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Abstract
In this paper, we present an innovative factor analysis algorithm for hydrocarbon
exploration to estimate the intrinsic permeability of reservoir rocks from well logs.
Unlike conventional evaluation methods that employ a single or a limited number of
data types, we process simultaneously all available data to derive the first statistical
factor and relate it to permeability by regression analysis. For solving the problem of
factor analysis, we introduce an improved particle swarm optimization method, which
searches for the global minimum of the distance between the observed and calcu-
lated data and gives a quick estimation for the factor scores. The learning factors of
the intelligent computational technique such as the cognitive and social constants are
specified as hyperparameters and calculated by using simulated annealing algorithm
as heuristic hyperparameter estimator. Instead of the arbitrary fixation of these hyper-
parameters, we refine them in an iterative process to give reliable estimation both for
the statistical factors and formation permeability. The estimated learning parameters
are consistent with literature recommendations. We demonstrate the feasibility of the
proposed well-log analysis method by a Hungarian oilfield study involving open-hole
wireline logs and core data. We determine the spatial distribution of permeability both
along a borehole and between more wells using the factor analysis approach, which
serves as efficient and reliable multivariate statistical tool for advanced formation
evaluation and reservoir modeling.
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1 Introduction

Wireline logs including abundant in situ measurement information taken from bore-
holes can be effectively used to derive basic petrophysical parameters of hydrocarbon
reservoirs (Serra 1984). Most of these formation properties (e.g., porosity, shale vol-
ume, water saturation etc.) are usually estimated in reliable quality-checked inversion
procedures (Ball et al. 1987; Alberty and Hashmy 1984; Dobróka et al. 2016). How-
ever, permeability of rock formations cannot be directly estimated by the inversion
of conventional well logs, since the available tool response equations do not include
it explicitly. Therefore, it is generally estimated empirically by using some types of
well logs (Wyllie and Rose 1950; Timur 1968; Coates and Dumanoir 1974) and these
estimations often need to be calibrated by core data (Singh 2018). Due to different
methods and conditions, the estimation error of permeability is rather large compared
to the other petrophysical parameters (e.g., porosity and shale volume) that are required
for evaluating the productivity of hydrocarbon reservoirs. Exploratory data analysis
methods including regression analysis, dimension reduction and pattern recognition
techniques are widely used in geosciences for different purposes. Tang and White
(2008) made a comparative study on several statistical tools for facies classification.
Jafarpour and McLaughlin (2009) applied a discrete cosine transform for reservoir
characterization. Soares et al. (2020) used dictionary learning for the sparse represen-
tation of 4D seismic data to highlight only the main features of the dataset. Cosultchi
et al. (2012) utilized principal component analysis and cluster analysis for aquifer iden-
tification in petroleum reservoirs. Generally, some linear regression analysis approach
is used for relating the permeability to existing petrophysical parameters (Dahraj and
Bhutto 2014; Handhal 2016). Multivariate statistical tools have been applied for per-
meability estimation in Al-Mudhafar (2020).

We present a new alternative to predict permeability of hydrocarbon reservoirs,
which is based on a metaheuristic approach for factor analysis. The simultaneous pro-
cessing of well logs allows not just to reduce the dimensionality of the data space, but
to find correlation between the extracted factor variables and reservoir parameters. As
one of the most important parameters, we estimate the intrinsic permeability utilizing
all available well logs leading to more reliable estimates. Szabó and Dobróka (2018)
suggested a statistical approach for the processing of well logs, in which a differential
evolution algorithm based factor analysis was introduced for shale volume estimation.
For solving the problem of factor analysis, we currently apply the particle swarm
optimization (PSO) method proposed by Kennedy and Eberhart (1995), which is less
computationally expensive and requires less parametrization than genetic algorithm
(Rahmat-Samii 2003; Donelli et al. 2006). This metaheuristic technique is based on
swarm intelligence (Del Ser 2019), which is widely used in engineering applications.
For instance, Nguyen et al. (2020) utilized it for feature selection in data mining.
Self et al. (2016) suggested PSO for selecting optimal drilling parameters to mini-
mize the overall cost. Shaw and Srivastava (2007) evaluated the applicability of PSO
to inversion of direct current, induced polarization and magnetotelluric data and con-
cluded that the results are consistent with ridge regression and genetic algorithm based
inversions. Essa and Elhussein (2018) presented a geophysical application, in which
magnetic anomalies were interpreted successfully with the help of this metaheuristic.
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Factor analysis is a multivariate statistical tool that is generally used to decrease
the dimensionality of multi-parameter problems, while keeping most of the informa-
tion contained in the original variables to simplify the data interpretation. The newly
derived factors are necessarily uncorrelated and may reveal hidden information from
the measurements (Lawley and Maxwell 1962). Thus, for processing wireline log-
ging data it can be effectively applied because the measured datasets are usually quite
large due to several applied logging tools and numerous measured depth points. The
extracted factors from wireline logs are referred to as factor logs that can be linked to
petrophysical parameters through regression analysis (Szabó 2011). In this way, factor
analysis processes all available well logs to give an estimation to these parameters,
while for instance, simple deterministic methods normally rely only on one log type to
derive one parameter at a time. Since it is an effective approximate method, it can also
process data for which an exact mathematical relation with petrophysical properties
is not available (e.g., the caliper log), however they may contain useful lithological or
physical information.

