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Abstract
In this study we examine the classical problem of fluid flow in an aquifer, obeying
the transient Darcy–Forchheimer law. This problem is solved by using the symmetry
properties of the governing equations (e.g. the mass balance equation and the transient
Darcy–Forchheimer momentum equation) which enable us to transform the time and
the space coordinates into one independent coordinate. According to our study the
flow in the aquifer may be divided into two main components. One component is the
steady part of the flow discharge and the other one is the transient part of the flow
discharge. The obtained solution shows that the reduction in the above-mentioned
transient part leads to the creation of three zones: (1) the “near zone” located near the
inlet face to the aquifer and is characterized by a positive flow; (2) the “far zone” in the
aquifer lying at an infinite distance from the inlet face where the flow is also positive
and (3) the “intermediate backflow zone”, which is lying among the above-mentioned
zones and is characterized by reverse flow. The results obtained in this study may be
useful for understanding the transient flow process in the aquifer, stemming from the
Darcy–Forchheimer flow, and for the prediction of the discharge and head distribution
in the aquifer.
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1 Introduction

Fluid flow through porous media with a high penetration rate starts to deviate from
the linear relationship between flow rate and hydraulic gradient. At this time, the
traditional Darcy law is no longer applicable to the complex flow state of fluid in
the porous medium. At such flow conditions, Darcy’s law for laminar flow can no
longer be assumed and nonlinear relationships are required (Lopik et al. 2020). Many
attempts have been made to correct the Darcy equation by adding a second order of
the velocity term to represent the microscopic inertial effect, and corrected the Darcy
equation into the Forchheimer equation (Zeng and Grigg 2006). Irmay (1958) starts
from the Navier–Stokes hydrodynamic equations of viscous flow, and using statistical
methods shows that at low values of Reynolds numbers, Darcy’s law is obtained in the
Kozeny-Carman form. At larger values of Reynolds number, the Forchheimer formula
is obtained, with a coefficient depending on the soil grain diameter and porosity.
Wodie and Levy (1991) derived this law analytically for homogeneous isotropic and
spatially periodic porous media by double scale homogenization. The existence of a
weak inertia regimewas confirmed experimentally by Skjetne andAuriault (1999) and
they proposed the quadratic Forchheimer equation in order to describe this non-linear
behavior. The above description is widely used to describe the inertial flow behavior
in porous media (Tosco et al 2013; Zolotukhin and Gayubov 2021).

In the studies reviewed so far (as well as in other studies that we didn’t men-
tion), no closed-form analytical solution was found to a problem that contains the
mass conservation equation in a porous medium together with the Darcy Forchheimer
equation. In this study (as will be shown later), the scale symmetry of the transient
Darcy–Forchheimer equations allows us to combine the two independent variables
(space x and time t) into a new independent variable x/t and the governing partial
differential equations are reduced to a single ordinary differential equation. With the
use of dimensional analysis and the scaling laws concept (Barenblatt 1979), a closed-
form analytical solution for the governing equations is derived for several transient
situations.

2 Problem presentation andmathematical formulation

Consider a homogeneous and isotropic aquifer on a regional scale, that is, with a planar
horizontal extent much larger than its thickness. The continuity equation, describing
transient incompressible water flow in a confined aquifer, is given by Bear (1988)

S
∂H

∂t
+ ∂Q

∂x
= 0, (1)

where S, is the specific mass storativity of the aquifer [m−1], Q(x, t) is specific water
discharge[m·s−1], t and x are respectively the time [s] and space [m] coordinates and
H(x, t) is the hydraulic head [m] in the aquifer.
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In terms of the Dupuit approximation, the transient Darcy–Forchheimer equation
is given by Wang et al. (2016) and Zhu et al. (2014),

c
∂Q

∂t
+ ∂H

∂x
+ aQ + bQ|Q| = 0, (2)

where the coefficients a[s/m] and b [s2/m2] represent the linear and quadratic parts
of the interaction force and the inertia term due to flow acceleration; c[s2/m] is a
coefficient representing the transient part of Eq. (2) (e.g., note that we are writing
Q|Q| to allow for reverse flow).

