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Abstract
A two-dimensional mathematical model is developed and solved semi-analytically in
order to theoretically examine the impact of suction/injection and an exponentially
decaying/growing time-dependent pressure gradient on unsteady Dean flow through
a coaxial cylinder. The walls of the cylinders are porous so as to enable the superim-
position of the radial flow. The solution of the governing momentum and continuity
equations are derived using a two-step process, the Laplace transformation in conjunc-
tion with the Riemann Sum-Approximation (RSA). For accuracy check, the steady
state solution is computed and numerical values obtained using the Riemann-Sum
Approximation (RSA) is compared with the already established results. It is found
out that for an increasing time, a growing pressure gradient enhances the flow for-
mation for both suction and injection, although the effect on the azimuthal velocity
profile is subtle when suction is applied on porous walls. Moreover, the skin frictions
on the walls can be minimized by imposing a decaying pressure gradient for suc-
tion/injection, however the behaviour is seen clearly when fluid particles are injected
through the porous cavity.
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List of symbols

a Radius of the inner cylinder (m)
b Radius of the outer cylinder (m)
D Diameter of non-circular geometry
Dn Dean number
p Static pressure (Kg/ms2)
R Dimensionless radial distance
Rc Radius of curvature
Re Reynolds number (suction/injection parameter)
s Laplace parameter
t Dimensionless time (s)
U0 Reference velocity (m/s)
νr Radial velocity (m/s)
ν Circumferential velocity (m/s)
V Dimensionless velocity

Greek letters

δ Coefficient of time-dependent pressure gradient
λ Radii ratio (b/a)
ρ Fluid density (kg/m3)
τ Skin friction
μ Dynamic viscosity of the fluid (Kg/ms)

1 Introduction

The study of unsteady two-dimensional viscous incompressible flows in horizontal
permeable/non-permeable and non-rotating concentric cylinders have been the inter-
est of many investigators in the past decades. This can be ascribed to the widespread
application in biomedical engineering, biofluid mechanics where the circumferen-
tial flow is seen in most of the apparatuses transporting fluids, nuclear engineering,
electrical and mechanical engineering.

The analysis of steady laminar flow in a curved channel on account of a constant cir-
cumferential pressure gradient was pioneered by Dean (1928). Some authors such as
Dryden et al. (1956), Hamza (2017), Gupta and Gupta (1996), Fan and Chao (1965),
Tsangaris (1984) have studied oscillatory flows in various geometries driven by an
imposed circumferential pressure gradient. Tsangaris et al. (2006) discussed laminar
fully developed flow in the gap between two coaxial cylinders with an imposed oscil-
lating circumferential pressure gradient (finite gap oscillating Dean flow). Later on,
Tsangaris andVlachakis (2007) presented the exact solutions for Navier–Stokes Equa-
tions (NSE) responsible for the motion of a Newtonian fluid between two concentric
cylinders taking into consideration the effect of an oscillating pressure gradient on the
flow formation.
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It is well known that the phenomenon of time-dependent pressure gradient flow
through channels as well as annulus may help in understanding many technological
problems such as pumping mechanisms, polymer technology, petroleum industry and
purification of crude oil. These mechanisms produce, in general, pressure gradient
flow which is not constant but pulsates in some way about a non-zero time-dependent
pressure gradient.

In recent the past, some studies have been carried out in order to have an insight
on the influence of time-dependent pressure gradient on various flow formation and
physical situation. Yen and Chang (1961) in their article, considered the role of time-
dependent pressure gradient on magnetohydrodynamic flow in a channel, in which
three cases of time-dependent pressure gradientwere considered namely; periodic, step
and pulse pressure gradient. Unsteadyflowof a viscous incompressible and electrically
conducting fluid in the region between two porous cylinders under an external radial
magnetic field with an exponentially decreasing/increasing time-dependent pressure
gradient was investigated by Nandi (1970). McGinty et al. (2009) presented the gen-
eral analytic solutions of Newtonian and Non-Newtonian fluid flows in cylindrical
and annular pipes subject to an arbitrary time-dependent pressure gradient and arbi-
trary steady initial flow. In another work, Mendiburu et al. (2009) using a combination
of Fourier series and integral transforms, analytically examined the unsteady one-
dimensional flow between parallel plates with constant and time-dependent pressure
gradient in which one of the plates is moving. They obtained that the time-dependent
component of the pressure gradient decreases and eventually disappears, tending
towards the constant pressure gradient as time increases. Other related literature can
be found in references (Womersley 1995; Uchida 1956; Nowruzi et al. 2018; Manos
et al. 2006; Mishra and Roy 1968; Yang and Wang 2001).