We show a two-level embedded computing algorithm for improving the perfor-
mance of factor analysis. In the inner loop, thePSOalgorithm runs to estimate the factor
scores while the factor loadings are initially derived from the non-iterative approach
of Jöreskog (2007). In the outer loop, the hyperparameters of the same PSO proce-
dure called the cognitive and social parameters are refined by a Metropolis criterion
based simulated annealing method as global optimization tool avoiding the possible
localities of the objective function (Metropolis et al. 1953). These control parameters
are important learning factors, which are normally chosen as arbitrary constants at the
beginning of the PSO procedure. In this study, we suggest a much more intelligent
manner as estimating them automatically. This approach was first proposed for the
interpretation of direct push logs to estimate the volumetric soil moisture content of
the shallow unsaturated zone (Abordán and Szabó 2021) as a further improved factor
analysis technique used in Szabó et al. (2012). In this study, the factor scores are cross-
plotted with reservoir properties. We assume the extracted factors hold quantitative
information on the permeability of deep reservoir rocks. We extend the factor analysis
algorithm to process multiwell logging data. Our permeability prediction results are
shown involving single and multi-borehole data collected from a Hungarian gas field.

2 Methods

2.1 Traditional method of factor analysis

To initialize factor analysis, we build a common data matrix (D) from the standardized
data of S number of measured well logs, in which every column represents a dataset
recorded by different logging tools, while N number of rows contain all measured
depths along the processed interval
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D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D11 D12 · · · D1S

D21 D22 · · · D2S
...

...
...

...

Di1 Di2 · · · DiS
...

...
...

...

DN1 DN2 · · · DNS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

Factor analysis is based on the following model

D = FLT + E, (2)

where F is the factor scores matrix of sizeN-by-R (R is the number of derived factors).
QuantityL is the factor loadingsmatrix of size S-by-R andE is the residual errormatrix
of size N-by-S (symbol T is the matrix transpose). According to Eq. (2), the observed
wireline logs are expressed as a linear combination of the factors. The factor loadings
in matrix L show the partial correlations between the observed and derived statistical
variables. The largest part of total variance represented by matrix D is explained by
the first factor, the scores of which are found in the first column of matrix F. Given
that the factors are uncorrelated, we write the correlation matrix of standardized data
as

R = N−1DTD = LLT + �, (3)

where � denotes the diagonal matrix of error variances independent of those of the
common factors in matrix F. The calculation of correlation matrix R is easy to handle
if matrix E is neglected in Eq. (2). This approximation helps to avoid the estimation
of specific variances by cancelling matrix � in Eq. (3). Since the part of the total
variance that may not be described by the common factors is neglected, this approach
leads to an approximate solution for the factors using the popular method of Principal
Component Analysis (PCA). Although PCA does not account for residual matrix
E, but it gives a quick and unique (algebraic) solution for extracting the principal
components (Maćkiewicz and Ratajczak 1993).

We approximate the factor loadings non-iteratively by a scaling-free estimation
method (Jöreskog 2007)

L = (diag�−1)−1/2�(� − θ I)1/2U, (4)

where � denotes the matrix of the first R number of eigenvalues of the empirical
covariance matrix �, and the corresponding R number of eigenvectors are given in
matrix �, and U is a freely selected R-by-R orthogonal matrix. Quantity I denotes the
identity matrix and θ is a properly chosen constant that must be accepted smaller than
1. In traditional dimension reduction approaches, the factor scores are calculated by
the maximum likelihood method. By assuming the hypothesis of linearity
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FT = (LT�−1L)−1LT�−1DT (5)

gives an unbiased estimate to the factor scores (Bartlett 1937). Since Eq. (5) is analo-
gous to a least squares solution weighted by the specific variances (Menke 2012), the
localities of the objective function to be minimized cannot be effectively avoided by
the gradient-based searching for the absolute minimum.

2.2 Particle swarm optimization based factor analysis

To improve the performance of data reduction, we suggest PSO as a global optimiza-
tion procedure to determine the vector of factor scores. Abordán and Szabó (2018)
established the basic principles of the PSO assisted factor analysis (FA-PSO). To give
a metaheuristic estimation of the factors, we reformulate the model of factor analysis
given in Eq. (2) as

d(m) = L̃f + e (6)

where d(m) is the vector of standardized wireline logging data of size SN , L̃ denotes
the matrix of factor loadings of size NS-by-NR, f is the expanded vector of factor
scores of size RN and e is the vector of approximation errors of size SN (Szabó and
Dobróka 2017). As a first step, we determine matrix L̃ by Eq. (4) and rotate it using the
varimax technique for easier interpretation (Kaiser 1958). We give the optimal values
of the factor scores f by using PSO, which can be considered as an iterative inversion
procedure. We use the following L2-norm based function as objective function

E =
[

1

NS

NS∑
i=1

(d(m)
i − d(c)

i )2

]1/2

(7)

where d(c) contains the standardized calculated wireline logging data. Here, calculated
data refers to the term L̃f from Eq. (6), which also gives the possibility for calculating
theoretical well logs that can be regarded as the solution of the forward problem
of the inversion procedure. Previous researches suggest that it can be even used to
generate theoretical well logs for intervals where measurements are missing, due to
the high correlation of certain log types to the first factor (Szabó et al. 2012). By the
minimization of the objective function in Eq. (7), we update the factor scores by PSO,
while we keep the factor loadings constant to reduce runtime. It must be mentioned
that it is possible to simultaneously refine the factor scores and loadings using the
well-known maximum likelihood method, or an iteratively reweighted factor analysis
for seeking a more robust solution (Szabó and Dobróka 2017).

