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Abstract
In this paper, we investigate amultiscale post-processingmethod in exploration. Based
on a physically relevant mollification technique involving the Cauchy–Navier equa-
tion, we mathematically describe the extractable information within 3D density data
sets. More explicitly, the developed multiscale approach extracts and visualizes geo-
logical features inherently available in signature bands of certain geological formations
such as aquifers, salt domes etc. by specifying suitable wavelet bands. We compare
the presented approach with already existing methods such as Newton multiscale
decorrelation.
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1 Introduction

In exploration, the success or failure of a project is determined by the quality of the
available exploration data. Here for example, an essential difficulty lies in the analysis
and interpretability of data provided by potential methods such as gravimetry and
magnetometry.

In Freeden and Blick (2013), a novel method for post-processing and inversion of
exploration data was proposed. In the case of gravimetry, this method has been worked
out theoretically by Freeden and Nashed (2018) (see also the references therein).
Numerically, the method was realized by Blick (2015) and Blick et al. (2018) (cf. the
cited literature therein). The method was also extended to reflection seismics and to
acoustic tomography in the PhD thesis (Blick 2015). The essential ingredients of this
method are illustrated for 2D cuts of a 3D version of the Marmousi density model in
case of gravimetric data by the scheme depicted in Fig. 1.

Figure 1 shows that the gravimetric potential is very smooth, so that only rough
structures can be deduced from the potential for exploration purposes (Fig. 1, top
left). However, if we go over to the multiscale decomposition in terms of bandpass
filtered data Vτ j − Vτ j−1 of the potential V at scale τ j , structural information of the
Marmousi model become visible (Fig. 1, bottom left). The reason is that the multiscale
decomposition acts similarly as a finite difference approximation of Δ and hence,
simulates V via the Poisson equation ΔV (x) = ρ(x) in discrete way, so that the
relation between potential and density function can already be detected for higher
scales in the bandpass filtered potential level. The key idea of the method (Freeden
and Blick 2013) is that the potential wavelets generating the potential decomposition
(Fig. 1, left) can be correlated via the application of the Laplace operator to Haar-
type wavelets in the density level (right). In fact, the density distribution as well as
its decorrelation in density bands (Fig. 1, bottom right) sharply show the density
transitions from one geological formation to the other.

The aforementioned wavelet construction is particularly powerful because of its
“geophysical relevance” i.e., it forms a compromise reflecting the underlying physics
(in accordance with the underlying differential equation) while still delivering an
adequate multiscale decorrelation of geological signatures. However, the wavelets
employed for establishing the scheme constitute radial basis functions, so that they
are only dependent on themutual distance of two points of the area under investigation.
This means that no specific directionally-reflected information can be verified by the
model described above.

In what follows, a method is developed which enables us to investigate also par-
ticular directional characteristics of the density field. In order to establish such a
decorrelation technique, we mathematically make the transition from the Laplace
equation to the Cauchy–Navier equation of elasticity. In doing so, on the one hand
side, we leave the classically motivated Newton approach, on the other hand side, we
are able to detect specific directional features by the elastic integral due to the tensorial
nature of the fundamental solution.

It should be noted that the elastic potential as discussed here is not used for inversion
purposes, instead, we apply the methodological framework only for post-processing.
Thus, the deficit of physical interpretability in gravimetric exploration by use of an
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Fig. 1 Schematic visualization of the multiscale decorrelation mechanism (see Blick et al. 2017)

integral of none-Newtonian theory does not matter. However, physical interpretability
is given in other types of application which are directly based on the Cauchy–Navier
equation such as elastography, detection of material inclusions, etc.
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2 Signature decorrelation based on the Cauchy–Navier equation

In what follows, we summarize relevant results without their proofs given by Blick
et al. (2018) (see also Freeden and Gerhards 2013) in order to present the original idea
of physically relevant wavelet construction using Newton wavelets. The start of the
wavelet development is the Newton integral equation relating a given density model
ρ by convolution against a fundamental solution G to the Newton potential V . By
mollification of G, we obtain a “potential scaling function” Gτ with scale parameter τ ,
which after Laplace differentiation results in the “source scaling function”Φτ = ΔGτ .
Hence, even if our main focus lies on the application of the source scaling function,
their theoretical construction always starts on the potential level.

We assume that the geometry of the exploration area is a regular region, i.e.,B ⊂ R
3

is a bounded region B ⊂ R
3 which uniquely divides R3 in the inner space B and the

outer space Bc = R
3\B, B = B ∪ ∂B, such that the boundary ∂B is an orientable

smooth Lipschitzianmanifold of dimension two. In addition, it should be noted that for
the discussion of the multiscale decomposition based on the Cauchy–Navier equation
later on, we use small Latin letters to indicate vectorial functions, whereas capital
Latin letters denote scalar functions.