The importance of Dean number cannot be overruled in the study of the motion of
fluids in curved pipes and channel. The Dean number is a dimensionless parameter
and an important constituent of Dean flow which arises in motion of fluid in curved
geometries. In an attempt to understand the role of Dean number and curvature on
the motion of magnetohydrodynamics fluid flow, Hoque and Alam (2013) reported
numerically the motion of fluid in a circular curved pipe of uniform cross section.
From their investigations, result shows the existence of a two-vortex solution and
increasing Dean number triggers an increase in the axial velocity flow. Generally, this
is true since an increase in the dimensionless Dean number in turn generates an adverse
pressure gradient along the curvature which prompts a secondary flow superimposed
by the primary motion. Mondal et al. (2014), scrutinized numerically unsteady fully
developed two-dimensional flow of viscous incompressible fluid flow in a rotating
curved duct of small curvature. They vetted the impact of Coriolis and centrifugal
instability on the flow formation for higher Dean number. In another related work,
Mondal et al. (2015) employing the spectral method, performed a numerical analysis
on the behavior of unsteady solutions of a two-dimensional fully developed flow of
a viscous incompressible fluid through a curved rectangular duct of aspect ratios for
varying Dean number. It is seen that as Dean number is increased, the nature of the
flow changes progressively from chaotic, periodic, multi-periodic to steady-state.

In furtherance of the aforementioned investigation, the unsteady solution account-
able for motion of a viscous incompressible fluid through a rotating curved rectangular
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channel was proposed by Islam et al. (2018). Sayed-Ahmed et al. (2010) undertook a
numerical analysis in order to understand the effect of time-dependent pressure gra-
dient on unsteady MHD Couette flow and heat transfer on Casson fluid in a porous
channel with uniform suction/injection. In their work, they assumed the fluid is acted
uponby an exponentially decaying pressure gradient

(
∂P
∂x

)
in the x-direction. In another

related work, Azad and Andallah (2016) evaluated numerically the unsteady flow of
one-dimensional Navier–Stokes Equation (NSE) with time-dependent pressure gradi-
ent using an explicit exponential finite difference scheme (Expo FDS).

Afterward, several theoretical and experimental investigations have been carried out
to better understanding this phenomenon. The semi-analytical evaluation for transient
pressure-driven flow in a composite annulus due to circumferential pressure gradient
(azimuthal pressure gradient)was reported by Jha andYusuf (2018).Using themethods
of Laplace transformation and Riemann-Sum Approximation (RSA), they obtained
the solution of the governing momentum equations. Employing the same approach,
Jha and Yahaya (2018) conducted a study on laminar fully developed transient flow
through two horizontal and impermeable concentric tubes. The flow is set in by the
applied circumferential pressure gradient in the annular gap. Their result shows that
as time passes, the velocity is enhanced progressively as it attains a steady state. Jha
and Yahaya (2019) further extended the work to the case when the walls of the tubes
are porous. They concluded that in addition to the results obtained from their previous
work, (see Jha and Yahaya (2018)) as the suction/injection parameter increases, the
velocity increases. Other related articles can be seen in references (Mondal et al. 2013;
Islam et al. 2017).

The concern of this analysis is to theoretically investigates the role of suc-
tion/injection and an exponentially decaying/growing time-dependent pressure on
Dean flow.

The novelty of this examination is to deliberate the impact of decaying/growing
time-dependent pressure gradient on unsteadyDean flow through a concentric cylinder
forming an annulus with porous cavities on the wall. It is anticipated that this work
will help in better understanding drag minimization on the walls of the annulus and
enhancing the flow formation. The transient solutions of the velocity field and skin
frictions has been obtained using a two-step approach; the Laplace transformation and
the Riemann-Sum Approximation (RSA), the steady state solution has been equally
derived. In justification of the present investigation, theoretical results obtained are
compared with already established results. The effect of the various dimensionless
flow parameters on the flow formation is studied with the aid of line graphs.

2 Mathematical analysis

The flow considered is a two-dimensional fully developed laminar transient circum-
ferential flow of viscous incompressible Newtonian fluid in the annular gap between
two porous coaxial horizontal cylinders of infinite length. It is assumed that the two
cylinders are fixed. The Z ′-axis is assumed to be on the axis of the cylinders. The radii
of the inner and outer cylinder are signified by a and b respectively as shown in Fig. 1.
Initially, it is assumed that at time t ′ ≤ 0 the fluid is at rest. At t ′ > 0, the fluid is set in
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Fig. 1 Geometry of annular system

motion by the applied circumferential time-dependent pressure gradient in presence
of suction/injection.