Particle swarm optimization originally introduced by Kennedy and Eberhart (1995)
was developed to mimic the social behavior of animals. Generally, it was applied for
its easy implementation and high efficiency in solving complex problems (Kumar
et al. 2017). To find the optimal solution, PSO applies a swarm of particles generated
randomly by following uniform distribution in a pre-defined search space. Given an
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N-dimensional search space, vector f i = (f i1,f i2,…,f iN )T denotes the position of the
ith particle. In our problem, quantity f i denotes the ith possible solution for the vector
of factor scores. We store the particle’s velocity in vector vi = (vi1,vi2,…,viN )T, which
defines itsmovement in each iterationwithin the search domain. The swarmof particles
seek theminimumof the objective function defined in Eq. (7) by utilizing the following
equations

fi (t + 1) = fi (t) + vi (t + 1) (8)

vi (t + 1) = wvi (t) + r1c1(pi (t) − fi (t)) + r2c2(g(t) − fi (t)) (9)

where L denotes the number of particles in the swarm (i = 1,2,…,L), t stands for
iterations (t = 1,…,tmax) where tmax is the final iteration step. During the search for
the global optimum,PSOutilizes amemorywhich is updated after each iteration. Every
particle’s best position is held in pi = (pi1,pi2,…,piN )T, while vector g stores the best
position found by the whole population. Kennedy and Eberhart (1995) suggested to set
the cognitive and social constants c1 and c2 equal to 2 as default, separately, during the
initialization. These control parameters define towhat extent the personal best position
of particles pi and the very best position of the swarm g affect the movement of the
ith particle during the search. In Eq. (9), r1 and r2 are uniformly distributed random
parameters from 0 to 1, while w represents an inertia weight that was suggested by
Shi and Eberhart (1998) to more effectively control the optimization procedure.

To start the FA-PSO procedure for finding the optimal vector of factor scores f , we
generate a population of particles with uniform distribution within the search space,
which can be pre-defined by solving Eq. (5) for the factor scores. As for w, we use
a chaotic descending inertia weight scheme to better control the velocity of particles
(Feng et al. 2007). We perform it in three steps: first we generate a random number
(z) from the range 0 to 1. Then we set z by logistic mapping according to z′ = 4z(1–z)
and finally

w = (w1 − w2)(tmax − t)/tmax + w2z
′ (10)

where w1 and w2 represent the starting and the final values of inertia weight during
the iterative procedure, respectively. Then in each iteration step, we re-determine the
particles’ positions according to Eqs. (8–9), and re-calculate the objective function
defined in Eq. (7) with the new factor scores f . We continuously update the particles
until the maximum number of iterations is reached, thereafter we accept the particle
with the lowest data misfit as the solution for the factor scores.

2.3 Permeability estimation by factor analysis

Previous studies show that the first statistical factor correlates well with the shale
content of various geological formations (Szabó 2011; Szabó and Dobróka 2013;
Puskarczyk et al. 2015; Puskarczyk 2020; Abordán and Szabó 2020). Advanced math-
ematical approaches have been developed to extract the shale volume from well logs
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as efficient as possible. The iteratively reweighted factor analysis gives a reliable esti-
mation to the factors independent of the statistical distribution of input data (Szabó and
Dobróka 2017). In addition to give a robust solution, the calculation of factor scores
was established on global optimization by using evolutionary computation (Szabó and
Dobróka 2018). By analyzingmultiple well logs, we take all themeasured information
into account during the interpretation, which makes a step forward in increasing the
reliability of estimation compared to single depth-point approaches using one or few
well logs. Under taking all measured information we mean that we select all suitable
well logs as input being highly sensitive to shale volume, in other words only those
data types are processed that are significantly influenced by the variation of the rele-
vant petrophysical parameter along the borehole. Based on the above considerations,
the first statistical factor extracted from multiple well logs can be interpreted as a
lithology indicator, which holds valuable information on the shale content of sedi-
mentary formations. When applying factor analysis to well logs, a strong exponential
connection between the first factor (F1) and shale volume (Vsh) can be set in geo-
logical formations of different ages. In the Hungarian and American examples given
in Fig. 1, the consistence of the results is also confirmed by the validity of the same
regression function (with approximately the same regression coefficients and by using
proper scaling to the factor scores).

We assume a strong correlation between the absolute permeability and the first prin-
cipal factor in sedimentary formations. This is partly due to the fact that permeability
is to some extent inversely proportional to shale content of clastic formations (Schön
and Georgi 2003; Revil and Cathles 1999). In our test site, an empirical relation is
found between the decimal logarithm of permeability and shale volume both derived
from wireline logs as well as core information (Fig. 2). The correlation coefficient for
the first case is − 0.91, while for the latter it is − 0.72, both showing a clear rela-
tionship between the two quantities. In well log analysis, for estimating the absolute
permeability (K) from wireline logging datasets, usually deterministic approaches are
used which rely on porosity (Φ) and irreducible water saturation (Sw,irr) data. The
most frequently applied manner is based on the use of similar empirical approaches
like the formula of Timur (1968)

K = 0.136
�4.4

S2w,irr

(11)

Analogous studies show that the statistical factors include not only the information
on lithological characteristics but also the hydraulic properties of reservoir rocks. For
instance, Szabó (2015) explored the hydraulic conductivity of fractured groundwater
formations successfully by factor analysis of hydrogeophysical logs. In this study, we
test the proposed factor analysis approach to estimate permeability in six wells (Well
1–6) drilled in the Pannonian basin in East Hungary. We investigate unconsolidated
upper Miocene gas-bearing formations with high average porosity showing a variabil-
ity of different grain sizes and lithology as marl, silt and sands. Accordingly, we show
that the well log of the first factor derived by the improved FA-PSO approach scaled
into the range 0 to 1 can be directly used to estimate permeability along arbitrary
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Fig. 1 Regression relationships between the first factor and shale volume derived by well log analysis for
different hydrocarbon fields

intervals. For this purpose, we use a non-linear relationship, which connects the first
factor to the intrinsic permeability of hydrocarbon reservoirs. In the given area, the
first (properly scaled) factor extracted from the wireline logging dataset by FA-PSO
is connected to the decimal logarithm of permeability (K) in the form as

lg(K ) = a (1 − Fb
1 )c + d (12)

where a, b, c, d are area specific coefficients estimated by regression analysis using for
instance core data and other preliminary information. The above non-linear relation-
ship is applied to different wireline logging datasets in the investigated hydrocarbon
field to demonstrate the feasibility of the proposed method.

