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Abstract
In the present paper we studied Stoneley wave propagation at the interface of two 
dissimilar homogeneous transversely isotropic thermoelastic media with two tem-
peratures and rotation. The secular equations of Stoneley waves are derived in the 
form of the determinant by using appropriate boundary conditions. The wave char-
acteristics such as phase velocity and attenuation coefficients are computed and 
depicted graphically. Effect of rotation and two temperature has been depicted on 
the phase velocity, attenuation coefficient, displacement component, stress compo-
nent, and Temperature distribution change. Some particular cases are also deduced 
from the present investigation.
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CE  Specific heat
�ij  Linear thermal expansion coefficient
K∗
ij
  Thermal conductivity

�  Angular frequency
�  Angular velocity of the solid and equal to Ωn , where n is a unit vector
u⃗  Displacement vector
Fi  Components of Lorentz force
�0  Relaxation time
�0  Electric permeability
�(t)  Dirac’s delta function
�  Wavenumber
C1  Longitudinal wave velocity
aij  Two temperature parameters

1 Introduction

A Stoneley wave is an interface wave that usually travels along with the interface of 
two solids. Moreover, when initiates at the interface of liquid and solid, this wave 
is known as Scholte wave. This wave has maximum intensity at the boundary and 
decreases exponentially away from it. The wave generated by the sonic tool in a bore 
well is the example of these types of waves. Stoneley wave’s analysis provides infor-
mation about the positions of fractures and permeability of the formation. These 
waves not only deliver better information about the internal structure of the earth 
but are also helpful in the assessment of valuable materials under the earth’s surface. 
Stoneley waves are a major source of noise in vertical seismic profiles. These waves 
help in the study of geophysics, seismological processes, ocean acoustics, SAW 
devices, and non-destructive evaluation.

Stoneley (1924) firstly studied the existence of these waves propagating at the 
interface of two solid, solid–liquid medium and derived the Stoneley wave’s disper-
sion equation. Tajuddin (1995) studied the presence of Stoneley waves at the bound-
ary of two micropolar elastic half-spaces. Ting (2004) explored a surface wave propa-
gation in an anisotropic rotating medium. Othman and Song (2006, 2008) presented 
different hypotheses about magneto-thermo-elastic waves in a homogeneous and iso-
tropic medium. Abo-Dahab (2013, 2015) studied the different forms of surface waves. 
Kumar et al. (2013) investigated the Stoneley waves propagation at the boundary of 
two couple stress thermoelastic medium with LS and GL theories. Mahmoud (2014) 
studied the effect of the magnetic field, gravity field, and rotation on the propaga-
tion of Rayleigh waves in an initially stressed non-homogeneous orthotropic medium. 
Lata et al. (2016) investigated plane waves in an anisotropic thermoelastic. Abd-Alla 
et al. (2017) explored the propagation of surface waves in fiber-reinforced anisotropic 
media of nth order with rotation and magnetic field. Singh and Tochhawng (2019) 
studied the propagation of surface waves at the bonded and unbonded interfaces with 
voids. Despite of this numerous investigators worked on diverse thermoelasticity the-
ories as Marin (1999), Marin et al. (2016), Kumar et al. (2016), Marin and Craciun 
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(2017), Ezzat et al. (2017), Hassan et al. (2018), Othman and Marin (2017), Lata and 
Kaur (2019a, b, c) and Lata and Kaur (2019d, e).

In this paper, we have studied the Stoneley wave propagation at the interface of two 
dissimilar transversely isotropic thermoelastic homogeneous media with two temperature 
and rotation. Keeping in view of this, dispersion equation for Stoneley waves at the inter-
face of two different TIT mediums with two temperature and rotation have been derived. 
Numerical methods are used to study the variation of displacement component, stress 
component, Temperature, phase velocity, and attenuation coefficient w.r.t. wave number.