Since flow is fully developed and time-dependent, azimuthal velocity v
(
r ′, t ′

)
is a

function of radial coordinate and time only. Following Yen and Chang (1961) and Jha
andYahaya (2019), themomentum and continuity equations for azimuthal exponential
time-dependent pressure gradient in dimensional form are:

ρ

[
U 2
1 a

2

r ′3 +
v2

r ′

]

� ∂P

∂r ′ (1)

ρ

[
∂v

∂t ′
+
U1a

r ′
∂v

∂r ′ +
U1a

r ′
v

r ′

]
� −exp

(−δ0t ′
)

r ′
∂P

∂ϕ
+ μ

[
∂2v

∂r ′2 +
1

r ′
∂v

∂r ′ − v

r ′2

]
(2)

The initial and boundary conditions for the problem under consideration are t ′ ≤
0 : v � 0 for a ≤ r ′ ≤ b

t ′ > 0

{
v � 0 at r ′ � a
v � 0 at r ′ � b

(3)

2.1 Dimensionless analysis

Equations (1)–(3) are transformed into their respective dimensionless form by intro-
ducing the following dimensionless quantities

R � r ′

a
; λ � b

a
; t � vt ′

a2
; V � v

U0
;

U0 � −a ∂P
∂ϕ

ρv
; Re � U1a

v
; δ � a2δ0

v
Dn � Re

√
D

2Rc
(4)

123



28 Page 6 of 22 GEM - International Journal on Geomathematics (2020) 11 :28

Equations (1) and (2) in the dimensionless form can be written as

∂V

∂t
+

(Re − 1)

R

∂V

∂R
+

(1 + Re)

R2 V � exp(−δt)

R
+

∂2V

∂R2 (5)

Subject to the following dimensionless initial and boundary conditions t ≤ 0 : V �
0 for 1 ≤ R ≤ λ

t > 0

{
V � 0 at R � 1
V � 0 at R � λ

(6)

2.2 Analytical solution

It will be convenient to use classical Laplace transform technique in transforming
Eqs. (5) and (6) since the governing momentum equation is time-dependent. Employ-
ing V̄ (R, s) � ∫ ∞

0 V (R, t)e−st dt where s is the Laplace parameter and s > 0, the
expression for Eqs. (5) and (6) are given as:

d2V̄

d R2 +
(1 − Re)

R

dV̄

dR
−

(
[1 + Re] + sR2

) V̄

R2 � − 1

R(s + δ)
(7)

Subject to

V̄ � 0 at R � 1
V̄ � 0 at R � λ

(8)

Following Tsangaris et al. (2006), the linear non-homogeneous differential equation
in Eq. (7) can be reduced using the given transformation below

V̄ (R, s) � V̄h(R, s)R
Re
2 +

1

Rs(s + δ)
(9)

where V̄h(R, s) is the homogeneous solution of Eq. (7).
The exact solution of Eq. (7) in the Laplace domain under (8) is obtained by sub-

stituting the homogeneous solution of Eq. (7) into Eq. (9) and is given below

V̄ (R, s) � [
A1 In

(
R
√
s
)
+ A2Kn

(
R
√
s
)]
R

Re
2 +

1

Rs(s + δ)
(10)

where

A1 � −[
λ−nKn

(√
s
) − Kn

(
λ
√
s
)]

s(s + δ)
[
In

(
λ
√
s
)
Kn

(√
s
) − In

(√
s
)
Kn

(
λ
√
s
)] ,

A2 �
[
λ−n In

(√
s
) − In

(
λ
√
s
)]

s(s + δ)
[
In

(
λ
√
s
)
Kn

(√
s
) − In

(√
s
)
Kn

(
λ
√
s
)] ,
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n �
(
Re

2
+ 1

)
.

Utilizing Eq. (10), the skin friction at R � 1 and R � λ in the Laplace domain are
given respectively as follows:

τ̄1(R, s) � R
d

dR

(
V̄ (R, s)

R

)∣∣∣
∣
R�1

� √
s[A3 − A4] − 2[A5 + A6] − 2

s(s + δ)
(11)

τ̄λ(R, s) � R
d

dR

(
V̄ (R, s)

R

)∣
∣∣
∣
R�λ

� √
s[A7 − A8]λ

n−1 − 2λn−2[A9 + A10] − 2

λ2s(s + δ)

(12)

where

A3 � A1 In−1
(√

s
)
, A4 � A2Kn−1

(√
s
)
, A5 � A1 In

(√
s
)
, A6 � A2Kn

(√
s
)
,

A7 � A1 In−1
(
λ
√
s
)
, A8 � A2Kn−1

(
λ
√
s
)
, A9 � A1 In

(
λ
√
s
)
, A10 � A2Kn

(
λ
√
s
)
.