We will assume that in our model the discharge Q(x, t), composed from a time
dependent transient part Qt (x, t) and a time independent constant part q0 is as follows

Q(x, t) = Qt (x, t) − q0. (3)

where the value of q0 is given by

q0 = a

2b
(3a)

Introducing of (3) and (3a) into (1) and (2) we obtain the continuity and themomen-
tum equation with respect to the transient discharge Qt (x, t) as follows

∂H

∂t
+ 1

S

∂Qt

∂x
= 0, (4)

and

c
∂Qt

∂t
+ ∂H

∂x
+ bQt |Qt | − a2

4b
= 0. (5)

Differentiating both sides of Eq. (4) with respect to x we obtain

∂

∂t

(
∂H

∂x

)
+ 1

S

∂2Qt

∂x2
= 0 . (6)

We now express Eq. (5) as follows

∂H

∂x
= −

(
c
∂Qt

∂t
+ bQt |Qt | − a2

4b

)
(7)

Introducing (7) into (6), we obtain

∂

∂t

(
−c

∂Qt

∂t
− bQt |Qt |

)
+ 1

S

∂2Qt

∂x2
= 0 . (8)
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We now introduce the dimensionless variables x̂ and t̂ , related to their cartesian
counterparts, as follows

x̂ = x

L
(9a)

t̂ = t

T
(9b)

where L is a characteristic length of the aquifer and T is a characteristic time to be
determined hereafter. We will also define the dimensionless discharge Q̂t and head Ĥ
as follows

Q̂t = Qt

Qt c
(9c)

Ĥ = H

Hc
(9d)

where Qt c and Hc are respectively the characteristics of transient discharge and head
parameters which will be further used in the calibration procedure of this model. With
the introduction of (9a)–(9d) into (8), we obtain

∂

∂ t̂

⎛
⎝ ScL2

T 2

∂ Q̂t

∂ t̂
+

bSL2Qt c Q̂t

∣∣∣Q̂t

∣∣∣
T

⎞
⎠ = ∂2 Q̂t

∂ x̂2
. (10)

We now determine the characteristic length of the aquifer L and the characteristic
time T as follows

L = 1√
Sc

T (11)

where

T = c3/2

bS1/2Hc
(11a)

L = c

bSHc
(11b)

and

Hc = Qt c

√
c

S
. (11c)

Substituting (11), (11a), (11b) and (11c) into (10) and (4), we obtain

∂

∂ t̂

(
∂ Q̂t

∂ t̂
+ Q̂t

∣∣∣Q̂t

∣∣∣
)

= ∂2 Q̂t

∂ x̂2
, (12a)
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and

∂ Ĥ

∂ t̂
+ ∂ Q̂t

∂ x̂
= 0, (12b)

Weassume that the discharge Q̂(x̂,t̂) and thefluid head Ĥ (x̂,t̂) are functions defined
in the region 0 ≤ x̂ ≤ ∞ . Consider a situation in which initially (i.e., at time t̂ < 0 )
water flows in the aquifer with constant discharge. We will refer to a situation at which
the water level in the reservoir (i.e., at x̂ = −0) suddenly drops and in response to
this, the dimensionless discharge Q̂(x̂,t̂) at x̂ = 0 is given by

Q̂(0, t̂) = Q̂t (0,t̂) + q̂0 (13)

where the transient dimensionless discharge and the dimensionless head at x̂ = 0 are
changing according to the following laws

Q̂t (0,t̂) = Q̂t 0 t̂
−1 (13a)

and

Ĥ(0,t̂) = Ĥ0 t̂
−1 (13b)

where Ĥ0 and Q̂t 0 are scalingparameters, dependingon the properties of the aquifer. In
addition to this, the dimensionless variables Q̂(x̂, t̂) and the dimensionless parameter
q̂0 are given by Q(x, t) = Qtc Q̂(x̂, t̂) and q0 = Qtcq̂0.

We will assume that the component of the transient dimensionless discharge
Q̂t (x̂, t̂) vanishes at an infinite distance from the inlet face and hence

Q̂t (x̂,t̂) → 0 as x̂ → ∞ (14)

In general, the problem must be solved for specified initial conditions imposed
upon Q̂t (x̂,t̂). However, as it is shown below, the long-time profiles of Q̂t (x̂,t̂) are
independent of the precise form of the initial conditions Q̂t (x̂,0) that govern the
dimensionless transient discharge at early stages only. In accordance with the above,
the long-time dimensionless transient discharge profile will prove to be independent
of the precise form of the initial conditions existing in the aquifer. Hence, the detail
of the initial distribution of the dimensionless transient discharge within the aquifer is
irrelevant and the obtained solution is suitable for long periods only.

In the next section, we treat this problem by a self-similar approach and outline
special cases for which several analytical solutions are obtained.

3 Self-similar model

We will further refer to the circumstances in which the dimensionless transient dis-
charge function Q̂t (x̂, t̂) in the aquifer achieves a certain profile at asymptotically long
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times, which is derived from universal behavior, and described by a single independent
self-similar variable ξ (Barenblatt 1979)

Q̂t = f (ξ)

t̂
(15a)

where

x̂ = ξ t̂ (15b)

and f (ξ) is the discharge self-similar profile.
We rewrite Eq. (12a) as follows

∂G

∂ t̂
= ∂2 Q̂t

∂ x̂2
, (16)

where

G = ∂ Q̂t

∂ t̂
+ Q̂t

∣∣∣Q̂t

∣∣∣ (16a)

We now define G(x̂, t̂), appearing in (16a) and together with (15a) and (15b) we
obtain

G = t̂−2g(ξ) (17)

where

g(ξ) = − f − f
′
ξ − f 2 (17a)

(i.e., f ′ ≡ d f
dξ ).