Our FA-PSOmethod is a fully metaheuristic approach, therefore its output is highly
affected by the control parameters (i.e., learning factors) that are worth to be set as
optimal as possible at initialization. The optimal parameter selection of PSO has been
studied by several researches (Jiang et al. 2007; Fernández Martínez et al. 2010;
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Fig. 2 Empirical connections between the intrinsic permeability and shale volume of Miocene hydrocarbon
formations in the investigated site, Pannonian basin, East Hungary

Harrison et al. 2019). However, since the optimal control parameters highly depend
on the optimization task, here an attempt is made to automatically select the optimal
values of parameters c1 and c2 of PSOwhile solving factor analysis. These parameters
are usually chosen according to empirical suggestions, which can make a problem
ambiguous. To offer a more advanced solution of the presented PSO-based factor
analysis, we propose a further developed algorithm to improve the FA-PSO method
in regard of the c1 and c2 hyperparameters. For this purpose, we search for these
parameters bySimulatedAnnealingmethod (SA) suggested byMetropolis et al. (1953)
in an outer loop of our algorithm in an automated way. Then, in the inner loop, FA-
PSO is run with the newly estimated c1 and c2 parameters. According to the previously
outlined workflow, the procedure starts with the determination of the factor loadings
according to Eq. (4). Then, we optimize the factor scores with the help of PSO by
minimizing the objective function defined in Eq. (7). However, the control parameters
c1 and c2 of PSO are also optimized during the procedure by SA in an outer loop
as shown in Fig. 3. In the regression part of the workflow, we can correlate the first
factor to available permeability values (and other petrophysical parameters). In the
prediction phase, we estimate the permeability to missing logging intervals directly
from the factor scores using the regression model in Eq. (12).

3 Numerical results

3.1 Single borehole application

We test the feasibility of factor analysis using in situwell logging data in a hydrocarbon
well (Well-6). For permeability estimation, we simultaneously process the caliper
(CAL), natural gamma-ray intensity (GR), potassium-thorium product (K × TH),
spontaneous potential (SP), deep resistivity (Rd), bulk density (ρb), neutron-porosity
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Fig. 3 Hyperparameter estimation using SA algorithm for improving the PSO based factor analysis method.
Cognitive and social constants (c1, c2) are automatically refined to give an estimate to the factor scores,
while the permeability (K) is directly derived from the first factor using regression analysis

(ΦN ) and acoustic interval time (�t) logs. Our investigation covers a 290 m long
interval with a 0.2 m sampling interval. At the start of the FA-PSO procedure, the input
logs are standardized and gathered into column vector d(m) according to Eq. (6). Then
the factor loadings are estimated for three factors by the non-iterative approximate
method of Jöreskog (2007) based on Eq. (4). The resulting factor loadings are rotated
by the varimax algorithm and are collected in Table 1. The first factor is strongly related
to the natural gamma-ray intensity, potassium-thorium index and bulk density logs that
make it a good lithological indicator, which is consistent with previous applications
(Szabó and Dobróka 2017). The second factor log correlates with the neutron-porosity
and acoustic logs, while the third factor is greatly sensitive to the variation of the deep
resistivity log.

Once the factor loadings are determined, we optimize the factor scores by the algo-
rithm of PSO. First, we give an initial solution for the factor scores by solving Eq. (5),
thus we define the search space of the PSO process as [−12, 12]. We estimate the
amount of variance explained by the factors based on the singular value decomposi-
tion of the reduced covariance matrix of standardized data R–� = LLT. Since three
factors explain more than 90% of total variance of the input data, we extract three
factors from the dataset. Thus, the number of unknowns is 4,353 (3 factor × 1451
depth points). For estimating their optimal values by PSO, we initialize 90 particles
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Table 1 Orthogonally transformed factor loadings estimated in Well-6, Pannonian Basin, Hungary

Well log Symbol Factor 1 Factor 2 Factor 3

Borehole caliper CAL 0.27 − 0.12 0.20

Natural gamma-ray intensity GR 0.87 − 0.42 − 0.07

Potassium-thorium product K × TH 0.73 − 0.25 0.03

Spontaneous potential SP 0.45 − 0.27 0.19

Deep resistivity Rd − 0.12 0.34 0.56

Bulk density ρb 0.94 0.04 − 0.06

Neutron-porosity ΦN 0.38 − 0.64 − 0.40

Acoustic interval time �t 0.12 − 0.87 − 0.04

within the pre-defined search space. They search for the solution by moving around
in the search domain according to Eqs. (8)–(9) to minimize the objective function in
Eq. (7) in 5,000 iteration steps. In our experiment, we treat the cognitive and social
parameters of PSO as unknown. Our algorithm allows changing them freely, instead
of selecting them as arbitrary constants. We set the initial value of c1 and c2 equal to 1,
respectively, while parameter w is set according to Eq. (10). At the end of the process,
the estimated values of hyperparameters are c1 = 1.44 and c2 = 2.06. The variation
of the control parameters of PSO and data distance as functions of iteration steps is
plotted in Fig. 4. At the end of the optimization phase, the data distance calculated by
Eq. (7) reaches 0.53. Both plots show a convergent and stable optimization procedure.
The independence of results on the random initial particle positions in PSO algorithm
has been earlier investigated in the context of inverse problem solutions (Abordán and
Szabó 2020).