The gravitational potential V of a body B in its exterior R3\B is given by the
Newton integral

V (x) = γ

∫
B

G(Δ; ‖x − y‖)ρ(y) dy, x ∈ R
3\B, (1)

where G(Δ; ·) given by

G(Δ; ‖x − y‖) = − 1

4π

1

‖x − y‖ , (2)

is the fundamental solution w.r.t. the Laplace operator and γ is the gravitational con-
stant. The function ρ is the density function. Since γ is only a constant, we neglect to
mention the gravitational constant γ in all equations from now on.

Theorem 1 (Poisson Differential Equation) If ρ is of class C(0,μ)(B), μ ∈ (0, 1], then
the Poisson differential equation

Δx

∫
B

G(Δ; ‖x − y‖)ρ(y) dy = ρ(x) (3)

holds true for all x ∈ B.
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Fig. 2 Sectional profile of the scaling functions Gn
τ (Δ; ·) (left) and Φn

τ (right) for n = 0, 1, 2 and τ = 1.5.
The dotted black line in the left picture indicates the fundamental solution G(Δ; ·)

Next, we adopt the mollification of G(Δ; ·) via the function r �→ Gn
τ (Δ; r), r ∈

[0,∞), with

Gn
τ (Δ; r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
4πr , τ ≤ r

− 1
4πr + (τ−r)n+2((n+1)r+2τ)

8πrτ n+3 , 0 < r < τ

− n+3
8πτ

, r = 0

(4)

fromBlick et al. (2018) so that by taking the Laplace derivative of Gn
τ (Δ; ·), we obtain

with r = ‖x‖

Φn
τ (r) = Δx Gn

τ (Δ; r) =
⎧⎨
⎩
0, τ ≤ r

(n+1)(n+2)(n+3)
8π

(τ−r)n

τ n+3 , 0 ≤ r < τ

. (5)

Note that r �→ Gn
τ (Δ; r), r ∈ [0,∞), is (n + 1)-times continuously differentiable

and r �→ Φn
τ (r), r ∈ [0,∞), is (n − 1)-times continuously differentiable (where by

convention in case of n = 0, (−1)-times continuously differentiable means piecewise
continuous). For a graphical illustration of G(Δ; ·) and its Laplace derivative Φ, see
Fig. 2.

Summarizing our considerations, we are led to a result, which builds the theoretical
basis for our approach to geological feature extraction.

Theorem 2 For n ∈ N0, the “τ -Newton potential functions of order n”

V n
τ (x) =

∫
B

Gn
τ (Δ; ‖x − y‖)ρ(y) dy (6)
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and the “τ -Newton contrast functions of order n”

ρn
τ (x) =

∫
B

Φn
τ (‖x − y‖)ρ(y) dy (7)

satisfy the limit relations

lim
τ→0

∣∣V (x) − V n
τ (x)

∣∣ = 0, x ∈ B (8)

and

lim
τ→0

∣∣ρ(x) − ρn
τ (x)

∣∣ = 0, x ∈ B, (9)

provided that ρ is C(0,μ)-Hölder continuous in the neighborhood of x ∈ B.

The kernels Gn
τ (Δ; ·) and Φn

τ are called “potential scaling function of order n” and
“source scaling function of order n”, respectively. It should be remarked that Gn

τ (Δ; ·)
is constructed in such a way that the normalization condition

∫
R3

Δx Gn
τ (‖x‖) dx =

∫
R3

Φn
τ (‖x‖) dx = 1 (10)

holds true for all τ > 0 and all n ∈ N0 (note that this is a helpful feature used in the
theory of singular integrals, see e.g., Louis 1989; Engl et al. 1996).

In other words, ρn
τ (x) is defined via a singular integral, where the integral kernel is

the Dirac sequence Φn
τ (for more information, see e.g., Stein 1971; Hörmander 1998;

Wienholtz et al. 2009).
Our task now is to adopt the Newton scheme for the Cauchy–Navier equation. We
again start with the potential equation, and more specifically, its solution via funda-
mental solutions. By doing so, we follow the setup introduced by Kupradze (1979)
and present the classical theory of elasticity for homogeneous and isotropic media.
A (homogeneous and isotropic) elastic medium is a regular region B of the three-
dimensional Euclidean space and a set of the quantities ρ, λ, and μ satisfying the
conditions

ρ > 0, μ > 0, 3λ + 2μ > 0, (11)

where ρ is the (constant) density of the medium and λ, μ are the Lamé parameters.

Definition 1 An elasto-static state of the medium B(ρ, λ, μ) corresponding to the
mass force f is a pair [u, σ ] satisfying the conditions

i) σ ∈ c(1)(B), u ∈ c(2)(B) ∩ c(1)(B), (12)

ii)
3∑

j=1

∂

∂x j
σi j − ρ fi = 0, (13)
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iii) σi j = λδi jdivu + μ

(
∂

∂x j
ui + ∂

∂xi
u j

)
, (14)

where f , u ∈ R
3 and σ = {σi j } ∈ R

3×3. The vector u = (u1, u2, u3)
T is called

the displacement vector, ui a displacement component and σ the stress tensor with
components σi j . Relation (13) is called the equation of the elasto-static state and
relation (14) Hooke’s law.