(e.g., the sign of the absolute value, appearing inEq. (16a),was deleted). Introducing
(17) into (16) together with (15b) we obtain

(
f ′ + gξ

)′ = −g (18)

We express Eq. (18) as follows

w = f ′ + gξ (19a)

and

w′ = −g (19b)
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Multiplying both sides of Eq. (19b) with ξ and combining it with Eq. (19a), we
obtain

(wξ)′ = f ′ (20)

which automatically gives

(wξ − f )′ = 0 (20a)

Integrating (20a), we obtain

wξ − f = λ (21)

where λ is a constant of integration. Introducing (19a) into (21) and using (17a) we
obtain

ξ
[
f ′ + ξ

(
− f − f ′ξ − f 2

)]
− f = λ (21a)

After simple arithmetic, we obtain from (21a) the following expression

f ′ = ξ

1 − ξ2
f 2 + 1 + ξ2

ξ
(
1 − ξ2

) f + λ

ξ(1 − ξ2)
(22)

where

f (0) = −λ (22a)

4 The analytical solution for f (�)

In order to solve (22), we apply the Riccati transformation (Polyanin and Zaitsev 2003)

f = −1 − ξ2

ξ

1

u

du

dξ
(23)

where u(ξ) is a yet unknown function of ξ . Substituting (23) into (22) we obtain the
following linear ODE

d2u

d2ξ
− 2

1 + ξ2

ξ(1 − ξ2)

du

dξ
+ λ(

1 − ξ2
)2 u = 0 (24)

The solutions for f (ξ) within the range of 0 ≤ ξ ≤ 1 is given in Appendix A (see
equations A18, A18a)) and the solutions for f (ξ) within the range 1 ≤ ξ ≤ ∞ is
given in Appendix B (see equation (B9)). The united solution for f (ξ), in the whole
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range 0 < ξ < ∞, can be obtained by equating the term 1+ξd
1−ξd

, appearing in (A18a)
with the constant K appearing in (B9). In addition to this, the term (ξ − 1) appearing
in (B9) should be written in its absolute value. As a result the solution for f (ξ) in the
domain 0 < ξ < ∞ is given by

f (ξ) = −λ

1 + ξ
√
1 − λ coth

(√
1−λ
2 ln

[
(1+ξd )|ξ−1|
(1−ξd )(ξ+1)

]) , 0 < ξ < ∞ (25)

where ξd is the downstream moving boundary parameter (see Appendix A) and.
f (ξ) → 0 as ξ → ∞ that assures the boundary condition (14).
The solution f (1) can be obtained from (25) as follows

f (1) = −λ

1 − √
1 − λ

(26)

which is always negative for λ < 0. On the other hand, the solution f (0) is always
positive for λ < 0. This indicates the existence of the first pole f (ξd) = 0 that is
lying in the range 0 < ξd < 1. The second pole ξ = ξu (i.e., the upstream boundary
parameter at which f (ξu) = 0, is lying in the range 1 < ξu < ∞) and it can be
obtained by equalizing the argument in the “ln” term (i.e., appearing in (25)) to 1 as
follows

(1 + ξd)(ξu − 1)

(1 − ξd)(ξu + 1)
= 1 (27)

Since coth(0) = ±∞, we obtain the position of the second pole ξ = ξu by solving
(27) to obtain

ξu = 1

ξd
(27a)

5 Discussion on the conditions of themoving boundaries

Wewill nowdefine the downstreammoving boundaries X̂ d(t̂) and an upstreammoving
boundary X̂u(t̂) via the boundary parameters ξd , ξu and together with (15b) as follows

X̂d(t̂) = ξd t̂ (28a)

and

X̂u(t̂) = ξu t̂ (28b)
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near zone

Flow direc�on

x = 0 Xd(t)

downstream moving boundary                             

intermediate backflow zone far zone

Flow direc�on
Flow direc�on

Xu(t)

upstream moving boundary                             

Permeable layer                         

Impermeable layer 

Impermeable layer

Qt(0,t)
Qt(∞,t ) →0

Fig. 1 A schematic description of the boundary conditions imposed on the transient flow discharge fraction
Qt (x, t) in a porous layer

Since f (ξd) = 0 (see A16) and f (ξu) = 0 (as was explained in the previous
section), we obtain conditions on both moving boundaries of the dimensionless tran-
sient discharge as follows

Q̂t (x̂,t̂) = 0 on x̂ = X̂d(t̂) (29a)

and

Q̂t (x̂,t̂) = 0 on x̂ = X̂u(t̂) (29b)

It is thus assumed that (29a) and (29b) serves as conditions that represent continuity
across the moving fronts and both are part of the obtained solution.