It is paramount to note that theLaplace domain solutions presented inEqs. (10)–(12)
are to be transformed to the time domain. Due to the complex nature of these solutions,
a numerical Laplace inversion technique used in Jha andYusuf (2018), Jha andYahaya
(2018, 2019) known as Riemann-SumApproximation (RSA) has been adopted. In this
method, any function in the Laplace domain can be transformed to the time domain
as follows:

V (R, t) � eεt

t

⎡

⎣ V̄ (R, ε)

2
+ Re

⎛

⎝
Q∑

n�1

V̄ (R, ε +
inπ

t

⎞

⎠(−1)n

⎤

⎦ (13)

where Re is the real part of the summation, i � √−1 the imaginary number, Q is
the number of terms involves in the summation and ε is the real part of the Bromwich
contour that is used in inverting Laplace transforms. The Riemann-Sum Approxima-
tion (RSA) for the Laplace inversion involves a single summation for the numerical
computation, of which its exactness is dependent on the value of ε and the truncation
error prescribed by Q. Following Tzou (1997), taking εt to be 4.7 gives the most
desirable result.

2.3 Validation of themethod

In an attempt to ascertain the effectiveness of the numerical inversing scheme used in
transforming the Laplace domain solutions to time domain, the steady state solution
is computed as a limit case. This is achieved by making δ � 0 and ∂V

∂t � 0 in Eq. (5).
For large value of the dimensionless time (t), the steady state solution is expected to
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synchronize with the transient solution for different flow regimes. Thus, the required
ordinary differential equation is given as

d2V

dR2 +
1

R
(1 − Re)

dV

dR
− 1 + Re

R2 V � − 1

R
(14)

Under the no-slip boundary conditions

V � 0 at R � 1
V � 0 at R � λ

(15)

Employing the transformation I nR � ψ as follows, Eq. (14) can be written as

d2V

dψ2 − Re
dV

dψ
− (1 + Re)V � −exp(ψ) (16)

The solution of the steady state momentum Eq. (16) under boundary conditions
(15) is given as

V (R) � 1

2Re

(
R − 1

R

)
− 1

2Re

(
λ2 − 1

)(
RRe+1 − 1

R

)

(
λ(Re+2) − 1

) (17)

Utilizing Eq. (17), the steady state skin frictions on the walls of the inner and outer
cylinders respectively is derived by differentiating Eq. (17) and evaluating at R � 1
and R � λ and are given as follows

τ1 � R
d

dR

(
V

R

)∣∣∣∣
R�1

� 1

Re
− λ

(
λ2 − 1

)

2Re
(
λ(Re+2) − 1

) (Re + 2) (18)

τλ � R
d

dR

(
V

R

)∣∣∣∣
R�λ

� (λ2 − 1)

2Re
(
λ(Re+2) − 1

)
(
ReλRe +

2

λ2

)
− 1

Reλ2
(19)

In order to show how good the numerical approach used in transforming the closed
form exact solutions from the Laplace domain to time domain, a table of comparison
is presented below (see Tables 1, 2, 3) between the current result established when
the coefficient of time in the time-dependent component of the pressure gradient is
taken to be zero (δ � 0) and results given by Jha and Yahaya (2019). It is noted that
a perfect correlation is seen between the numerical values.

3 Results and discussions

The combined effects of suction/injection and an exponentially decaying/growing
time-dependent pressure gradient on unsteady Dean flow in a horizontal concentric
cylinder are examined semi-analytically. In order to understand the effect of the various
dimensionless controlling parameters on the flow formation, a MATLAB program is
written to determine and generate line graphs and numerical values for the velocity,
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Table 1 Comparison of the present results obtained using theRiemann-SumApproximation approach (RSA)
with those of Jha and Yahaya (2019) for the transient state velocity

t R Re � 4.0 Re � −4.0

Present work RSA
(δ � 0)

Jha and Yahaya
(2019) Exact
Solution

Present work RSA
(δ � 0)