Substituting (14) in (13) leads to the relation

μΔui + (λ + μ)
∂

∂xi
divu − ρ fi = 0, (15)

which is called the static equation (of classical elasticity) or, more precisely, the (static)
Cauchy–Navier equation of the medium B(ρ, λ, μ) corresponding to the mass force
f in terms of the displacement. Written in vector nomenclature, we have

μΔu + (λ + μ)∇divu − ρ f = 0, (16)

where

Δu = (Δu1,Δu2,Δu3)
T . (17)

Definition 1 indicates that we deal with the situation that the external forces as well
as the displacements and stresses are not changed in the considered time interval.

By use of the matrix differential operator

A(∂x ) = {Ai j (∂x )} (18)

with

Ai j (∂x ) = δi jμΔ + (λ + μ)
∂2

∂xi∂x j
, (19)

we can reformulate Eq. (15) as

A(∂x )u − ρ f = 0. (20)

Kupradze (1979) showed that a (tensor) fundamental solution of the static Cauchy–
Navier Eq. (20) is given by

G(A(∂); x) = 1
‖x‖

(
μ′
2 − 1

4πμ

)
I − μ′

2
1

‖x‖3 x ⊗ x, (21)

where

μ′ = λ + μ

4πμ(λ + 2μ)
, (22)
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,⊗ is the Kroneker product and I denotes the 3 × 3 identity tensor.
It is easy to see that

A(∂x )G(A(∂); x) = 0, x �= 0. (23)

Like the gravitational constant in the Newton case, we set the constant density ρ equal
to one from now on. All in all, we are confronted with a potential

u =
∫
B
G(A(∂); x − y) f (y) dy, (24)

that represents a solution of the Cauchy–Navier Eq. (20).

Remark 1 The Cauchy–Navier equation and the mollification of its fundamental solu-
tion can be applied in a number of other applications such as wave inversion (e.g.,
seismic imaging, Aki and Richards 2002) and specialized wave propagation (e.g.,
coupling of interior/exterior wave propagation problems, Eberle 2018).

Contrary to the construction of scaling functions for the scalar fundamental solutions
discussed so far, we are faced with the problem, that we cannot simply obtain a mol-
lification in a ball by application of the Taylor expansion. Given the Taylor expansion
T n

a in Einstein convention for tensorial functions G in an expansion point a by

T n
a G(A(∂); x) =

n+1∑
l=0

1

l!Gi j,k1...kl (A(∂); a)(x − a)k1...kl , (25)

this would imply, that in order to get a mollification, we replace each function value
G(A(∂); x) inside a ball of radius τ around the origin with its Taylor expansion at
the expansion point τ x

‖x‖ evaluated in x . By doing so, we still obtain a (n + 1)-times

continuous potential scaling function in R3\{0}, however, the source scaling function
will be discontinuous in general for all ‖x‖ = τ and the limit limx→0 T n

τ G(A(∂); x)

depends on the direction from which the limit is taken and hence, is not unique.
Nevertheless, there exists another way of constructing potential and source scaling
functions in accordance to the previous section.

We rewrite the Cauchy–Navier fundamental solution in terms of G(Δ; ·) and then
substituting G(Δ; ·) by Gn+2

τ (Δ; ·). Here, n +2 is chosen so that after the application
of the Hessian matrix, Gn

τ (A(∂); ·) is (n + 1)-times continuously differentiable as is
Gn

τ (Δ; ·). Hence,

G(A(∂); x) = 1

‖x‖
(

μ′

2
− 1

4πμ

)
I − μ′

2

1

‖x‖3 x ⊗ x (26)

=
(
2πμ′‖x‖2

3
∇ ⊗ ∇ − 4πμμ′ − 3

3μ
I

)
G(Δ; ‖x‖), (27)

where ∇ ⊗ ∇ denotes the Hessian matrix.
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This enables us to define the mollificationGn
τ (A(∂); ·) : R3 → R

3 ×R
3 for n ∈ N

as

Gn
τ (A(∂); x) =

(
2πμ′‖x‖2

3
∇ ⊗ ∇ − 4πμμ′ − 3

3μ
I

)
Gn+2

τ (Δ; ‖x‖), (28)

which leads to

Gn
τ (A(∂); x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
‖x‖

(
μ′
2 − 1

4πμ

)
I − μ′

2
1

‖x‖3 x ⊗ x, τ ≤ ‖x‖

T1 + T2, 0 < ‖x‖ < τ

(
n+5
8πτ

4πμμ′−3
3μ

)
I, ‖x‖ = 0

, (29)

with

T1 = x ⊗ x
2μ′

3rτ n+5

×
[
2τ + (n + 3)r

8

(
3(τ − r)n+4

r2

+3(τ − r)n+3(n + 4)

r
+ (τ − r)n+2(n + 3)(n + 4)

)

− (n + 3)

4

(
3(τ − r)n+4

2r
+ (τ − r)n+3(n + 4)

)
− 3τ n+5

4r2

]
, r = ‖x‖

(30)

T2 =
[
− μ′

12τ n+5r

(
(τ − r)n+3(2τ 2 + r2(n + 3)(n + 4) + 2(n + 3)τr) − 2τ n+5

)

+4πμμ′ − 3

3μ

(
1

4πr
− (τ − r)n+4((n + 3)r + 2τ)

8πrτ n+5

)]
I, r = ‖x‖. (31)

We call Gn
τ (A(∂); ·) the Cauchy–Navier potential scaling function with scale para-

meter τ and, in accordance with the construction of Gn
τ (A(∂); x), the mollification is

equal to G(A(∂); x) for all ‖x‖ ≥ τ .