Fig. 4 Convergence of the 1D PSO based factor analysis procedure in Well-6, Pannonian Basin, Hungary.
The variation of learning parameters (c1 plotted with dashed line, c2 plotted with continuous line) during
the iterative procedure (left panel). The decrease of data distance (energy) vs. iteration steps (right panel)

123



10 Page 12 of 27 GEM - International Journal on Geomathematics (2022) 13 :10

Fig. 5 Regression relationship
found between the first factor
and the decimal logarithm of
permeability measured in mD in
Well-6, Pannonian Basin,
Hungary

To find the regression relationship between the first factor found by the FA-PSO
method and decimal logarithm of absolute permeability, we properly scale the former
into the range of 0 to 1. For regression analysis, we use permeability data deterministi-
cally derived from Eq. (11). The regression coefficients in Eq. (12) are found to be a=
5.90, b= 1.27, d = 2.28while c is fixed at 1, because it shows no sensitivity in this case.
The correlation relationship between the scaled first factor and absolute permeability is
plotted in Fig. 5. The Spearman’s rank correlation coefficient of -0.77 between the first
factor and the decimal logarithm of permeability indicates a significant (non-linear)
inverse relationship. The input well logs of the FA-PSO procedure are plotted in Fig. 6
in the first 8 tracks (note that the depth scale represents relative depth coordinates).
The last track indicates that the fit between the factor analysis derived permeability
(lg(K)_FA-PSO) and that of derived deterministically by Eq. (11) (lg(K)_DET) is
consistent along the investigated interval. The CPU time of the FA-PSO procedure for
automatically determined hyperparameters is ~ 7 h (~ 3000 depth points), while for
fixed hyperparameters it is 86 s using an octa-core processor workstation.

3.2 Test of hyperparameters

The learning parameters of classical PSO are usually set to default values based on
recommendations (Kennedy and Eberhart 1995). We suggest an improved PSO algo-
rithm to improve these parameters, which forms the basis of the workflow presented
in Fig. 3. We focus on the estimation of parameters c1 and c2 to optimize the PSO
process. As input, we select the GR, K × TH, SP, Rd , ρb, ΦN , �t logs in a 20 m
long interval in Well-3. At the beginning of the SA procedure, both parameters are
set as 1 and in every iteration step their value is slightly altered by adding a random
perturbation (δ) to both values. We generate parameter δ as random number in each
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Fig. 6 The result of factor analysis inWell-6, PannonianBasin,Hungary.The input logs ofFA-PSOprocedure
are plotted in tracks 1-8: borehole caliper (CAL), natural gamma-ray intensity (GR), potassium-thorium
product (K×TH), spontaneous potential (SP), deep resistivity (Rd ), bulk density (ρb), neutron-porosity
(ΦN ) and acoustic (P-wave) transit time (Δt ). The scaled first factor log (F1) is plotted in track 9. In track
10, lg(K)_FA-PSO represents the factor analysis derived logarithmic permeability (originally given in mD),
while lg(K)_DET shows the deterministic estimation for the same quantity

iteration step from the range −δmax to δmax. We also decrease the maximum value
of perturbation (δmax) iteratively using δmax = δmax × ε, where constant ε is smaller
than 1. Then with these new hyperparameters (c1 and c2), PSO optimizes the factor
scores in 200 iterations. We define the energy function of SA as Eq. (7). If the energy
difference (�E) in two subsequent SA iterations of the algorithm is negative (i.e., PSO
reached a lower data distance), then the new values of c1 and c2 are accepted and the
procedure is continued. If the energy difference is greater than 0 (i.e., the efficiency of
PSO got worse with the new parameters), then the new c1 and c2 hyperparameters can
be still accepted if a random number generated from 0 to 1 is smaller than acceptance
probability Pa = exp(− �E/T ), where T denotes the actual temperature of the search.
This mechanism is the basis of the SA algorithm because it enables the search to get
out of local minima of the energy function. To ensure the convergence to the global
optimum of the objective function, the temperature must be reduced logarithmically
as suggested by Geman and Geman (1984). We change the temperature in the qth iter-
ation as T (new) = T0/lg(1 + q), where the initial temperature of the artificial system
T0 is experimentally set to 5 × 10–6.
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Fig. 7 Convergence of data distance (right panel) by altering control parameters c1 and c2 of the FA-PSO
procedure (left panel) repeated 200 times using the dataset of Well-3, Pannonian Basin, Hungary

We run the SA procedure for 100 iteration steps to optimize the values of c1 and
c2 as shown in Fig. 7. The newly generated control parameters are tested in each SA
iteration step by running the FA-PSO method for 200 iterations for three consecutive
times. This is particularly advantageous especially at the early stages, where data
distances remain rather large due to the suboptimal values of c1 and c2. The mean of
the three consecutive FA-PSO runs for each SA iteration can be seen in Fig. 7 (on
the right panel). As the figure indicates, the whole procedure was run 200 times to
check its stability. After approximately 40 iteration loops, SA successfully optimizes
the values of the learning parameters for the FA-PSO algorithm in all 200 separate
program runs and data distance defined by Eq. (7) did not decrease any further. This
shows the stability of the SA-based hyperparameter estimation method. In Fig. 8, we
illustrate all those value pairs of c1 and c2 that were tried by SA during the iterations
in 200 repeated program runs. Green dots indicate the ones that did not lead to the
global optimum, while the blue ones enabled PSO to converge to the optimal solution
of factor scores. According to the results, c1 has less effect on the convergence and
can be selected from a wider range (0.25–2.7), while the optimal range for c2 is more
restricted (1.7–2.6) when solving the problem of factor analysis. The fitted regression
line indicates a moderate correlation between c1 and c2. Our result agrees well with
those of the literature, for instance Cleghorn and Engelbrecht (2014) derived similar
convergent regions for the sum of the two parameters. This test justifies the advantage
of using SA to find the optimal combination of hyperparameters. The CPU time of the
FA-PSO procedure for automatically estimated hyperparameters is ~ 70 s, while for
fixed hyperparameters is 0.27 s using an octa-core processor workstation.