The boundary conditions (29a) and (29b) indicate that the function Q̂t (x̂,t̂) can
be divided into three main regions. The first region will be defined in this study as
the “near zone”. This region is lying in the range 0 < x̂ < X̂d(t̂), where X̂d(t̂) is
the downstream moving boundary of the dimensionless transient discharge function
Q̂t (x̂,t̂). In this zone, the dimensionless transient discharge function is directed toward
the +x̂ direction. The "intermediate backflow zone" is confined between two moving
boundaries, namely anupstream front X̂u(t̂) and the previouslymentioneddownstream
front, e.g., X̂d(t̂) < x̂ < X̂u(t̂). The flow in this zone is directed to the −x̂ direction
(i.e., against the propagation of the upstream front X̂u(t̂)). The third region is the "far
zone" located in the range X̂u(t̂) < x̂ < ∞. In this zone, the flow is directed toward
the +x̂ direction. This situation is schematically described in Fig. 1.

6 Determination of Ĥ(x̂,t̂)

In the previous section, a closed-form analytical solution for f (ξ) had been derived
(which enabled us to obtain the dimensionless transient discharge function Q̂t (x̂,t̂)).
Now our goal is directed toward obtaining the dimensionless head function Ĥ(x̂,t̂)
existing in the aquifer.
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Introducing (9a)–(9d) together with (11a), (11b) and (11c) into (5), we obtain

∂ Ĥ

∂ x̂
= −

(
∂ Q̂t

∂ t̂
+ Q̂t

∣∣∣Q̂t

∣∣∣ −
(

a

2bQt c

)2
)

(30)

where the integration result is given by

Ĥ = −
∫ X̂(t̂)

0

(
∂ Q̂t

∂ t̂
+ Q̂t

∣∣∣Q̂t

∣∣∣ −
(

a

2bQt c

)2
)
dx̂ (30a)

Introducing (15a) and (15b) into (30a) we obtain

Ĥ = −t̂−1
∫ ξ

0

(
−[ f ξ ]′ + f 2

)
dξ +

(
a

2bQt c

)2

x̂ (31)

We now represent Eq. (22) as follows

f 2 =
[
f (1 − ξ2)

ξ
+ λ

ξ

]′
(32)

Substituting (32) into (31) and integrating the latter, we obtain

Ĥ(x̂, t̂) = Ĥt (x̂, t̂) +
(

a

2bQt c

)2

x̂ (33)

where

Ĥt (x̂, t̂) = −t̂−1h(ξ) (33a)

is the transient dimensionless head function and h(ξ) is the head self-similar func-
tion obtained after solving (31) as follows

h(ξ) = −2 f ξ + f + λ

ξ
+ C∞ (33b)

where C∞ is a constant of integration to be determined hereafter.
We assume that the transient dimensionless head Ĥt decrease to zero, together with

Q̂t (see (14)), at an infinite distance, i.e.,

h(ξ) → 0 as ξ → ∞ (34)

In accordance with the above we obtain from (25), (33b) and (34) the following

2λ
√
1 − λ coth

(√
1−λ
2 ln 1+ξd

1−ξd

) + C∞ → 0 as ξ → ∞ (35)
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and hence C∞ is given by

C∞ ≈ −2λ
√
1 − λ coth

(√
1−λ
2 ln 1+ξd

1−ξd

) (35a)

Finally, we obtain the exact expression for h(ξ) from (33b) and (35a) as follows

h(ξ) = −2 f ξ + f + λ

ξ
− 2λ

√
1 − λ coth

(√
1−λ
2 ln 1+ξd

1−ξd

) (36)

In order to obtain the value of h(ξ) as ξ → 0, we will investigate the behavior of
the transient discharge profile in the aquifer, after a sufficiently long time.