Remark 2 Here, we forfeit the radial symmetric property of G(Δ; ·) due to the appli-
cation of the Hessian matrix ∇ ⊗ ∇, however this is advantageous for decorrelation
purposes, since we are now able to better highlight the spreading direction of the layers
contained in the data.

Lemma 1 The function Gn
τ (A(∂); ·) is (n + 1)-times continuously differentiable in

R
3\{0}.

As in the Newton case, the “τ -Cauchy–Navier potential functions of order n”

un
τ (x) =

∫
B
Gn

τ (A(∂); x − y) f (y) dy (32)
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converges to the Cauchy–Navier potential u independent of the order of the mollifi-
cation.

Theorem 3 Suppose that B is a regular region in R
3 and u is continuous in B. Further

on, let x ∈ B be arbitrary and let f : B → R
3 be continuous. Then,

∥∥u(x) − un
τ (x)

∥∥ =
∥∥∥∥
∫
B
(
G(A(∂); x − y) − Gn

τ (A(∂); x − y)
)

f (y) dy

∥∥∥∥
= O(τ 2) (33)

as τ tends to zero.

Proof First, we observe that G(A(∂); x) = Gn
τ (A(∂); x) for all x ∈ R

3, ‖x‖ ≥ τ .
Hence, the integrand only differs from zero in the ball Bτ (x) around x and radius τ ,
so that

∥∥∥∥
∫
B
(
G(A(∂); x − y) − Gn

τ (A(∂); x − y)
)

f (y) dy

∥∥∥∥ (34)

=
∥∥∥∥
∫

Bτ (x)

(
G(A(∂); x − y) − Gn

τ (A(∂); x − y)
)

f0(y) dy

∥∥∥∥
=

∥∥∥∥
∫

Bτ (x)

(G(A(∂); x − y) − (T1 + T2)) f0(y) dy

∥∥∥∥ (35)

≤ max
y∈Bτ (x)

‖ f0(y)‖
∫

Bτ (0)
‖G(A(∂); y) − (T1 + T2)‖ dy (36)

with T1 and T2 as in Eqs. (30) and (31) and

f0(x) =
⎧⎨
⎩

f (x), x ∈ B

0, x ∈ R
3\B

. (37)

Explicit calculation by use of polar coordinates leads to

max
y∈Bτ (x)

‖ f0(y)‖
∫

Bτ (0)
‖G(A(∂); y) − (T1 + T2)‖ dy

≤ max
y∈Bτ (x)

C‖ f0(y)‖
(∫ 2π

0

∫ π

0

∣∣∣∣ 2μ′τ 2 sin(θ)(4(n + 2) + 9)

(n + 2)3 + 12(n + 2)2 + 47(n + 2) + 60

∣∣∣∣ dθdφ

+
∫ 2π

0

∫ π

0

∣∣∣∣ τ 2 sin(θ)(10πμμ′ + 3)

6μπ((n + 2)2 + 9(n + 2) + 20)

∣∣∣∣ dθdφ

)

= max
y∈Bτ (x)

C‖ f0(y)‖
(

8πμ′τ 2(4(n + 2) + 9)

(n + 2)3 + 12(n + 2)2 + 47(n + 2) + 60
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+ 2τ 2(10πμμ′ + 3)

3μ((n + 2)2 + 9(n + 2) + 20)

)

= O(τ 2), (38)

where C is a constant. ��
Now, we take a look at deriving the Cauchy–Navier source scaling function corre-
sponding to the potential scaling function

{
Gn

τ (A(∂); ·)}
τ>0 by applying the operator

A(∂x ) to Gn
τ (A(∂); ·). To do that, we rewrite the expressions T1 and T2 as given in

Eqs. (30) and (31) by using the auxiliary functions

S1n,m(x, τ ) = x ⊗ x(τ − r)nrm, (39)

S2n,m(r , τ ) = I(τ − r)nrm (40)

and obtain

T1 = 2μ′

3τ n+5

[
2τ

8

(
3S1n+4,−3(x, τ ) + 3(n + 4)S1n+3,−2(x, τ ) + S1n+2,−1(x, τ )(n + 3)(n + 4)

)

− (n + 3)

4

(
3

2
S1n+4,−2(x, τ ) + S1n+3,−1(x, τ )(n + 4)

)
− 3τ n+5

4
S10,−3(x, τ )

+ (n + 3)

