Tb in NUMO is initially significantly lower. We suspect that this is due to the same
reason as the discrepancy between the profiles in Fig. 8. We will explore this issue
further in an upcoming paper where we will compare different formulations of the
ice/ocean boundary condition, including a Robin type.

The instantaneous vertical profiles in Fig. 10 confirm that the interface temperature
computed in NUMOmatches that of the DNS simulation at the same value of t . There
is a discrepancy in the instantaneous value of the melt rate, but this difference does
not show in the time and space averaged results in Fig. 11(b).

To further validate themodel, in Fig. 11 we plot the time and face averaged interface
temperature and melt rates obtained for a range of initial water temperatures T0. The
NUMO resultsmatchwell with theDNSGayen et al. (2016) and are in good agreement
with the experiment Josberger and Martin (1981). The closeness of both simulation
results may be a consequence of us calculating the temperature and salinity exchange
velocities γT and γS in Eqs. (16) and (17) based on the initial values of Tb = T0 and
Sb = S0 in the DNS simulation. The choice of the exchange velocity values gives us
room to explore possibly better fits with the experimental data in the future.
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Fig. 10 Instantaneous interface temperature Tb (a) and melt rate V (b) profiles at time t = 72 s, comparing
the results of NUMO (solid blue line) with Gayen et al. (2016) (dashed orange line). The time was chosen
such that the simulation is in a quasi-steady state after the initial transients have passed

Fig. 11 Depth and time-averaged interface temperature Tb (a) and melt rate V̄ (b), comparing the results of
NUMO (filled blue circles) with those in Gayen et al. (2016) (orange squares), and laboratory experiment
of Josberger and Martin (1981) (green triangles). The averaging time was chosen such that we avoid the
initial transients
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4 Conclusion and future directions

The results presented above verify the high-order convergence of the numerics used in
theNUMOmodel and validate it on a range of test cases where the buoyancy forces are
a dominant driver of the flow. We get excellent agreement with other simulations and
laboratory experiments in all the tests. The ice/ocean interface test case shows that the
ice/ocean boundary condition produces melt rate predictions which are in the range of
the direct numerical simulation and laboratory experiment. This was achieved using
significantly lower resolution than the DNS, but with high-order polynomial basis
functions.

The ice/ocean boundary condition presented here is a variation of the classic three-
equation formulation used by many ocean models attempting this problem. We have
posed it in terms of the Neumann boundary condition with some assumptions about
the thermodynamics of the ice melting. Most notably, we have assumed that the inter-
face temperature and salinity are not the temperature and salinity of the water at the
ice/ocean interface but rather some measure of properties of the ice/water mixture. In
a forthcoming paper, we will discuss various possibilities of choosing the location of
water temperature Tw and its impact on the melt rate. We will experiment with using
the Robin boundary condition to describe the ice interface more accurately.

The work in this paper was achieved using arbitrarily unstructured quadrilateral
and hexahedral meshes. Although all the test cases used simplified geometries, we are
now ready to try more complex cases, similar to realistic Greenland fjords. The current
limitation lies in generating fully unstructured, hexahedral grids. We can use GMSH
to generate a 2D unstructured grid for the ocean’s surface and extrude it in the vertical
direction, which is similar to the approach presented in the density current case, except
the extrusion there happened in the spanwise direction. This approach would require
us to incorporate the bathymetry information in NUMO after the mesh is read. An
alternative approach is a fully unstructured 3D mesh generator, but state-of-the-art
software capabilities in hexahedral mesh generation are currently very limited.

At themoment,NUMOassumes a rigid lid condition at the ocean surface.Weplan to
continue thework on implementingArbitraryLagrangianEulerianmethod to represent
a dynamic boundary. Themodel also does not use any sub-grid-scale parameterizations
for turbulence. The GNuME framework contains a set of LES parameterizations, but
they have not been used in the test cases presented here.Wewill evaluate the turbulence
parameterization on another set of test cases in a future publication.

The tests presented in this paper indicate significant benefits of high-order methods
inNUMO for variable-scalemodeling of ice/ocean interfaces. Themid-term trajectory
for our model is to evaluate it in more realistic fjord geometries and in the long-term
test it with and implement it in global circulation models.
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