3.3 Multi-borehole application

We extend the improved factor analysis to multi-dimensional cases, which allows the
simultaneous processing of well logs measured from several neighboring boreholes.
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Fig. 8 Cross-plot of learning
parameters c1 and c2 estimated
by the 1D Particle Swarm
Optimization based factor
analysis (green and blue dots)
performed in Well-3, Pannonian
Basin, Hungary. Red line
indicates linear relationship
between those points that led the
PSO based factor analysis
procedure to the global
optimum. For the latter, the
Pearson’s correlation coefficient
−0.58 indicates moderate
correlation between the two
quantities

Let the measured data vector be d(h) defined in Eq. (6) in the hth borehole (h =
1,2,…,H). Then the model of factor analysis becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d(1)

...

d(h)

...

d(H)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= diag
(
L̃(1), . . . , L̃(h), . . . , L̃(H)

)
×

⎛
⎜⎜⎜⎜⎜⎜⎝

f (1)
...

f (h)

...

f (H)

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

e(1)

...

e(h)

...

e(H)

⎞
⎟⎟⎟⎟⎟⎟⎠

(13)

where L̃(h) represents the matrix of factor loadings and vector f (h) contains the esti-
mated factor scores along the hth borehole. There is Nh number of measured depth
points in the hth wellbore, therefore the total number of data processed by factor anal-
ysis is N* = N1 + N2 + … + NH . In Eq. (13), we determine the matrix of factor

Table 2 Rotated factor loadings
estimated in Wells 1–5,
Pannonian Basin, Hungary

Well log Symbol Factor 1 Factor 2

Natural gamma-ray intensity GR 0.87 0.02

Shallow resistivity Rs − 0.73 − 0.01

Bulk density ρb 0.83 − 0.29

Neutron-porosity ΦN 0.82 0.18

Acoustic transit time �t − 0.01 0.64
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loadings in a similar manner as in the previously presented one-dimensional case by
Eq. (4), while we approximate the optimal values of factor scores by PSO.

We show a 2D application of FA-PSO to derive the permeability variations in a
hydrocarbon zone in the same area of the Pannonian Basin. We gathered the wireline
logging data collected from five wells (Well-1, -2, -3, -4, -5) into one dataset. The
borehole investigated in Sect. 3.1 (Well-6) falls farther from the line of the other
wells, thus we excluded it from our calculation. The GR, ρb, ΦN , �t and shallow
resistivity (Rs) logs being completely available all depths serve as the input of 2D
factor analysis. By combining the dataset of the five wells, the total number of data
is 37,525. The wells are located along a 2,200 m long profile. By estimating two
factors, the orthogonally transformed factor loadings are given in Table 2. When
calculating the factor scores the learning parameters are simultaneously optimized.
The resultant values of learning parameters are c1 = 1.59 and c2 = 2.23 (Fig. 9). Due
to the increased number of unknowns, in this case the PSO routine requires 25,000
iteration steps with 90 particles. Based on the calculation of the singular values of
the reduced covariance matrix of standardized wireline logs, the first factor explains
77% of the total data variance, while the remaining 23% is explained by the second
factor. The first extracted factor correlates well with all processed well logs except the
P-wave acoustic interval time log, while the second factor is quite the opposite.

Wefind a strong correlation between thefirst scaled factor and the decimal logarithm
of permeability in the investigatedMiocene formations (Fig. 10). The Spearman’s rank
correlation coefficient is -0.93. Using the proposed model in Eq. (12), we establish
the local regression model, where the available permeability values are obtained from
deterministic modeling using Eq. (11). The regression coefficients in this case are a
= 7.18, b = 4.5, c = 1.2 and d = –3.8. By interpolating the output data by ordinary
kriging, we derive the maps of the estimated factors and that of the permeability
estimated by 2D FA-PSO method along the investigated cross-section (Fig. 11). The

Fig. 9 Convergence of the 2D PSO based factor analysis procedure inWells 1–5, Pannonian Basin, Hungary.
The variation of learning parameters (c1 plotted with dashed line, c2 plotted with continuous line) during
the iterative procedure (left panel), the decrease of data distance (energy) vs. iteration steps (right panel)
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Fig. 10 Regression relationship
found between the first factor
and the decimal logarithm of
permeability measured in mD in
Wells 1–5, Pannonian Basin,
Hungary

Fig. 11 Result of permeability prediction using 2D PSO assisted factor analysis for multiple wells. Top panel
shows the section of the extracted first factor, the middle panel includes that of the second factor, bottom
panel illustrates the estimated logarithmic permeability (originally given in mD) in Wells 1–5, Pannonian
Basin, Hungary
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depth of potential reservoirs and sealing units can be recognized well on the image
(note that the depth scale represents relative depth coordinates). Of course, care must
be taken, the farther the wells are from each other, the more uncertainty there is in
permeability prediction because of lithological and structural variations. The reliability
of the results can be ensured with the integration of core measurements and surface
geophysical measurements. The CPU time of the FA-PSO procedure for automatically
determined hyperparameters is ~ 100 h, while for fixed hyperparameters is ~ 20 min
using an octa-core processor workstation.