2  Basic equations

The basic governing equations for homogeneous, anisotropic, generalized thermoe-
lastic solids in the absence of body forces, heat sources following Chandrasekharaiah 
(1998), Youssef (2011) and Green and Naghdi (1992) are

where

Here, cijkl
(
cijkl = cklij = cjikl = cijlk

)
 are elastic parameters and having symmetries 

due to

1. The stress tensor is symmetric, which is only possible if 
(
Cijkl = Cjikl

)

2. If a strain energy density exists for the material, the elastic stiffness tensor must 
satisfy Cijkl = Cklij

3. From stress tensor and elastic stiffness tensor symmetries infer 
(
Cijkl = Cijlk

)
 and 

Cijkl = Cklij = Cjikl = Cijlk

Equation of motion as described by Schoenberg and Censor (1973) for an homogene-
ous transversely isotropic (HTI) medium rotating uniformly with an angular velocity Ω

(1)tij = Cijklekl − �ijT ,

(2)K∗
ij
𝜑ij = 𝛽ijT0ëij + 𝜌CET̈

�ij = Cijkl�ij,

eij =
1

2

(
ui,j + uj,i

)
, i, j = 1, 2, 3.

T = � − aij�,ij,

�ij = �i�ij, K
∗
ij
= K∗

i
�ij i is not summed.

(3)tij,j = 𝜌
{
üi + (Ω × (Ω × u)i + (2Ω × u̇i)

}
,
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The terms Ω × (Ω × u) and 2Ω × u̇ are the centripetal acceleration and Coriolis 
acceleration due to the time-varying motion respectively.

3  Formulation of the problem

We consider a perfectly conducting homogeneous TIT half-pace M1 with rotation 
overlying another homogeneous, transversely isotropic thermoelastic half-space M2 
with rotation connecting at the interface z = 0 . We take the origin of the coordinate 
system ( x, y, z) on (z = 0) . We choose x-axis in the direction of wave propagation in 
such a way that all the particles on a line parallel to the y-axis are equally displaced, 
so that v = 0 and u,w,� are independent of y. Medium M2 occupies the region 
−∞ < z ≤ 0 and the medium M1 occupies the region 0 ≤ z < ∞ . The plane signifies 
the boundary among the two medium M1 and M2 . The quantities represented for the 
medium M1 are without bar and with bar for medium M2 . For the 2D problem in xz-
plane, we take (Fig. 1)

Now using the transformation on Eqs.  (1)–(2) following Slaughter (2002) is as 
under:

u = (u, 0,w).

(4)

C11

�2u

�x2
+ C13

�2w

�x�z
+ C44

(
�2u

�z2
+

�2w

�x�z

)

− �1
�

�x

{

� −

(

a1
�2�

�x2
+ a3

�2�

�z2

)}

= �

(
�2u

�t2
− Ω2

u + 2Ω
�w

�t

)

,

x

z

y

Medium M1

Medium M2

Ω

0

Fig. 1  Geometry of the problem
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and

where

Using dimensionless quantities:

With the use of (12) in Eqs. (4)–(6), and suppressing the primes, we get

(5)

(
C13 + C44

) �2u

�x�z
+ C44

�2w

�x2
+ C33

�2w

�z2
− �3

�

�z

{

� −

(

a1
�2�

�x2
+ a3

�2�

�z2

)}

= �

(
�2w

�t2
− Ω2

w − 2Ω
�u

�t

)

,

(6)

K∗
1

𝜕2𝜑

𝜕x2
+ K∗

3

𝜕2𝜑

𝜕z2
=

[

𝜌CE

𝜕2

𝜕t2

{

𝜑 −

(

a1
𝜕2𝜑

𝜕x2
+ a3

𝜕2𝜑

𝜕z2

)}

+ T0

{

𝛽1
𝜕ü

𝜕x
+ 𝛽3

𝜕ẅ

𝜕z

}]

.