(i.e., ξ → 0, x̂ finite). Toward this goal,wewill calculate an approximate expression
for f (ξ), by using (25), in the case where ξ → 0 as follows

f ≈ −λ + λ
√
1 − λctgh

(√
1 − λ

2
ln

1 + ξd

1 − ξd

)
ξ, ξ → 0 (37)

Introducing (37) into (36), we obtain an expression for h(ξ) as ξ → 0 as follows

h(0) =
λ
[
(1 − λ) coth2

(√
1−λ
2 ln 1+ξd

1−ξd

)
− 2

]
√
1 − λ coth

(√
1−λ
2 ln 1+ξd

1−ξd

) , (38)

In order to calculate the value of Ĥ0, as appears in (13b), we obtain from (33) and
(33a)

Ĥ0 = −h0 (39)

where

h0 ≡ h(0) (39a)

Introducing of (13a), (13b), (22a) and (33a) into (38), we obtain the dependence
Ĥ0(Q̂t0), characterizing the parameters of the inlet face

Ĥ0 =
−Q̂t0

[
(1 + Q̂t0) coth2

(√
1+Q̂t0
2 ln 1+ξd

1−ξd

)
− 2

]
√
1 + Q̂t0 coth

(√
1+Q̂t0
2 ln 1+ξd

1−ξd

) , (39b)
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7 Presentation of the preliminary results

Figures 2a, b and 3a, b exhibit respectively the effects of the main parameters on
the distribution of the discharge self-similar profiles f (ξ) and the head self-similar
profiles −h(ξ) in the aquifer, resulting from the time-decreasing head at the inlet face
at x̂ = 0, for three discharge parameters λ (e.g., λ = −2, −4 and −6).

In Figs. 2a and b, we used a small value of the downstream boundary arameter ξd
together with a relatively high value of the upstream boundary parameter ξu (e.g.,ξd =
2
5 , ξu = 5

2 , see (27a)). On the contrary, in Fig. 3a and b, we used a high value of
the downstream boundary parameter ξd together with a relatively small value of the
upstream boundary parameter ξu (e.g.,ξd = 9

10 , ξu = 10
9 ). Comparing both pairs of

figures, it can be observed that the self-similar profiles in Fig. 2a and b possess more
moderate shapes compared with the figures shown in Fig. 3a and b.This result means
that as the values of ξd and ξu are close to each other, the intermediate backflow zone
becomes very small and hence, the near and the far zones tend to be almost one unit
(e.g., with a positive flow direction).

Figures 4 and 5 exhibit the discharge distributions for 3 time steps obtained with
the discharge parameter λ = −2 and two values of the ξd . Increasing ξd from 2/5
to 9/10 leads to a less uniformly distributed discharge, characterized by a smoother
front and with a smaller intermediate backflow zone. Accordingly, Fig. 4 depicts the
situationwhere the propagation of the upstream front ismuch larger comparedwith the
propagation of the downstream front. On the contrary, Fig. 5 depicts a situation where
the difference in the speed propagation of both the upstream and the downstream fronts
is relatively small. Comparing the discharge profiles in Fig. 4 (whichwas obtainedwith
a relatively large difference between ξd and ξu) with Fig. 5 (which was obtained with
a relatively small difference between ξd and ξu) shows that the intermediate backflow
zone in Fig. 4 is larger compared with this zone shown in Fig. 5, as was expected.
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Fig. 2 a Distribution of the discharge self-similar profiles for three discharge parameters λ (with ξd =
2/5, ξu = 5/2). b Distribution of the head self-similar profiles for three discharge parameters λ (with
ξd = 2/5, ξu = 5/2)
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Fig. 3 a Distribution of the discharge self-similar profiles for three discharge parameters λ (with ξd =
9/10, ξu = 10/9). b Distribution of the head self-similar profiles for three discharge parameters λ (with
ξd = 9/10, ξu = 10/9)
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Fig. 4 Distribution of the discharge profiles for three time intervals (with λ = −2 ξd = 2/5, ξu = 5/2)

8 The calibration procedure

We will now show how our model reduces to the well-known steady state Darcy—
Forchheimer equation. Toward this end Eq. (30) can be rewritten, after using (15a)
and (15b), as follows

∂ Ĥ

∂ x̂
= −

(
1 − 2ξ2

1 − ξ2
Q̂2

t − 2

1 − ξ2
t̂−1 Q̂t − λ

1 − ξ2
t̂−2

)
+

(
a

2bQt c

)2

(40)

Introducing (9a)–(9d), together with (11a), (11b), and (11c) we obtain ∂H
∂x in its

dimension form as follows

∂H

∂x
= −

(
1 − 2ξ2

1 − ξ2
bQ2

t − 2

1 − ξ2
ct−1Qt − λ

1 − ξ2
t̂−2

)
+ a2

4b
(41)

Under the assumption that as t → ∞ (i.e., ξ → 0), we may neglect terms that
contain t̂−2 compared with terms that contain t̂−1 in Eq. (41) as follows

∂H

∂x
≈ −

(
bQ2

t − 2ct−1Qt

)
+ a2

4b
t → ∞. (42)
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Fig. 5 Distribution of the discharge profiles for three time intervals (with λ = −2 ξd = 9/10, ξu = 10/9)

Neglecting terms that contain t̂−1 and using (3) and (3a), we obtain ∂H
∂x in its

standard form

∂H

∂x
→ −bQ2 − aQ t → ∞ (43)

This result can be directly obtained from (2) under the assumption that the term
∂Q
∂t → 0 for t → ∞.
We will now explain how to calibrate our model by matching the obtained solution

for Ĥ(x̂, t̂)with field data that enable us to determine the parameters S and c, appearing
in (1) and (2), which govern the transient behavior of Q(x, t) and H(x, t). Such
calibration is necessary in order to predict the temporal distribution of the discharge
and head profiles along the aquifer.