3.4 Calibration by core data

The results of factor analysis highly depend not just on the way of optimization but
also what type and quality of the input data we have in the phase of regression anal-
ysis (Fig. 3). We test the feasibility of the permeability prediction method using the
combination of wireline logs and core plug data. Let us choose a well log suite from
Well-3 in the investigated area, which include the natural gamma-ray intensity (GR),
potassium-thorium product (K × TH), spontaneous potential (SP), deep resistivity
(Rd), shallow resistivity (Rs), bulk density (ρb), neutron-porosity (ΦN ) and acoustic
interval time (�t) logs. From core plugs, the equivalent liquid permeability (KL) is
available, which is derived from the measured gas permeability (KG) as

KL = KG

1 + (κ/Pm)
(14)

where κ is a constant for a particular gas in a given rock type and Pm is the mean
pressure (Klinkenberg 1941). We emphasize that that laboratory measurements on
core plugs and wireline logging are carried out under different conditions (e.g., tem-
perature and pressure etc.) yielding sometimes considerable differences in predicted
permeability values. Moreover, core data provide only local information about perme-
ability, whilewell logs are influenced by a larger extent of the rock formation, therefore
the misfit between the well log derived permeability and that of core data sometimes
can be significant. To improve the strength of correlation for the variables of Eq. (12),
we let the most of the observed information concentrate into only one factor. We con-
duct the regression analysis to find the relationship between the first factor and lab
permeability on those locations where core derived permeability data is available. In
the investigated depth interval, core data is available at 54 non-equidistantly sampled
locations, therefore wireline logging data is gathered only from these locations and
standardized to serve as the input of factor analysis. The processed interval is 18 m
long. First, factor loadings are estimated by Eq. (4) only for one factor. We show the
calculated and rotated factor loadings in Table 3. Based on the table, we can conclude
that the extracted factor from the wireline logging dataset shows a strong correlation
with the GR, K × TH, ρb and ΦN logs, separately.

Once the factor loadings are calculated, the factor scores are optimized byPSO in the
same manner as detailed in Sect. 3.1 (in Well-6). First, we solve Eq. (5) for estimating
the initial values of factor scores to define the search space of the FA-PSO process [-3,
3]. We extract only one factor from the well logging dataset, therefore the number of
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Table 3 Rotated loadings of the
first factor estimated in Well-3,
Pannonian Basin, Hungary

Wireline log Symbol Factor 1

Natural gamma-ray intensity GR 0.97

Potassium-thorium product K × TH 0.94

Spontaneous potential SP 0.32

Deep resistivity Rd − 0.41

Shallow resistivity Rs − 0.35

Bulk density ρb 0.89

Neutron-porosity ΦN 0.87

Acoustic interval time �t − 0.65

unknowns adds up to only 54 (1 factor× 54 depth points). For estimating their optimal
values, we randomly initialize 45 particles in the pre-defined search space. They look
for the solution of factor scores bymoving around in the search space according to Eqs.
(8–9) tominimize the objective function in 200 iteration steps earlier defined in Eq. (7).
We let the control parameters (c1, c2) of the PSO algorithm change automatically. At
the last iteration step, the resultant values of learning parameters are c1 = 1.98 and c2
= 1.91, while the data distance reaches 0.66 (Fig. 12).

To interpret the regression relationship between the first factor and the decimal
logarithm of absolute permeability, first we scale the former into the range of 0 to 1.
As a reference value, the equivalent liquid permeability data is used. The non-linear
relationship according to the model suggested in Eq. (12) between the first scaled
factor and permeability is plotted in Fig. 13. The regression coefficients are found to
be a = 2.95, b = 2.10, d = 0.17 while c is fixed at 1. The Spearman’s rank correlation

Fig. 12 Convergence of the 1D PSO based factor analysis procedure in Well-3, Pannonian Basin, Hungary.
The variation of learning parameters (c1 plotted with dashed line, c2 plotted with continuous line) during
the iterative procedure (left panel), the decrease of data distance (energy) vs. iteration steps (right panel)
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Fig. 13 Regression relationship
found between the first factor
and the decimal logarithm of
core permeability measured in
mD in Well-3, Pannonian Basin,
Hungary

coefficient is –0.78,which indicates a strongnon-linear relationship.Because of having
some outlying values, we can see only a moderate deviation between the well log
analysis derived permeability and the data available from core plugs, nevertheless, it
is well described by Eq. (12). The input (observed) well logs of factor analysis are
plotted in the first eight tracks in Fig. 14, the scaled first factor log is available in track
9 of the same figure. The last track contains the decimal logarithm of permeability
derived by the FA-PSO method (lg(K)_FA-PSO) and the core data (lg(K)_CORE)
(note that the depth scale represents relative depth coordinates). We conclude that
the two independent methods determine similar permeability distribution with depth
along the processed interval.

4 Discussion

Petrophysical properties including volumetric parameters such as porosity, shale vol-
ume and water saturation as well as permeability cannot be directly measured by
downhole geophysical tools. Normally, we estimate them by inverting the observed
wireline logs, which allows also the quantification of their estimation accuracy by
using the law of error propagation. In the knowledge of the data covariance matrix
including the data variances in its main diagonal, one can derive the covariance matrix
of the estimated model parameters using linear inverse theory (Menke 1984). The
PSO method as intelligent optimization tool has been implemented in a stochastic
calibration context, specifically for the estimation of subsurface properties (Russian
et al. 2019; Patani et al. 2021). Its efficiency has been shown in some applications
in well logging inversion, too. For instance, by applying a series expansion based
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Fig. 14 The result of factor analysis in Well-3, Pannonian Basin, Hungary. The input logs of FA-PSO
procedure are plotted in tracks 1-8: natural gamma-ray intensity (GR), potassiumthorium product (K×
TH), spontaneous potential (SP), deep resistivity (Rd ), shallow resistivity (Rs), bulk density (ρb), neutron-
porosity (ΦN ) and acoustic (P-wave) transit time (Δt ). The scaled first factor log (F1) is plotted in track
9. In track 10, lg(K)_FA-PSO represents the factor analysis derived logarithmic permeability (originally
given in mD), while lg(K)_CORE shows the core derived value for the same quantity

discretization scheme the so-called interval inversion method with a great overde-
termination (data-to-unknowns ratio) may significantly reduce the uncertainty of the
inverted parameters (Dobróka et al. 2016). Global optimization tools like PSO, SA
and genetic algorithms can be effectively combined with linearized inversion tech-
niques to solve such an inverse problem. By the successive application of the PSO
technique and the interval inversion method, not only the computer processing time
of PSO inversion can be reduced, but there is a possibility to calculate the estimation
errors of petrophysical properties from the Jacobi matrix generated in a given linear
inversion step (Abordán and Szabó 2020; Szabó and Dobróka 2020).