8

(
3S1n+4,−2(x, τ ) + 3(n + 4)S1n+3,−1(x, τ ) + S1n+2,0(x, τ )(n + 3)(n + 4)

)]
,

(41)

T2 =
[
− μ′

12τ n+5

(
(2τ 2S2n+3,−1(r , τ ) + (n + 3)(n + 4)S2n+3,1(r , τ )

+2(n + 3)τS2n+3,0(r , τ )) − 2τ n+5S2n+3,−1(r , τ )
)

+4πμμ′ − 3

3μ

(
1

4π
S20,−1(r , τ ) − (n + 3)S2n+4,0(r , τ ) + 2τS2n+4,−1(r , τ )

8πτ n+5

)]
. (42)

Lemma 2 For F1
n,m(x, τ ) = A(∂x )S1n,m(x, τ ) and F2

n,m(x, τ ) = A(∂x )S2n,m(r , τ ), we
have

F1
n,m(x, τ ) = A(∂x )S1n,m(x, τ )

= (λ + μ)

[
x ⊗ x

(τ − r)n−2

r4−m

(
((m + n)2 + 4(m + n))r4

− (2m2 + 2mn + 8m + 5n)r3τ + (m2 + 4m)r2τ 2
)

− I

(
(τ − r)n−1

r−m
((4 + m)(r − τ) + nr)

)]

+ μ

[
x ⊗ x

(τ − r)n−2

r4−m

(
((m + n)2 + 5(m + n))r4

123
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− (2m2 + 2mn + 10m + 6n)r3τ + (m2 + 5m)r2τ 2
)

+ I
(τ − r)n−2

r4−m
(2r6 − 4r5τ + 2r4τ 2)

]
, (43)

F2
n,m(x, τ ) = A(∂x )S2n,m(r , τ )

= (λ + μ)

[
x ⊗ x

(τ − r)n−2

r4−m

(
((m + n)2

− 2(m + n))r2 − (2m2 + 2mn − 4m − n)rτ + (m2 − 2m)τ 2
)

− I
(τ − r)n−1

r2−m
((m + n)r − mτ)

]

+ μI
(τ − r)n−2

r4−m

(
((m + n)2 + m + n)r4

− (2m2 + 2mn + 2(m + n))r3τ + (m2 + m)r2τ 2
)

. (44)

Theorem 4 For x, y ∈ R
3 and n ∈ N, we find

A(∂x )Gn
τ (A(∂); x − y) = Φn

τ (x − y) = A(∂y)Gn
τ (A(∂); x − y), (45)

where the Cauchy–Navier source scaling function Φn
τ : R3 → R

3 × R
3, n ∈ N is

given by

Φn
τ (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O, τ ≤ r

A(∂x )(T1 + T2), 0 < r < τ

(8πμμ′−3)(n+3)(n+4)(n+5)
24τ 3π(4πμμ′−1)

I, r = 0

(46)

with T1 and T2 as in (30) and (31), respectively and O denotes the zero tensor. In
addition, the A(∂x )-derivatives of T1 and T2 are given by

A(∂x )T1 = x ⊗ x
2μ′

3τ n+5

×
[
2τ

8

(
3F1

n+4,−3(x, τ )+3(n+4)F1
n+3,−2(x, τ )+F1

n+2,−1(x, τ )(n+3)(n+4)
)

− (n + 3)

4

(
3

2
F1

n+4,−2(x, τ ) + F1
n+3,−1(x, τ )(n + 4)

)
− 3τ n+5

4
F1
0,−3(x, τ )

+ (n + 3)

8

(
3F1

n+4,−2(x, τ ) + 3(n + 4)F1
n+3,−1(x, τ )

+F1
n+2,0(x, τ )(n + 3)(n + 4)

)]
, (47)
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Fig. 3 Profile of the scaling functions Gn
τ (A(∂); ·) (top) and Φn

τ (bottom) in x3 = 0 for n = 1 and their
respective cuts along the x1/x2 direction (right)

A(∂x )T2

=
[
− μ′

12τ n+5

(
(2τ 2F2

n+3,−1(x, τ ) + (n + 3)(n + 4)F2
n+3,1(x, τ )

+ 2(n + 3)τF2
n+3,0(x, τ )) − 2τ n+5F2

0,−1(x, τ )
)

+4πμμ′ − 3

3μ

(
1

4π
F2
0,−1(x, τ ) − (n + 3)F2

n+4,0(x, τ ) + 2τF2
n+4,−1(x, τ )

8πτ n+5

)]
I

(48)

with F1
n,m and F2

n,m as provided in Lemma 2.

