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Abstract
The flow of liquid relative to the bubbles is called drainage. This paper presents a 
study of the numerical solution of a non-linear foam drainage equation with time-
fractional derivative. We use the two-scale approach which is formulated by combin-
ing the fractional complex transform and the homotopy perturbation method (HPM).  
With the aid of the fractional complex transform, first, we transform the problem 
into its differential partner and then HPM is applied to obtain the He’s polynomi-
als which are highly and powerful support for non-linear problems. Further, we put 
forward the theory of the two-scale approach which reveals the sketch between frac-
tional complex transform and the solution of non-linear foam drainage equation. The 
significant results illustrate that this approach does not require any assumption while 
it reduces the heavy calculation without any restrictive variable. This approach also 
sheds a bright light on practical applications of fractal calculus.
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1  Introduction

Underground fluid flow in fractured and porous media exhibits a variety of hydro-
mechanical phenomena, which have been intriguing the research community for 
several decades (Schmidt and Steeb 2019). Foam drainage equation is observed one 
of the most important partial differential equation which in everyday of activities, 
both natural and industrial. The study of foam drainage equation is a simple model 
which leads to the flow of liquid through channels and nodes between the bubbles. 
Consider the non-linear foam drainage equation with time-fractional derivative such 
as

with initial condition

Ω is the cross-section of a channel formed where three films meet which usually 
indicated as Plateau border, x denotes the scaled position and t be the time respec-
tively. � is fractal dimension and �

�

�t�
 is He’s fractional derivative (He 2018, 2020a, b; 

Ain et al. 2020; Shen and He 2020).
Recent research in foams and emulsions has focused on three topics often 

treated individually but are, in fact, interdependent: drainage, coarsening, and 
rheology; see Fig. 1. For � = 1 , Eq. (1) can be reduced to classical foam drainage 
equation which has wide applications in particular care of commodities such as 
creams, oil, lotions, scrubbing and clothes cleaning (Stone et  al. 2002), chemi-
cal industries, mineral processing, and structural material sciences (Hilgenfeldt 
et al. 2001), aluminum metals (Schultz et al. 2000), thin porous layer (Koursari 
et  al. 2019). During the manufacturing of foam, the substance is in the liquid 
state, and fluid can change round while the bubble arrangement remains relatively 
unchanged. Alam (2015) applied G�∕G-expansion method to obtain the exact 

(1)D�

t
Ω +

�

�x

�

Ω2 −

√

Ω

2

�Ω

�x

�

= 0,

(2)Ω(x, 0) = f (x),

Fig. 1   Schematic illustration of 
the interdependence of drainage, 
coarsening, and rheology of 
foams (Hilgenfeldt et al. 2001)
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solution of the foam drainage equation. Parand and Delkhosh (2018) used the col-
location method to find the semi-analytical solution of the nonlinear foam drain-
age equation. Islam and Akbar (2018) used G�∕G - expansion method with the 
assistance of the fractional complex transformation to find the wave solution of 
the space–time fractional foam drainage equation. Various approaches have been 
established to identify the approximate and analytical solution of foam drain-
age equation such Adomian decomposition method (Helal and Mehanna 2007), 
reduced differential transform method (Gubes et  al. 2015), homotopy analysis 
method (Singh et al. 2016), and Haar wavelets method (Arbabi et al. 2016). The 
main focus of the present work is to formulate the strategy being pursued and to 
obtain the numerical solution of the fractal foam drainage equation. We also aim 
to confirm that the two-scale method is powerful, efficient, and promising in han-
dling scientific and engineering problems (Elias-Zuniga et al. 2021a, b, c, d; He 
2020c; Wang 2021; Wang et al. 2019).

2 � Basic idea of the homotopy perturbation method

To illustrate the basic concept of the homotopy perturbation method, consider the 
following non-linear functional equation (Li and Nadeem 2019; Nadeem and Li 
2019),

with boundary conditions

where A is a general functional operator, B is a boundary operator, f (r) is a known 
analytic function, and Γ is the boundary of the domain Ω . The operator A can gener-
ally be divided into two operators, L and N , where L is a linear and N being a non-
linear operator. Therefore, Eq. (3) can be written as follows

Using the homotopy technique, we construct a homotopy v(r, p) ∶ Ω × [0, 1] → ℝ 
that satisfies

or

where p ∈ [0, 1] , is called homotopy parameter, and u0 is an initial approximation 
for the solution of Eq.  (3), which satisfies the boundary conditions. According to 

(3)A(u) − f (r) = 0, r ∈ Ω,

(4)B

(

u,
�u

�n

)

= 0, r ∈ Γ,

(5)L(u) + N(u) − f (r) = 0.

(6)H(v, p) = (1 − p)[L(v) − L(u0)] + p[L(v) − N(v) − f (r)],

(7)H(v, p) = L(v) − L(u0) + pL(u0) + p[N(v) − f (r)] = 0,
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HPM, we can use p as a small parameter and assume that the solution of Eq. (7) can 
be written as a power series in p

Considering p = 1 , the approximate solution of Eq.  (3) will be obtained as 
follows

Additionally, some recent applications of HPM can be viewed in (He et al. 2020a, 
b; He and Dib 2020a, b; Skrzypacz et  al. 2020; Anjum and He 2020; He and Jin 
2020).