The problem with the estimation of permeability is that the permeability is not
included at all in the theoretical tool response functions connecting the model param-
eters with the measured data (Alberty and Hashmy 1984). Thus, the quality check
of this parameter is not possible within the inversion procedure. In the practice, the
permeability is derived from the inversion results (or from different other sources),
by using some empirical relation. In this study, the suggested method for permeabil-
ity prediction is based on factor analysis and its results are all set in a deterministic
framework. Our approach provides a quite straightforward estimation for permeability
using the factor scores. However, it is possible to test the reliability of the regression
model by performing noise sensitivity tests using real data. Consider the well logs and
core data presented in Sect. 3.4. First we add 5% Gaussian distributed noise to the
input logs, then we run the FA-PSO procedure, and we repeat this process 30 times
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(in different runs, the noise was always regenerated and added to the observed data).
The histograms of the resultant regression coefficients (a, b, d) are plotted in Fig. 15.
The average and ranges of their estimated values are: a = 2.8 ± 0.7, b = 2.25 ± 0.75,
d = 0.25 ± 0.75 (coefficient c is fixed as earlier). The result of regression analyses
can be seen in the bottom right panel of the figure, which shows the consistency of
regression model (12). The uncertainty of permeability prediction is acceptably low
and is comparable with the level of data noise. This is also proven in Fig. 16, where
the error intervals of the input logs, and those of the first factor and permeability are
plotted, respectively. It can be seen that the uncertainty of permeability prediction is
higher in formations with lower permeability, but it is favorable that the same param-
eter in the hydrocarbon bearing zones can be more reliably produced. The results are
also confirmed by the core data available in the processed interval.

Fig. 15 Result of repeating the run of FA-PSO procedure 30 times. The input data were contaminated by
5% Gaussian distributed noise. Top panels and bottom left panel show the domain of estimated regression
coefficients. Bottom right panel show the possible range of permeability values estimated by factor analysis
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Fig. 16 The reliability of factor analysis based permeability estimation method tested by 30 repeated runs in
Well-3, PannonianBasin, Hungary. The input logs and their assumed error ranges (at 5%Gaussian noise) are
plotted in tracks 1-8: natural gamma-ray intensity (GR), potassium-thorium product (K×TH), spontaneous
potential (SP), deep resistivity (Rd ), shallow resistivity (Rs), bulk density (ρb), neutron-porosity (ΦN )
and acoustic (P-wave) transit time (Δt ). The scaled first factor log (F1) including its possible upper and
lower boundaries is plotted in track 9. In track 10, lg(K)_FA-PSO represents the factor analysis derived
logarithmic permeability and its uncertainty interval, while lg(K)_CORE shows the core derived value for
the same parameter

5 Conclusions

In the paper, we introduce a particle swarm optimization assisted factor analysis with
automatically optimized control parameters to permeability prediction in hydrocar-
bon reservoirs. The hyperparameter estimation based PSO process requires no prior
knowledge on its learning parameters. A metaheuristic search is guided for estimating
both the optimal set of cognitive and social constants and the factor scores. Based on
the above, we perform exploratory factor analysis by a new alternative optimization
tool. The advantages of the proposed method against traditional approaches are: (I)
derivative-free solution is given, (II) optimal misfit is achieved between the measure-
ments and predictions (as global optimization is made), (III) solution is practically
independent from the initial selection of factor scores, (IV) highly adaptive proce-
dure applied to different well log suites (see Table 1–3), (V) more reliable solution
is given by automatically estimating the learning parameters of PSO than those treat-
ing arbitrarily chosen control parameters, (VI) robust solution can be assured using an
appropriate choose of themisfit function.More robust norms like amost frequent value
based or L1-norm can be substituted into the Euclidean norm based objective functions
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(Szabó et al. 2018). At the moment, the only serious drawback of the hyperparameter
estimation method is its long computational running time. For automatically calcu-
lated hyperparameters, the CPU times increase approximately 300 times compared
to those of a single run using fixed values of c1 and c2. However, based on prelimi-
nary program runs, parameters c1 and c2 can be determined for the investigated area
and then fixed for factor analysis, which may reduce the running time by orders of
magnitude. In the knowledge of proper initial values, instead of the SA algorithm, a
linearized optimization procedure may be proposed to reduce the running time greatly.

We have established a well usable regression model between the first factor esti-
mated by the particle swarm optimization based factor analysis and the permeability
of hydrocarbon-bearing formations. It is noted that pilot tests confirmed the validity of
the same regression relation in some hydrocarbon wells in the Carpathian Foredeep,
South Poland (and hydraulic conductivity in Hungary and the USA). This allows the
estimation of permeability from an independent well-log-analysis method, which is
based on the comprehensive interpretation of multiple wireline logs. We have tested
the developed method in single wells in Hungarian hydrocarbon-bearing formations,
which was extended successfully to two-dimensional application to simultaneously
evaluate the data measured in multiple boreholes. The factor analysis derived per-
meability is compared and verified both by deterministic modeling of well logs and
laboratory basedmeasurements.As a next research step, the inertiaweightwmight also
be automatically selected for PSO, and the factor loadings will be used as unknowns
as we have done it in our earlier applications. By using fast computers and the tools
of parallel computing, a generalized FA-PSO method can be developed for a reliable
and fast 3D permeability prediction in different oilfields.
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