Jha and Yahaya
(2019) Exact
solution

0.2 1.2 0.0344 0.0360 0.0704 0.0815

1.4 0.0545 0.0580 0.0770 0.0892

1.6 0.0588 0.0632 0.0598 0.0686

1.8 0.0431 0.0464 0.0324 0.0365

0.4 1.2 0.0359 0.0360 0.0801 0.0815

1.4 0.0577 0.0580 0.0876 0.0892

1.6 0.0629 0.0632 0.0674 0.0686

1.8 0.0462 0.0464 0.0360 0.0365

Steady state 1.2 0.0360 0.0360 0.0815 0.0815

1.4 0.0580 0.0580 0.0892 0.0892

1.6 0.0632 0.0632 0.0686 0.0686

1.8 0.0464 0.0464 0.0365 0.0365

Table 2 Comparison of the present results obtained using theRiemann-SumApproximation approach (RSA)
with those of Jha and Yahaya (2019) for the transient state skin friction (R � 1)

t λ Re � 4.0 Re � −4.0

Present work RSA
(δ � 0)

Jha and Yahaya
(2019) Exact
Solution

Present work RSA
(δ � 0)

Jha and Yahaya
(2019) Exact
solution

0.2 1.2 0.0839 0.0838 0.1101 0.1100

1.4 0.1398 0.1397 0.2401 0.2400

1.6 0.1758 0.1758 0.3888 0.3900

1.8 0.1972 0.1991 0.5380 0.5600

0.4 1.2 0.0840 0.0838 0.1102 0.1100

1.4 0.1399 0.1397 0.2402 0.2400

1.6 0.1760 0.1758 0.3902 0.3900

1.8 0.1992 0.1991 0.5593 0.5600

Steady state 1.2 0.0838 0.0838 0.1100 0.1100

1.4 0.1397 0.1397 0.2400 0.2400

1.6 0.1758 0.1758 0.3900 0.3900

1.8 0.1991 0.1991 0.5600 0.5600
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Table 3 Comparison of the present results obtained using theRiemann-SumApproximation approach (RSA)
with those of Jha and Yahaya (2019) for the transient state skin friction (R � λ)

t λ Re � 4.0 Re � −4.0

Present work RSA
(δ � 0)

Jha and Yahaya
(2019) Exact
Solution

Present work RSA
(δ � 0)

Jha and Yahaya
(2019) Exact
solution

0.2 1.2 0.0947 0.0946 0.0765 0.0764

1.4 0.1737 0.1736 0.1225 0.1224

1.6 0.2358 0.2360 0.1520 0.1523

1.8 0.2791 0.2842 0.1678 0.1728

0.4 1.2 0.0947 0.0946 0.0765 0.0764

1.4 0.1737 0.1736 0.1226 0.1224

1.6 0.2361 0.2360 0.1524 0.1523

1.8 0.2842 0.2842 0.1727 0.1728

Steady state 1.2 0.0946 0.0946 0.0764 0.0764

1.4 0.1736 0.1736 0.1224 0.1224

1.6 0.2360 0.2360 0.1523 0.1523

1.8 0.2842 0.2842 0.1728 0.1728

skin frictions and vorticity. Throughout this analysis, the suction/injection parameter
is taken over −8.0 ≤ Re ≤ 8.0 and the coefficient of time in the time-dependent
component of the pressure gradient is taken over −2.0 ≤ δ ≤ 2.0.

Figures 2 and 3 shows the velocity distribution in the direction of flow as time passes
with suction applied for an exponentially increasing time-dependent pressure gradient
and an exponentially decreasing time-dependent pressure gradient respectively. It is
observed in both cases that as time increases, the velocity increaseswhen the coefficient
of time in the time-dependent pressure gradient is increased/decreased, but a higher
velocity profile is perceived with an increasing coefficient of time in the exponential
time-dependent pressure gradient.

Figures 4 and 5 indicates the influence of injection, time and a growing/decaying
exponential time-dependent pressure gradient on the velocity profile. It is seen from
Fig. 4, the velocity increases as time and the coefficient of time in the exponential time-
dependent pressure gradient increase. This is attributed to the fact that fluid particles
are injected into the annular gap through the porous wall and the coefficient of time
in the exponential time-dependent pressure gradient grows, thus enhancing the fluid
velocity in the direction of flow. On the other hand, the increase in the fluid velocity
is less significant with decaying coefficient of time in the exponential time-dependent
pressure gradient compared to when it is growing as seen in Fig. 5.