(7)txx = C11exx + C13exz − �1T ,

(8)tzz = C13exx + C33ezz − �3T ,

(9)txz = 2C44exz,

(10)�1 =
(
C11 + C12

)
�1 + C13�3,

(11)�3 = 2C13�1 + C33�3,

(12)

(
x�, z�

)
=

1

L
(x, z,),

(
u�,w�

)
=

�C2
1

L�1T0
(u,w), �C2

1
= C11,

(
T �,��

)
=

1

T0
(T ,�),

t� =
C1

L
t,
(
t�
xx
, t�
zx
t�
zz

)
=

1

�1T0

(
txx, tzx, tzz

)
,
(
a�
1
, a�

3

)
=

1

L2

(
a1, a3

)
,Ω� =

L

C1

Ω.

(13)

�2u

�x2
+ �2

�2w

�x�z
+ �1

�2u

�z2
−

�

�x

{

� −

(

a1
�2�

�x2
+ a3

�2�

�z2

)}

=

(
�2u

�t2
− Ω2u + 2Ω

�w

�t

)

,

(14)

�2
�2u

�x�z
+ �1

�2w

�x2
+ �3

�2w

�z2
− �5

�

�z

{

� −

(

a1
�2�

�x2
+ a3

�2�

�z2

)}

=

(
�2w

�t2
− Ω2w − 2Ω

�u

�t

)

,

(15)

(
�2�

�x2
+ �6

�2�

�z2

)

=

[

�8
�2

�t2

{

� −

(

a1
�2�

�x2
+ a3

�2�

�z2

)}

+ �7

{
�u

�x
+ �5

�w

�z

}

+

]

,
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where

We consider the solution of the form

where c = �∕� is the dimensionless phase velocity.
Upon using Eq. (16) in Eqs. (13)–(15) we get

where

and characteristic equation is a biquadratic equation in D2 given by

where

For medium M1(z > 0)

�1 =
c44

c11

, �2 =
c13 + c44

c11

, �3 =
c33

c11

, �5 =
�3

�1
, �6 =

K∗
3

K∗
1

, �7 =
T0�

2

1

K∗
1
�
, �8 =

C
E
C11

K∗
1

.

(16)(u,w,�) = (u∗,w∗,�∗)(z)ei�(x−ct),

(17)u∗
[
l1 + �2D

2
]
+ w∗

[
l2 + l3D

]
+ �∗

[
l4 + l5D

2
]
= 0,

(18)u∗
[
−l2 + l3D

]
+ w∗

[
l6 + �3D

2
]
+ �∗

[
l7D + l8D

3
]
= 0,

(19)u∗
[
l9
]
+ w∗

[
l10D

]
+ �∗

[
l11 + l12D

2
]
= 0,

l1 = �2
(
c2 − 1

)
, l2 = 2i�c, l3 = �2i�, l4 = −i�

(
1 + a1�

2
)
, l5 = a3i�,

l6 =
(
c2 − �1

)
�2 + 1, l7 = −�5

(
1 + a1�

2
)
, l8 = �5a3, l9 = �7i�

3c2, l10 = �7�5�
2c2,

l11 = �8�
2c2

(
1 + a1�

2
)
− �2, l12 = −�8�

2c2a3 + �6.

(20)D6 +
B

A
D4 +

C

A
D2 +

E

A
= 0,

A = �2�3l12 − l10�2l8,

B = �3�2l11 + �2l6l12 + l1�3l12 − �2l10l7 − l1l10l8 − l2
1
l12 + l8l9l3 + l3l5l10 − l5�3l9,

C = �2l11l6 + l11�3l1 + l1l6l12 − l1l10l7 + l2
1
l11 + l2

2
l12 − l2

3
l11 + l3l9l7 + l3l4l10 − l5l9l6 − l4�3l9,

E = l11l1l6 − l9l4l6,

(21)(u,w,�) =

3∑

j=1

Aj

(
1, dj, kj

)
e−mjzei�(x−ct),
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Thus from Eq. (16) and (21)

where

For medium M2 (z > 0)we will attach a bar

where quantities ū, w̄, �̄� , d̄j, k̄j , Āj , m̄j are obtained by attaching bars in the above 
expressions.

4  Boundary conditions

We consider that both half-spaces are in perfect contact. Thus, there is the stability 
of components of the displacement vector, stress vector, and temperature change at 
the interface.