Figure 3 depicts the scaling functions Gn
τ (A(∂); ·) and Φn

τ for the case n = 1.
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Table 1 Integral values of F1n,m . Here, T = (λ(4 + m) + μ(6 + 2m))

∫
Bτ (0) F

1
n,m dy n = 0 n = 1 n ≥ 2

m ≥ −2 4τm+3πT
3 I − 4τm+4π(λ+2μ)

3 I O

m = −3 O − 8τπ(λ+μ)
3 I − 4πτnλ

3 I

m ≤ −4 & T = 0 O − 4τm+4π(λ+2μ)
3 I not convergent

m ≤ −4 & T �= 0 not convergent not convergent not convergent

Table 2 Integral values of F2n,m

∫
Bτ (0) F

2
n,m dy n = 0 n = 1 n ≥ 2

m ≥ 0 4τm+1π(λ+4μ)
3 I − 4τm+2π(λ+4μ)

3 I O

m = −1 O O
4τnπ(λ+4μ)

3 I

m ≤ −2 not convergent not convergent not convergent

Lemma 3 The so-called volume integral of the scaling function Φn
τ given by

VΦn
τ

=
∫
R3

Φn
τ (y) dy (49)

satisfies

VΦn
τ

= I (50)

for all n ∈ N and all τ > 0.

Proof For the proof of the lemma, we have to take a look at the integrals
∫
Bτ (0) F

1
n,m dy

and
∫
Bτ (0) F

2
n,m dy. Summing them up according to the definition of Φn

τ leads to the
desired result. Tables 1 and 2 summarize the respective values of those integrals. It
should be noted, that only convergent integrals are involved in the calculation of VΦn

τ
.

Altogether, we have

VΦn
τ

=
∫
R3

Φn
τ (y) dy =

∫
Bτ (0)

A(∂x )(T1 + T2) dy (51)

withA(∂x )T1 andA(∂x )T2 as given in Eqs. (47) and (48), respectively. At last, observ-
ing the results denoted in Tables 1 and 2, it turns out that

∫
Bτ (0)

A(∂x )T1 dx = 2μ′

3τ n+5

[
2τ

8

(
−12πτ n+4λ

3
I + O + O

)

− (n + 3)

4
(O + O) − O + (n + 3)

8
(O + O + O)

]
(52)
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= −2μ′λπ

3
I, (53)

∫
Bτ (0)

A(∂x )T2 dx =
[
− μ′

12τ n+5
×

((
8τ n+5π(λ + 4μ)

3
I + O + O

)
− O

)

+4πμμ′ − 3

3μ

(
1

4π
O − (n + 3)O + 2τ 4τ n+4π(λ+4μ)

3 I

8πτ n+5

)]

(54)

= − (λ + 4μ)(2πμμ′ − 1)

3μ
I. (55)

With μ′ = λ+μ
4πμ(λ+2μ)

, we get

VΦn
τ

=
∫
R3

Φn
τ (y) dy (56)

=
∫
Bτ (0)

A(∂x )(T1 + T2) dy (57)

=
(

−2μ′λπ

3
− (λ + 4μ)(2πμμ′ − 1)

3μ

)
I (58)

= λ + 4μ − 8πμ2μ′ − 4πλμμ′

3μ
I (59)

= I. (60)

��

The scaling function Φn
τ allows us to define the “τ -Cauchy–Navier contrast func-

tions of order n” f n
τ given by

f n
τ (x) =

∫
B

Φn
τ (x − y) f (y) dy. (61)

Theorem 5 The function Φn
τ is (n − 1)-times continuously differentiable in R\{0}. In

addition, assume that B is a regular region in R
3 and that f : B → R

3 is continuous.
Then,

lim
τ→0
τ>0

‖ f (x) − f n
τ (x)‖ = 0 (62)

holds true for all n ≥ 0 and all x ∈ B.

Proof Since x ∈ B and B is open, there exists a τ0 such that B ∩ Bτ (x) = Bτ (x) for

all 0 < τ ≤ τ0. Hence, we have with Φn
τ =

((
Φn

τ

)
i j

)
i, j=1,...,3
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∫
B

Φn
τ (x − y) f (y) dy =

∫
Bτ (x)

Φn
τ (x − y) f (y) dy (63)

=
⎛
⎝ 3∑

j=1

∫
Bτ (x)

(
Φn

τ

)
i j (x − y) f j (y) dy

⎞
⎠

i=1,2,3

. (64)

We can split
(
Φn

τ

)
i j (x) into its positive and negative parts, so that

∫
Bτ (x)

(
Φn

τ

)
i j (x − y) f j (y) dy

=
∫
Bτ (x)

(
Φn

τ

)+
i j (x − y) f j (y) dy +

∫
Bτ (x)

(
Φn

τ

)−
i j (x − y) f j (y) dy, (65)

where

(
Φn

τ

)+
i j (x) =

{(
Φn

τ

)
i j (x),

(
Φn

τ

)
i j (x) ≥ 0

0,
(
Φn

τ

)
i j (x) < 0

, (66)

(
Φn

τ

)−
i j (x) =

{(
Φn

τ

)
i j (x),

(
Φn

τ

)
i j (x) ≤ 0

0,
(
Φn

τ

)
i j (x) > 0

. (67)

Since f is continuous and
(
Φn

τ

)+
i j as well as

(
Φn

τ

)−
i j are integrable and do not

change sign in Bτ (x), the mean value theorem of integration guarantees the existence
of ξ1, ξ2 ∈ Bτ (x), so that