The effect of Reynolds number (Re) on the steady velocity profile has been
presented in Fig. 6. It is clear from Fig. 6, that increasing Reynolds number (Re)
accelerates the flow for both suction and injection. This behaviour can also be said for
an increasing Dean number (Dn) since there exists a direct proportionality between
Dean number (Dn) and Reynolds number (Re). However, the increase is more pro-
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Fig. 2 Velocity distribution for different values of time (δ � −2.0, Re � 4.0)
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Fig. 3 Velocity distribution for different values of time (δ � 2.0, Re � 4.0)

nounced with fluid injection. The effects of time and exponential time-dependent
pressure gradient on skin friction on the outer surface of the inner cylinder with suc-
tion applied on the porous wall is seen in Figs. 7 and 8. It is evident from Figs. 7
and 8 that skin friction increases with time and a growing/decaying exponential time-
dependent pressure gradient across the annular gap. In addition, the magnitude of the
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Fig. 5 Velocity distribution for different values of time (δ � 2.0, Re � −4.0)

skin friction is higher when the coefficient of time in the exponential time-dependent
pressure gradient is increasing.

The variation of skin friction on the outer surface of the inner cylinder with com-
bined effects of time, exponentially increasing/decreasing time-dependent pressure
gradient and injection are seen in Figs. 9 and 10. We note that as time and the coeffi-
cient of time in the exponential pressure gradient increases/decreases, the skin friction
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Fig. 7 Variation of skin friction (R � 1) for different values of time (δ � −2.0, Re � 4.0)

on the wall increases as fluid particles are injected through the porous cavity. It is inter-
esting to note that the role of the coefficient of time in the exponential time-dependent
pressure gradient is more pronounced with injection.

The drag on the outer wall of the inner cylinder for different values of Reynolds
number (Re) at steady state is seen in Fig. 11. It is observed that increasing Reynolds
number (Re) in turn results to increase in skin friction on the surface of the inner wall.
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Fig. 8 Variation of skin friction (R � 1) for different values of time (δ � 2.0, Re � 4.0)
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Fig. 9 Variation of skin friction (R � 1) for different values of time (δ � −2.0, Re � −4.0)

Figures 12 and 13 illustrates the effect of time, suction and time-dependent pressure
gradient on skin friction on the inner surface of the outer cylinder. As time passes, it
is observed that the skin friction increases as the coefficient of time in the exponential
time-dependent pressure gradient grows as exhibited in Fig. 12. On the other hand,
as time increases and coefficient of the time-dependent pressure gradient decays, the
skin friction is seen to slowly increases within the annular gap and gradually declining
as we further away within the annular gap as viewed in Fig. 13. This is due to the fact
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Fig. 10 Variation of skin friction (R � 1) for different values of time (δ � 2.0, Re � −4.0)
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Fig. 11 Steady state skin friction at R � 1 showing the effect of Reynolds number (Re)

that an exponentially decaying time-dependent pressure gradient and suction on the
porous wall play an important role in weakening the skin friction as time passes.

Figures 14 and 15 shows the variation of skin friction on the inner surface of
the outer cylinder for different values of time with an increasing/decreasing pressure
gradient and fluid particles injected through the porouswalls. FromFig. 14, it is evident
that the skin friction increases as time and the coefficient of time in the exponential
time-dependent pressure gradient are increased. On the hand, the drag on the wall is
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Fig. 12 Variation of skin friction (R � λ) for different values of time (δ � −2.0, Re � 4.0)
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Fig. 13 Variation of skin friction (R � λ) for different values of time (δ � 2.0, Re � 4.0)

seen to increase and slowly drops as time increases and the coefficient of time in the
exponential time-dependent pressure gradient decreases as shown in Fig. 15.

Figure 16 illustrates the action of Reynolds number (Re) on the steady state skin
friction on the wall of the outer cylinder for both suction and injection. We note that
increasing the suction/injection parameter retards the drag effect on the wall of the
outer cylinder.

The influence of time on fluid rotation produced in the annular gap by the secondary
flow otherwise known as vorticity or Dean vortex with suction applied on the porous
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Fig. 14 Variation of skin friction (R � λ) for different values of time (δ � −2.0, Re � −4.0)
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Fig. 15 Variation of skin friction (R � λ) for different values of time (δ � 2.0, Re � −4.0)

wall for a decreasing and increasing time-dependent pressure gradient respectively
are exhibited in Figs. 17 and 18. As time passes, it is observed that the fluid rotation
increases around the region of the inner cylinder and slightly dropwith further distance
from the wall of the inner cylinder. It interesting to note that the rotation is at its
maximum on the wall of the inner cylinder when the time-dependent component of
the pressure gradient is exponentially growing. Figures 19 and 20 depicts the Dean
vortex for different values of time for a decaying and growing time-dependent pressure
gradientwhenfluid particles are injected through the porous cavities.Wefind thatDean
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Fig. 16 Steady state skin friction at R � λ showing the effect of Reynolds number (Re)
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Fig. 17 Vorticity profile showing the effect of time (Re � 4.0, δ � 2.0)