The boundary conditions at z = 0 are given by

u∗ =

3∑

j=1

Aje
−mjz,

w∗ =

3∑

j=1

djAje
−mjz,

�∗ =

3∑

j=1

kjAje
−mjz,

(22)dj =
l1l11 − l9l4 +

(
l11�2 + l1l12 − l9l5

)
m2

j
+
(
�2l12

)
m4

j

l6l11 +
(
l11�3 + l6l12 − l10l7

)
m2

j
+
(
�3l12 − l10l8

)
m4

j

,

(23)kj =
l1l6 + l2

2
+
(
l6�2 + l1�3 − l2

3

)
m2

j
+
(
�2�3

)
m4

j

l6l11 +
(
l11�3 + l6l12 − l10l7

)
m2

j
+
(
�3l12 − l10l8

)
m4

j

.

(ū, w̄, �̄�) =
(
1, d̄j, k̄j

)
em̄jzĀje

i𝜉(x−ct),

(24)tzz = t̄zz, tzx = t̄zx, 𝜑 = �̄�, u = ū, w = w̄, K∗
3

𝜕𝜑

𝜕z
= K̄∗

3

𝜕�̄�

𝜕z
.
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5  Derivations of the secular equations

By using the values of u,w,𝜑, ū, w̄, �̄� in (24), we get six linear equations as:

where

The system of Eqs. (25) has a non-trivial solution if the determinant of unknowns 
Aj, Āj, j = 123 vanishes i.e.

These secular equations have entire information regarding the wavenumber, phase 
velocity, and attenuation coefficient of Stoneley waves in the TIT medium.

6  Particular cases

If C11 = C33 = � + 2�,C12 = C13 = �,C44 = �, �1 = �3 = ��, �1 = �3 = �,K∗
1
= K∗

3
= K∗ 

we obtain expressions for Stoneley wave propagation in isotropic materials with 
rotation.

3∑

j=1

QpjAj +

3∑

j=1

Qp(j+3)Āj = 0, p = 1, 2, 3, 4.5.6.

Q1j = i𝜉 − 𝛿9djmj −
(
1 + a1𝜉

2 − a3m
2
j

)
kj,Q1(j+3) = −i𝜉 − 𝛿9d̄jm̄j +

(
1 + a1𝜉

2 − a3m̄
2
j

)
k̄j,

Q2j = −mj + dji�,Q2(j+3) = −mj − dji�,

Q3j = kj,Q3(j+3) = −k̄j,

Q4j = �1m
2
j
+
(
2i�c − �2i�mj

)
dj +

(
−i�

(
1 + a1�

2
)
+ a3i�m

2
j

)
kj,

Q4(j+3) = −𝛿1m̄
2
j
−
(
2i𝜉c − 𝛿2i𝜉m̄j

)
dj −

(
−i𝜉

(
1 + a1𝜉

2
)
+ a3i𝜉m̄

2
j

)
k̄j,

Q5j = −2�4i�c − �2i�mj + �3m
2
j
dj − �5

(
−
(
1 + a1�

2
)
mj + a3m

3
j

)
kj,

Q5(j+3) = 2𝛿4i𝜉c − 𝛿2i𝜉m̄j + 𝛿3m̄
2
j
d̄j + 𝛿5

(
−
(
1 + a1𝜉

2
)
m̄j + a3m̄

3
j

)
k̄j,

(25)Q6j = −K∗
3
k̄jm̄j.

|||
Qij

|
||6×6

= 0.
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7  Numerical results and discussion

To demonstrate the theoretical results and effect of rotation and two temperatures, 
we now present some numerical results. Following Kumar et  al. (2017), copper 
material has been taken for TIT material as medium 1,