We now use (15b), (33), (33a) together with (9a)–(9d), (11), (11a), and (11b) to
obtain the following pair of equations

log t = log ξ−1 + log x
√
Sc (44a)

(
H − a2

4b
x

)
t = −h(ξ)HcT (44b)
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Fig. 6 Type curves for three discharge parameters λ (with ξd = 2/5, ξu = 5/2)

Equations (44a, 44b) are used to construct type curves (e.g., −h versus log ξ−1) as
shown in Fig. 6 and Fig. 7 for several values of λ and ξd (i.e., ξu = ξ−1

d , see (27a)). We
will further use the fact that the function −h(ξ) tends to a constant value −h(0)(see
(38)) at asymptotic long times (e.g., as ξ−1 → ∞).

Based on the above, we now explain how our model can be calibrated in accordance
to the following steps-

1. Draw many types of curves −h(ξ) versus log ξ−1 as is explained after (44a) and
(44b) (For example, see Fig. 6 and Fig. 7).

2. Determine the position x0 (i.e., with respect to x = 0) of a manometer that is used
to collect subsequent measurements of heads data H(x0) in the aquifer/porous
medium.

3. Collect N head measurements H(x0, t1,2,3...N ) at N time intervals, relatively to
the beginning of the experiment.
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Fig. 7 Type curves for three discharge parameters λ (with ξd = 9/10, ξu = 10/9)

4. For each time step ti (e.g., i = 1 . . . N ), calculate the value of(
H(x0, ti ) − a2

4b x0
)

× ti (see Eq. (44b).1

5. Plot the N results obtained in the previous step as follows:
(
H(x0, ti ) − a2

4b x0
)
×ti

versus log t (note that as log t becomes large, the values of
(
H(x0, ti ) − a2

4b x0
)
×ti

approach a constant value (i.e., note that as t → ∞ the LHS of (44b) approaches
a constant value).

6. Try to match the figure obtained in step 5 with one of the figures −h(ξ) ver-
sus log ξ−1 made in step 1. For this purpose it is recommended to upload the
measurement results, made in step 5, and to use a traditional visual or automatic
curve matching methods.

7. Based on the best matching result obtained in step 6, determine the values of λ,
ξd and ξu .

1 The parameters a and b may be determined from (43) (see Xiao-dong et al 2018) by making use of data
collected after a sufficiently long time (i.e., when N becomes large), as the transient part of the discharge
becomes zero.
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8. Use one matching point ξ−1
∣∣
matching ⇔ t |matching obtained in step 7 together

with the value of x0 as follows

• Calculate the value of 1√
Sc

by using Eq. (9a)–(9d), (11a), (11b), and (11c) i.e.,

1√
Sc

= x0
ξ−1

∣∣
matching

t |matching

• Following Eq. (44b), use the asymptotic value
(
H(x0, tN ) − a2

4b x0
)

× tN
∣∣∣
large tN

and

h(0) from Eq. (38) (e.g., with the use of the obtained values of λ and ξd derived

in step 7 to obtain HcT =
(
H(x0,tN )− a2

4b x0
)
×tN

∣∣∣
large tN−h(0) .

9. Using the results obtained in step 8 and (11a), we will now define two parameters
A ≡ HcT = c3/2

bS1/2
and B ≡ 1

(Sc)1/2
. By making use of both parameters we obtain

c = ( A
B b

)1/2
and S = 1

A1/2B3/2b1/2
.

10. Substituting the value of HcT in (44b) we obtain

(1) H(x, t) =
(
− c3/2

bS1/2
h(ξ)|λ,ξd

t−1 + a2
4b x

)
m,

Substituting (3a), (11), (11a)-(11c), (15a) and (15b) into (3) we obtain

(2) Q(x, t) = (
f (ξ)|λ,ξd

t−1 c
b − a

2b

)
ms−1, where ξ = x

√
Sc
t .

9 Summary and conclusions

In this study the combined effects of fluid discharge and head loss had been used
to solve the classical equations of transient fluid flow in an aquifer by using the
Darcy–Forchheimer law. The symmetry properties of these equations were used to
develop self-similar solutions to the above mentioned equations according to which,
both coordinates of time and place are transformed into one coordinate. The governing
nonlinear continuity and the Darcy–Forchheimer equations had been coupled to form
a single equation and solved by using a self-similar technique.