∫
Bτ (x)

(
Φn

τ

)
i j (x − y) f j (y) dy

= f j (ξ1)

∫
Bτ (x)

(
Φn

τ

)+
i j (x − y) dy + f j (ξ2)

∫
Bτ (x)

(
Φn

τ

)−
i j (x − y) dy. (68)

According to Eq. (50), we have

∫
Bτ (x)

(
Φn

τ

)+
i j (x − y) dy +

∫
Bτ (x)

(
Φn

τ

)−
i j (x − y) dy = δi j (69)

and hence,

∫
Bτ (x)

(
Φn

τ

)−
i j (x − y) dy = δi j −

∫
Bτ (x)

(
Φn

τ

)+
i j (x − y) dy. (70)
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Substituting the last equation into Eq. (68), we get

∫
Bτ (x)

(
Φn

τ

)
i j (x − y) f j (y) dy

= f j (ξ2)δi j + (
f j (ξ1) − f j (ξ2)

) ∫
Bτ (x)

(
Φn

τ

)+
i j (x − y) dy. (71)

Now with
∫
Bτ (x)

(
Φn

τ

)+
i j (x − y) dy ≤ max

y∈Bτ (x)
| (Φn

τ

)+
i j (x − y)|

︸ ︷︷ ︸
=O(τ−3)

∫
Bτ (x)

dy

︸ ︷︷ ︸
= 4

3πτ 3

≤ C (72)

for a positive constant C , we get

lim
τ→0
τ>0

∫
Bτ (x)

(
Φn

τ

)
i j (x − y) f j (y) dy = δi j f j (x), (73)

since ξ1, ξ2 ∈ Bτ (x). In connection with Eq. (64), this leads us to

lim
τ→0
τ>0

∫
B

Φn
τ (x − y) f (y) dy = f (x) (74)

and hence,

lim
τ→0
τ>0

‖ f (x) − f n
τ (x)‖ = 0. (75)

��
Next, we deal with themathematicalmechanisms for interpretation and understand-

ing of available density information inside a regular region B. In order to do that, we
again take a look at the Newton case in order to to make the reader more familiar with
the idea of density decomposition and introduce the associated notation. Our purpose
is to thereby exemplary demonstrate, how the multiscale procedure for the potential
canonically transfers to the density by use of “Laplace derivatives” as shown in Blick
et al. (2018).

Suppose that {τ j } j∈N0 is a positive, monotonically decreasing sequence with
lim j→∞ τ j = 0. For j ∈ N0, we consider the differences

Wn
τ j

(Δ; ‖x − y‖) = Gn
τ j

(Δ; ‖x − y‖) − Gn
τ j−1

(Δ; ‖x − y‖) (76)

and

Ψ n
τ j

(‖x − y‖) = Φn
τ j

(‖x − y‖) − Φn
τ j−1

(‖x − y‖). (77)
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Wn
τ (Δ; ·) and Ψ n

τ are called “Newton potential wavelet function of order n” and
“Newton source wavelet function of order n”.

The associated “τ j -potential wavelet functions of order n” and the “τ j -contrast
wavelet functions of order n” are given by

(W V )n
τ j

(x) =
∫
B
Wn

τ j
(Δ; ‖x − y‖)ρ(y) dy (78)

and

(Wρ)n
τ j

(x) =
∫
B

Ψ n
τ j

(‖x − y‖)ρ(y) dy. (79)

The τ j -potential wavelet functions of order n and the τ j -contrast wavelet functions
of order n, respectively, characterize the successive detail information contained in
V n

τ j
(x) − V n

τ j−1
and ρn

τ j
− ρn

τ j−1
, j ∈ N0. In other words, we are able to recover the

potential V and the contrast function, i.e., the “density signature”ρ, respectively, in
form of “band structures”

(W V )n
τ j

= V n
τ j

− V n
τ j−1

(80)

and

(Wρ)n
τ j

= ρn
τ j

− ρn
τ j−1

. (81)

As a consequence, the essential problem to be solved in multiscale extraction of
geological features is to identify those detail information, i.e., band structures in (80),
which specifically contain desired density characteristics in (81), for example, aquifers,
salt domes.

Seen from a numerical point of view, it is remarkable that both wavelet functions
y �→ W(Δ; ‖x − y‖) and y �→ Ψ (‖x − y‖) vanish outside a ball around the cen-
ter x due to their construction, i.e., these functions are spacelimited showing a ball
as local support. Furthermore, the ball becomes smaller and smaller with increasing
scale parameter j, so that more and more high frequency phenomena can be high-
lighted without changing the features outside the balls. Explicitly written out in our
nomenclature, we obtain for x ∈ B

(W V )n
τ j

(x) =
∫
Bτ j (x)∩B

W(Δ; ‖x − y‖)ρ(y) dy (82)

and

(Wρ)n
τ j

(x) =
∫
Bτ j (x)∩B

Ψ (‖x − y‖)ρ(y) dy. (83)
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Thus for x ∈ B, we finally end up with the following multiscale reconstruction