Quantity Value Unit

c11 18.78 × 1010 Kgm−1 s−2

c12 8.76 × 1010 Kgm−1 s−2

c33 17.2 × 1010 Kgm−1 s−2

c13 8.0 × 1010 Kgm−1 s−2

c44 5.06 × 1010 Kgm−1 s−2

�1 7.543 × 106 Nm−2 deg−1

�3 9.208 × 106 Nm−2 deg−1

� 8.954 × 103 kgm−3

CE 4.27 × 102 jKg−1 deg−1

K∗
1 0.04 × 102 N s−2 deg−1

K∗
3 0.02 × 102 N s−2 deg−1

T0 293 deg

�1 2.98 × 10−5 K−1

�3 2.4 × 10−5 K−1

Following Kumar et  al. (2017), magnesium material has been taken for ther-
moelastic material as medium 2:

Quantity Value Unit

c̄11 5.974 × 1010 Kgm−1 s−2

c̄12 2.624 × 1010 Kgm−1 s−2

c̄33 6.17 × 1010 Kgm−1 s−2

c̄13 2.17 × 1010 Kgm−1 s−2

c̄44 3.278 × 1010 Kgm−1 s−2

𝛽1 2.68 × 106 Nm−2 deg−1

𝛽3 2.68 × 106 Nm−2 deg−1

�̄� 1.74 × 103 kgm−3

C̄E 1.04 × 103 jKg−1 deg−1

K̄∗
1

0.02 × 102 N s−2 deg−1

K̄∗
3

0.02 × 102 N s−2 deg−1

T̄0
293 deg

�̄�1 2.98 × 10−5 K−1

�̄�3 2.4 × 10−5 K−1

Using the above values, the graphical representations of stress components, 
temperature change, wave velocity, attenuation coefficient depth of Stoneley wave 
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in TIT medium have been investigated with two temperature and rotation and 
demonstrated graphically as:

Case-I: Effect of rotation

1. The solid line relates to Ω = 0,
2. The dashed line relates to Ω = 0.5,
3. The dotted line relates to Ω = 1.0.

Figure 2 demonstrates the Stoneley wave’s attenuation coefficient w.r.t. � for dif-
ferent values of rotation. It is clear from the graph, as we increase the rotation, the 
attenuation coefficient is declined. Near the interface of the two material, the attenu-
ation coefficient is very high and below the boundary surface, it declines to zero for 
all the cases of rotation. Figure 3 shows the Stoneley wave’s phase velocity w.r.t. � 
for different values of rotation. It is clear from the graph, as we increase the rotation, 
the phase velocity is increased. Near the interface of the two material, the phase 
velocity is very high when Ω = 1.0 and below the boundary surface, it comes to 
steady-state. Moreover, near the interface of the two material, the phase velocity is 
increased when Ω = 0.0 and 0.5 and below boundary surface it comes to steady-
state for both the cases of rotation.

Figure 4 shows the magnitude values of Temperature distribution w.r.t. � for dif-
ferent values of rotation. It is clear from the graph, as we increase the rotation, the 
magnitude values of the Temperature Distribution of the Stoneley wave is increased. 
Near the interface of the two material, the magnitude values of the temperature of 
the Stoneley wave are very high when Ω = 1.0 and below the boundary surface, it 
comes to steady-state. Moreover, near the interface of the two material the magni-
tude values of the temperature of Stoneley wave show the opposite behavior when 

Fig. 2  Variation of Stoneley waves attenuation coefficient w.r.t. �
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Ω = 0.0 and 0.5 and below boundary surface it comes to steady-state for both the 
cases of rotation. Figure  5 demonstrates the Stoneley wave’s displacement com-
ponent w w.r.t. � for different values of rotation. It is clear from the graph, as we 
increase the rotation, the displacement component w of Stoneley wave declines. 
Near the interface of the two material the displacement component w of Stoneley 
wave is very high and below boundary surface, it declines to zero for all the cases of 
rotation.

Fig. 3  Variation of Stoneley waves velocity w.r.t. �

Fig. 4  Variation of Temperature distribution w.r.t. �
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Figure 6 illustrates the stress component tzz w.r.t. � for different values of rota-
tion. It is clear from the graph, as we increase the rotation, the stress component 
tzz of the Stoneley wave is varied. Near the interface of the two material, the tzz of 
Stoneley wave is very high when Ω = 1.0 and below boundary surface, it comes 
to steady-state. Moreover, near the interface of the two material, the tzz of Stone-
ley wave shows the opposite behavior when Ω = 0.0 and 0.5 and below boundary 
surface it comes to steady-state for both the cases of rotation.