According to our study, the flow discharge in the aquifer may be divided into two
main components. One component is the steady part and the other one is the transient
part of the flow. The obtained analytical solutions show that the transient part of the
flow in the aquifer is characterized by three zones, namely, the "near zone" located
near the inlet face of the aquifer and is characterized by positive flow, the "far zone" in
the aquifer lying at an infinite distance where the flow is positive and the "intermediate
backflow zone", which lies among the above-mentioned zones and is characterized by
a reverse flow.

The obtained analytical solutions had been used to construct several types of curves,
which can be used to match serial measurements of head data with the obtainedmodel.
As such, the implementation of the model, for finding the governed parameters and to
predict the actual transient head profile along the aquifer, has been explained.

In general, self-similar solutions are an effective tool for describing transient phe-
nomena in various flow fields, where the problem lacks a characteristic length or time
scale. The development of self-similar solutions simplifies the physical problem and
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changes the partial differential equations to the level of ordinary differential equations.
However, the main disadvantage of these solutions is that they are limited to special
language conditions. It is not possible to place language terms in finite sections but
only in infinite and semi-infinite sections or to place them on moving boundaries, as
was done in this study.

The solution developed in this study can be extended to a transient case, with radial
symmetry. A similarity solution for a radial case can be helpful for determining aquifer
parameters following pumping tests.

Appendix A

A new variable z(ξ) is defined now as follows

z = ξ2 (A1)

Substituting (A1) into (24) then gives the following equation

z(1 − z)2
d2u

dz2
+ 1

2
(1 − z)(−1 − 3z)

du

dz
+ λ

4
u = 0 (A2)

We now define a new function w(z) as follows

u = w(1 − z)κ (A3)

where κ(λ) is given by

κ = −1

2
±

√
1 − λ

2
(A4)

Introducing (A3), (A4) into (A2) we obtain the following hypergeometric equation
as follows

z(1 − z)
d2w

dz2
+

(
z(−2κ − 3

2
) − 1

2

)
dw

dz
−

(
κ2 + κ

2

)
w = 0 (A5)

which possesses the following solution

w(z) = C1

(
2CF1(z) + z3/2F2(z)

)
(A6)

where the functions

F1(z) = F

(
κ, κ + 1

2
,−1

2
; z

)
(A6a)
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and

F2(z) = F

(
κ + 3

2
, κ + 2,

5

2
; z

)
(A6b)

are expressed via hypergeometric functions (Polyanin and Zaitsev, 2003) subjected to
the limitation

|z| < 1 (A6c)

and therefore this solution is valid in the range of

−1 < ξ < 1 (A6d)

whereC andC1 are constants to be determined below. Using the website https://www.
wolframalpha.com/, we obtain a simple form to the above hypergeometric functions

F1(z) = 1

2
(S1(z) − S2(z)) (A7a)

F2(z) = A

z3/2
(S1(z) + S2(z)) (A7b)

where

S1(z) = (
(2κ + 1)

√
z + 1

)(√
z + 1

)−2κ−1 (A8a)

S2(z) = (
(2κ + 1)

√
z − 1

)(
1 − √

z
)−2κ−1 (A8b)

and the constant A is given by

A = 3

8κ(κ + 1)(2κ + 1)
(A8c)

Introducing (A7a), (A7b), (A8a) and (A8b) into (A6), (A6a) and (A6b), we obtain

w(z) = C1(CS1(z) − CS2(z) + AS1(z) + AS2(z)) (A9)

which can be rewritten in a more simple form as follows

w(z) = C1((C + A)S1(z) + (A − C)S2(z)) (A9a)

Using the notation w′(z) for dw(z)
dz , the derivative of (A9a) with respect to z gives

w′(z) = C1
(
(C + A)S′

1(z) + (A − C)S′
2(z)

)
(A10)
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where

S′
1(z) = −κ(2κ + 1)

(√
z + 1

)−2κ−2 (A10a)

and

S′
2(z) = κ(2κ + 1)

(
1 − √

z
)−2κ−2 (A10b)

Introducing (A1), (A3) and (A6) into (23), we obtain

f (z) = −2(1 − z)

(
1

w

dw

dz
− κ

1 − z

)
(A11)

Substituting (A9a), (A10), (A10a) and (A10b) into (A11), we obtain

f (z) =
−4κ(κ + 1)

(
1 − C̃ E(z)

)

C̃ E(z)
(
(2κ + 1)

√
z + 1

) + (2κ + 1)
√
z − 1

(A12)

where

C̃ = A + C

A − C
(A12a)

and

E(z) =
(
1 + √

z

1 − √
z

)−2κ−1

(A12b)