vortex is increasing as time is increased around the inner wall and abruptly decrease
as it near the outer wall. As expected, a higher Dean vortex is seen when a growing
time-dependent pressure gradient and fluid injection are considered.
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Fig. 18 Vorticity profile showing the effect of time (Re � 4.0, δ � −2.0)
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Fig. 19 Vorticity profile showing the effect of time (Re � −4.0, δ � 2.0)

123



28 Page 20 of 22 GEM - International Journal on Geomathematics (2020) 11 :28

1 1.5 2 2.5 3 3.5 4
R

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Vo
rti

ci
ty

 (
)

t= 0.08, 0.12, 0.16, 0.20

Fig. 20 Vorticity profile showing the effect of time (Re � −4.0, δ � −2.0)

4 Conclusion

A theoretical analysis on unsteady Dean flow in an annulus with suction/injection and
an exponentially decaying/growing time-dependent pressure gradient is carried out.
The flow in the annular region is induced by the sudden application of the Azimuthal
pressure gradient and the exponential time-dependent pressure gradient. A combina-
tion of Laplace transforms technique and Riemann-Sum Approximation (RSA) has
been used in order to solve the governingmomentum equation responsible for the flow.
Tables has been presented in order to compare the results obtained from the current
analysis with previously established results, which demonstrate excellent agreement.
Based on the solutions as well as pictorial representations, we concluded that:

i. The fluid velocity can be optimized with an increasing time and fluid injection as
it gradually attains steady state.

ii. The skin friction on the wall of the inner cylinder can be enhanced by increasing
time and careful selection of a growing pressure gradient and fluid injection
through the permeable wall.

iii. The action of the skin drag on the wall of the outer cylinder can be rendered
less effective with a decaying time-dependent pressure gradient induced and fluid
injection through the porous cavity.

iv. Dean vortex can be amplified by increasing time and fluid injection.

References

Dean, W.R.: Fluid motion in a curved channel. Proc. R. Soc. Lond A Math. Phys. Eng. Sci. 121, 402–420
(1928)

123



GEM - International Journal on Geomathematics (2020) 11 :28 Page 21 of 22 28

Dryden, H.L., Murnaghan, F.D., Bateman, H.: Hydrodynamics. Dover Publ. Inc, New York (1956)
Hamza, S.E.E.: MHD flow of an Oldroyd–B fluid through porous medium in a circular channel under the

effect of time dependent pressure gradient. Am. J. Fluid Dyn. 7(1), 1–11 (2017)
Gupta, R.K., Gupta, K.: Steady flow of an elastico-viscous fluid in porous coaxial circular cylinder. Ind. J.

Pure Appl. Math. 27(4), 423–434 (1996)
Fan, C., Chao, B.T.: Unsteady, laminar, incompressible flow through rectangular ducts. ZAMP 16(3), 1–360

(1965)
Tsangaris, S.: Oscillatory flow of an incompressible, viscous-fluid in a straight annular pipe. J. Mec. Theor.

Appl. 3(3), 467 (1984)
Tsangaris, S., Kondaxakis, D., Vlachakis, N.W.: Exact solution of the Navier-Stokes equations for the

pulsating dean flow in a channel with porous walls. Int. J. Eng. Sci. 44, 1498–1509 (2006)
Tsangaris, S., Vlachakis, N.W.: Exact solution for the pulsating finite gap dean flow. Appl. Math. Model.

31, 1899–1906 (2007)
Yen, J.T., Chang, C.C.: Magnetohydrodynamic channel flow under time-dependent pressure gradient. Phys.

Fluids. 4(11), 1355–1360 (1961). https://doi.org/10.1063/1.1706224
Nandi, S.: Unsteady hydromagnetic flow in a porous annulus with time-dependent pressure gradient. Pure.