3 � Fractional complex transform

During the modeling of a problem, the dimension and scale are extremely valuable 
things since the various scales and dimensions will lead to remarkable results and 
properties for the same configuration. A fractional complex transform is a scien-
tific approach that converts a fractional differential equation into a fractal space in a 
continuous space and is defined as (He et al. 2012; Li and He 2010; Wang and Yao 
2020)

where ΔS is the smaller scale and Δt is the larger scale. On a smaller scale, the time-
fractional foam drainage equation behaves discontinuously, especially at the peak 
of the solitary wave. On the other hand, the larger scale predicts a smooth solitary 
wave. The transformation is given in Eq.  (10) is an approximate one to convert a 
fractal space on a small scale to a smooth space with a large scale. To under this, 
consider an example of a tree that stops growing at night, so when we use a scale of 
24 h, it grows continuously, while when we measure it in 12 h, it becomes discon-
tinuous. So, Eq. (10) is also called the two-scale transform (Ain and He 2019; He 
and Ji 2019; He and Ain 2020), which was geometrically studied using fractal the-
ory. The results of any particular problem depend on the scale. For example, on an 
observable scale, the liquid is steady; accordingly, Newton’s laws can be executed, 
otherwise invalid in case of molecular scale. For example, on an observable scale, 
Newton’s law is effective only if the liquid is steady, otherwise, it is illegitimate. In 
other words, if the flow is independent of time, then Newton’s law is valid while if 
the flow is dependent on time, then Newtons’ law becomes invalid. So, the two-scale 
transform is to convert a fractal space on a small scale to an approximate smooth 
space on a larger scale. Some recent work on fractal calculus can be studied in Wang 
(2020a, b), Wang and Wang (2020a, b, 2021) andd Wang et al. (2021).

(8)v = v0 + pv1 + p2v2 +⋯ .

(9)u = lim
p→1

v = v0 + v1 + v2 + v3 +⋯ .

(10)ΔS =
Δt�

Γ(1 + �)
,
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4 � Analysis of the method

In this section, we obtain an analytical solution of Eq.  (1). We first use the 
transformation

Thus, Eq. (1) becomes as

which may also be written as

with initial condition

where c is the velocity of the wavefront (Alquran 2014). The initial condition (13) is 
taken in such a way that it satisfies the problem to find a particular solution. Initially, 
we will apply the fractional complex transform to write it in its partner differential 
equation such as

So, Eq. (12) can be written as

The initial guess will be taken as u0 = −
√

c tanh(
√

cx) . The HPM together with 
He’s polynomials will be applied on Eq. (15) as follows

(11)Ω(x, t) = u2(x, t).
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Proceeding in the same way, we can obtain the high-order approximations.

the rest of the components can also be found in the same manner. Thus, the approxi-
mate solution according to HPM has the following form

Thus, by using Eq. (14), we get

This series leads to the exact solution for Eq. (1) when � = 1.
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Fig. 2   Approximate solution of 
u(x, t) for � = 1

Fig. 3   Exact solution of u(x, t) 
for � = 1.

Fig. 4   Error distribution of 
u(x, t) for different values of �.
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Using the Mathematica package 11.0.1, we illustrate the graphical represen-
tations and physical behaviors of the fractal foam drainage equation. For case 
� = 1 , we compare the obtained results of the approximate solution of Eq.  (1) 
and the exact solution of Eq.  (16), which is depicted in Figs.  2 and 3. From 
Fig. 2, it is obvious that when α = 1, the solution is nearly identical to the exact 
solution. The solution graphs have declared that the obtained results are almost 
identical and confirm worthy contact with the exact solution, which aids us to 
understand the nature of the fractal foam drainage equation. Moreover, Fig.  4 
shows the error distribution of the approximate solution and the exact solution 
which helps us to capture the behavior of the obtained solution. Some recent 
developments in fractal vibration models can be studied from somewhere else 
(Chun-Hui et al. 2021a, b; He et al. 2021a, He et al. 2021b).

5 � Conclusion

In this paper, we suggested a hybrid scheme such as fractional complex trans-
form is coupled with HPM to obtain the analytic solution of the nonlinear time-
fractional foam drainage equation, which is a simple model of the flow of liquid 
through channels and nodes between the bubbles. The fractional complex trans-
form performed a simple and excellent approach to convert a fractional differ-
ential equation into its differential partner which is suitable for the development 
of the two-scale method. This method is applied directly without any discretiza-
tion, linearization, and small parameter assumptions, which in actual ruins the 
physical nature of the problems. The results show that the proposed method is 
very efficient and powerful. The graphical representation shows that the solution 
procedure is simple and might be found in wide applications of engineering. The 
procedure reveals that the semi-inverse method is highly efficient and powerful, 
and can be generalized to other nonlinear evolution equations with fractal deriva-
tives in future applications.
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