Substituting (A1) into (A12), using (A4), we obtain for λ < 1

f (ξ) =
λ
(
1 − C̃ E(ξ)

)

C̃ E(ξ)
(√

1 − λξ + 1
) + √

1 − λξ − 1
(A13)

where

E(ξ) =
(
1 + ξ

1 − ξ

)−√
1−λ

(A14)

subjected to the limitation that appears in (A6d).
Introducing ξ = 0 into (A13) and (A14) we obtain Q̂t0 appearing in (13a)

f (ξ = 0) = Q̂t 0 = −λ (A15)

where the integration constant λ can be defined as the transient discharge parameter.
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We will now equalize A(13) to zero

f (ξd) = 0 (A16)

to obtain the constant C̃ as follows

C̃ =
(
1 − ξd

1 + ξd

)−√
1−λ

for λ < 1. (A17)

where ξd is the downstream moving boundary parameter, as is explained in Sect. 5.
Introducing (A14) and (A17) into (A13), we obtain (after several mathematical manip-
ulations) that

f (ξ) = −λ

1 + √
1 − λξ coth θ

2

(A18)

where

θ = √
1 − λ ln

[
(1 − ξ)(1 + ξd)

(1 + ξ)(1 − ξd)

]
(A18a)

Appendix B

A new variable z(ξ) is defined now as follows

z = 1

1 − ξ2
(B1)

We will confine ourselves to the following case

|z| < 1 (B2)

Introducing (B1) into (B2), we obtain the following limitation for ξ

ξ > 1 (B2a)

Substituting (B1) into (24) then gives the following hypergeometric equation
(Polyanin and Zaitsev 2003)

z(1 − z)
d2u

dz2
+ 1

2

du

dz
− λ

4
u = 0 (B3)

Under the limitation defined in (B2), equation (B3) possesses the following solution

u(z) = C1

(
CF1(z) + z1/2F2(z)

)
(B4)
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where

F1(z) = F

(
−1

2
+

√
1 − λ

2
,−1

2
−

√
1 − λ

2
,
1

2
; z

)
(B4a)

F2(z) = F

(√
1 − λ

2
,−

√
1 − λ

2
,
3

2
; z

)
(B4b)

are expressed via hypergeometric functions (Polyanin and Zaitsev 2003); C and
C1 are constants to be determined below. Using the properties of the hypergeometric
series, we obtain from (B4) and (B4a) and (B4b) the expression for du(z)

dz

du

dz
= C1

(
C

λ

2
F3(z) + 1

2
√
z
F2(z) + (λ − 1)

√
z

6
F4(z)

)
(B5)

where the hypergeometric functions F3(z) and F4(z) are given by

F3(z) = F

(
1

2
+

√
1 − λ

2
,
1

2
−

√
1 − λ

2
,
3

2
; z

)
(B5a)

F4(z) = F

(
1 +

√
1 − λ

2
, 1 −

√
1 − λ

2
,
5

2
; z

)
(B5b)

By using a computer algebra system such as in www.wolframalpha.com., we obtain
simple forms for the above hypergeometric functions

F1(z) = √
1 − z cos θ + 1√

1 − λ

√
z sin θ (B6a)

F2(z) = 1

λ

(
cos θ −

√
1 − λ

√
1 − z√

z
sin θ

)
(B6b)

F3(z) = sin θ√
1 − λ

√
z

(B6c)

and

F4(z) = 3

λz3/2

(
−

√
1 − z√
1 − λ

sin θ + √
z cos θ

)
(B6d)

where

θ = √
1 − λ sin−1 √

z (B6e)
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Introducing (B1) into (23) we obtain

f (z) = −2z
1

u

du

dz
(B7)

Substituting (B4) and (B5) together with (B6a)-(B6e) into (B7), we obtain after
several mathematical manipulations

f (z) = −λ

1 − √
1 − λ

√
1−z
z tan(θ − α)

(B8)

where α is a constant related to the constant C(e.g., the detailed relationship C(α) is
unimportant).

Introducing of (B1) into (B6e), we obtain and further use the following mathemat-
ical equalities (Polyanin and Zaitsev 2003)

sinh−1

√
1

ξ2 − 1
= 1

2
ln

ξ + 1

ξ − 1
(B8a)

and

√
1 − z

z
= iξ (B8b)

Introducing (B8a) and (B8b) into Eq. (B8), we obtain with basic mathematics, the
final solution to f (ξ) in the domain 1 < ξ < ∞

f (ξ) = −λ

1 + ξ
√
1 − λ coth

(√
1−λ
2 log

[
K ξ−1

ξ+1

]) (B9)

where K is a constant related to the constantC (e.g., also here, the detailed relationship
K (C) is unimportant).
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