Appl. Geophys. 79, 33–40 (1970)
McGinty, S., McKee, S., McDermott, R.: Analytic solutions of Newtonian and non-Newtonian pipe flows

subject to a general time-dependent pressure gradient. J. Non-Newtonian Fluid Mech. 162, 54–77
(2009)

Mendiburu, A.A., Carrocci, L.R., Carvalho, J.A.: Analytical solutions for transient one-dimensional Cou-
ette flow considering constant and time-dependent pressure gradients. Engenharia Térmica (Thermal
Engineering). 8, 92–98 (2009)

Womersley, J.R.: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the
pressure gradient is known. J. Physiol. 127, 553–563 (1995)

Uchida, S.: The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in
a circular pipe. J Appl Math. 7, 403–422 (1956)

Nowruzi, H., Nourazar, S.S., Ghassemi, H.: Two semi-analytical methods applied to hydrodynamic stability
of dean flow. J. Appl. Fluid Mech. 11(5), 1433–1444 (2018)

Manos, T., Marinakis, G., Tsangaris, S.: Oscillating viscoelastic flow in a curved duct-exact analytical and
numerical solution. J. Non-Newtonian Fluid Mech. 135, 8–15 (2006)

Mishra, S.P., Roy, J.S.: Flow of elastico-viscous liquid between rotating cylinders with suction and injection.
Phys. Fluids 11(10), 2074–2081 (1968). https://doi.org/10.1063/1.1691786

Yang, T., Wang, L.: Solution structure and stability of viscous flow in curved square ducts. ASME J. Fluids
Eng. 123, 863–868 (2001)

Hoque, M.M., Alam, M.M.: Effects of Dean Number and curvature on fluid flow through a curved pipe
with magnetic field. Procedia Eng. 56, 245–253 (2013). https://doi.org/10.1016/j.proeng.2013.03.114

Mondal, R.N., Islam, M.Z., Perven, R.: Combined effects of centrifugal and coriolis instability of the flow
through a rotating curved duct of small curvature. Procedia Eng. 90, 261–267 (2014). https://doi.org/
10.1016/j.proeng.2014.11.847

Mondal, R.N., Islam, M.Z., Islam, M.M., Yanase, S.: Numerical study of unsteady heat and fluid flow
through a curved rectangular duct of small aspect ratio. Thammasat Int. J. Sci. Technol. 20(4), 1–20
(2015)

Islam, M.Z., Arifuzzaman, M., Mondal, R.N.: Numerical study of unsteady fluid flow and heat transfer
through a rotating curved rectangular channel. GANIT J. Bangladesh Math. Soc. 37, 73 (2018).
https://doi.org/10.3329/ganit.v37i0.35727

Sayed-Ahmed, M.E., Attia, H.A., Ewis, K.M.: Time dependent pressure gradient effect on unsteady MHD
couette flow and heat transfer of a Casson fluid. Engineering 3, 38–49 (2010)

Azad, M.A.K., Andallah, L.S.: Explicit exponential finite difference scheme for 1D Navier-Stokes equation
with time dependent pressure gradient. J. Bangladesh Math. Soc. 36, 79–90 (2016)

Jha, B.K., Yusuf, T.S.: Transient pressure driven flow in an annulus partially filled with porous material:
azimuthal pressure gradient. Math. Modell. Eng. Problems 5(3), 260–267 (2018)

Jha, B.K., Yahaya, J.D.: Transient Dean flow in an annulus: a semi-analytical approach. J. Taibah Univ. Sci.
13(1), 169–176 (2018)

Jha, B.K., Yahaya, J.D.: Transient Dean flow in a channel with suction/injection: a semi-analytical approach.
J. Process Mech. Eng. 233(5), 1–9 (2019)

123

https://doi.org/10.1063/1.1706224
https://doi.org/10.1063/1.1691786
https://doi.org/10.1016/j.proeng.2013.03.114
https://doi.org/10.1016/j.proeng.2014.11.847
https://doi.org/10.3329/ganit.v37i0.35727


28 Page 22 of 22 GEM - International Journal on Geomathematics (2020) 11 :28

Mondal, R.N., Islam, M.Z., Islam, M.S.: Transient heat and fluid flow through a rotating curved rectangular
duct: the case of positive and negative rotation. Procedia Eng. 56, 179–186 (2013)

Islam, M.Z., Mondal, R.N., Rashidi, M.: Dean-Taylor flow with convective heat transfer through a coiled
duct. Comput. Fluids 149, 41–55 (2017)

Tzou, D.Y.: Macro to Microscale Heat Transfer: The Lagging Behavior. Taylor and Francis, London (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Combined effects of suction/injection and exponentially decaying/growing time-dependent pressure gradient on unsteady Dean flow: a semi-analytical approach
	Abstract
	List of symbols
	Greek letters
	1 Introduction
	2 Mathematical analysis
	2.1 Dimensionless analysis
	2.2 Analytical solution
	2.3 Validation of the method

	3 Results and discussions
	4 Conclusion
	References