Fig. 5  Variation of Stoneley waves displacement component w w.r.t. �

Fig. 6  Variation of Stoneley waves stress component Tzz w.r.t. �
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Case-II: Effect of two temperature

1. The solid line relates to a1 = a3 = 0,
2. The dashed line relates to a1 = 0.2, a3 = 0.4.

Figure  7 demonstrates the Stoneley wave’s attenuation coefficient w.r.t. � with 
and without two temperatures. It is clear from the graph, with two temperatures, the 
attenuation coefficient is declined. Near the interface of the two material, the attenu-
ation coefficient is very high and below the boundary surface, it declines to zero 

Fig. 7  Variation of Stoneley waves attenuation coefficient w.r.t. �

Fig. 8  Variation of Stoneley waves velocity w.r.t. �
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in absence and presence of two temperatures. Figure 8 shows the Stoneley wave’s 
phase velocity w.r.t. � with and without two temperatures. It is clear from the graph, 
with two temperatures, the phase velocity of the Stoneley wave is increased.

Figure  9 shows the magnitude values of Temperature distribution w.r.t. � with 
and without two temperatures. It is clear from the graph, with two temperatures., the 
magnitude values of the Temperature Distribution of the Stoneley wave is increases. 
Near the interface of the two material, the magnitude values of the temperature 
of the Stoneley wave are very high with two temperature and below the boundary 
surface, it comes to steady-state. Moreover, near the interface of the two material, 
the magnitude values of the temperature of the Stoneley wave show the opposite 
behavior without two temperature and below the boundary surface, it comes to 
steady-state.

Figure 10 demonstrates the Stoneley wave’s displacement component w w.r.t. � 
with and without two temperatures. It is clear from the graph, with two tempera-
tures, the displacement component w of Stoneley wave declines. Near the interface 
of the two material the displacement component w of Stoneley wave is very high 
and below boundary surface, it declines to zero. Figure 11 illustrates the stress com-
ponent tzz w.r.t. � with and without two temperatures. It is clear from the graph, with 
two temperatures, the stress component tzz of the Stoneley wave is increased. Near 
the interface of the two material, the tzz of Stoneley wave is very high with two tem-
perature and below boundary surface, it comes to steady-state.

8  Conclusion

From the analysis of graphs, some concluding interpretations are:

Fig. 9  Variation of temperature distribution T w.r.t. �
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• The Stoneley waves in a homogeneous TIT solid media with the rotation, with 
and without two temperatures are investigated.

• The figures clearly indicate that at the interface of the two mediums, there is a 
considerable influence of two temperatures and rotation on the Stoneley wave 
phase velocity, attenuation coefficient, displacement component, and stress 
component, as well as on Temperature distribution. It is also observed that the 
velocity of surface (Stoneley) waves not only influenced by the direction of wave 
propagation but as well as on the elastic properties and density of materials. The 

Fig. 10  Variation of Stoneley waves displacement component w w.r.t. �

Fig. 11  Variation of Stoneley waves stress component Tzz w.r.t. �
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characteristics of waves change drastically in diverse mediums and also at differ-
ent depth.

• From the wave velocity equation, we find that there is a dispersion of waves due 
to rotation and two temperatures. The dispersive nature of the Stoneley waves 
is defined through the resulting Secular equation. Various special cases are also 
considered to approve the formulation and numerical results with the existing 
solutions.

• Stoneley wave’s analysis provides information about the positions of fractures 
and permeability of the formation. These waves not only deliver better informa-
tion about the internal structure of the earth but are also helpful in the assess-
ment of valuable materials under the earth’s surface. Stoneley waves are a major 
source of noise in vertical seismic profiles. These waves help in the study of 
geophysics, seismological processes, ocean acoustics, SAW devices, and non-
destructive evaluation.
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