V (x) = lim
J→∞ V n

τJ
(x) = V n

τ0
(x) +

∞∑
j=1

(W V )n
τ j

(x) (84)

and

ρ(x) = lim
J→∞ ρn

τJ
(x) = ρn

τ0
(x) +

∞∑
j=1

(Wρ)n
τ j

(x) = lim
J→∞ Δx V n

τJ
(x). (85)

In addition, if ρ is Hölder continuous, we have

ρ(x) = Δx V n
τ0

(x) +
∞∑
j=1

Δx (W V )n
τ j

(x). (86)

All in all, the potential V aswell as the contrast function, i.e., the “density signature”
ρ can be expressed in an additive way as a low-pass filtered signal V n

τ0
and ρn

τ0
and

successive band-pass filtered signals (W V )n
τ j
and (Wρ)n

τ j
, j = 1, 2, . . . , respectively.

It should be mentioned that this multiscale approach is constructed such that,
within the spectrum of all wavebands (cf. Eq. (80) and (81)), certain rock forma-
tions may be associated to a specific band characterizing typical features within the
multiscale reconstruction. Each scale parameter in the decorrelation is assigned to a
data distribution which corresponds to the associated waveband and, thus, leads to a
low-pass approximation of the data at a particular resolution. Thewavelet contributions
are obtained as part within a multiscale approximation by calculating the difference
between two consecutive scaling functions. In other words, the wavelet transformation
(filtering) of a signal constitutes the difference of two low-pass filters, thus it may be
regarded as a band-pass filter. Due to our construction, thewavelets show an increasing
space localization as the scale increases. In this way, the characteristic signatures of a
signal can be detected in certain frequency bands.

In the same way as for the Newton equation, we obtain a multiscale procedure for
the potential u as well as the contrast function f . Again suppose that {τ j } j∈N0 is a
positive, monotonically decreasing sequence with lim j→∞ τ j = 0. For j ∈ N0, we
consider the differences

Wn
τ j

(A(∂); x − y) = Gn
τ j

(A(∂); x − y) − Gn
τ j−1

(A(∂); x − y) (87)

and

Ψ n
τ j

(x − y) = Φn
τ j

(x − y) − Φn
τ j−1

(x − y). (88)

Wn
τ (A(∂); ·) and Ψ n

τ are called “Cauchy–Navier potential wavelet function of order
n” and “Cauchy–Navier source wavelet function of order n”. The associated “τ j -
Cauchy–Navier potential wavelet functions of order n” and the “τ j -Cauchy–Navier
contrast wavelet functions of order n” are given by
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(Wu)n
τ j

(x) =
∫
B
Wn

τ j
(A(∂); x − y) f (y) dy (89)

and

(W f )n
τ j

(x) =
∫
B

Ψ n
τ j

(x − y) f (y) dy. (90)

As in the Newton case, the τ j -Cauchy–Navier potential wavelet functions of
order n and the τ j -Cauchy–Navier contrast wavelet functions of order n, respec-
tively, characterize the successive detail information contained in un

τ j
(x) − un

τ j−1
and

f n
τ j

− f n
τ j−1

, j ∈ N0. In other words, we are able to recover the potential u and the
contrast function, i.e., the “signature” f , respectively, in form of “band structures”

(Wu)n
τ j

= un
τ j

− un
τ j−1

, (91)

and

(W f )n
τ j

= f n
τ j

− f n
τ j−1

. (92)

Again, both wavelet functions y �→ W(A(∂); x − y) and y �→ Ψ (x − y) vanish
outside a ball around the center x due to their construction, which is of numerical
advantage for the convolution. Furthermore, the ball becomes smaller and smaller
with increasing scale parameter j, so that more and more high frequency phenomena
can be highlighted without changing the features outside the balls. Thus for x ∈ B,
we obtain the multiscale relations

u(x) = lim
J→∞ un

τJ
(x) = un

τ0
(x) +

∞∑
j=1

(Wu)n
τ j

(x) (93)

and

f (x) = lim
J→∞ f n

τJ
(x) = f n

τ0
(x) +

∞∑
j=1

(W f )n
τ j

(x) = lim
J→∞A(∂x )u

n
τJ

(x). (94)

In addition, if f is Hölder continuous, we have

f (x) = A(∂x )u
n
τ0

(x) +
∞∑
j=1

A(∂x )(Wu)n
τ j

(x). (95)

Hence, the potential u as well as the contrast function f can be reconstructed as a
low-pass filtered signal un

τ0
and f n

τ0
and successive band-pass filtered signals (Wu)n

τ j

and (W f )n
τ j
, j = 1, 2, . . . , respectively.
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Fig. 4 The Marmousi model in
[
kg
m3

]
(top, Symes 2014) and its interpretation (bottom, Martin et al. 2006)

3 Comparison of the Newton and Cauchy–Navier decomposition
based on theMarmousi density model

As point of departure, we construct a synthetic 3D density model by putting copies
of the the smooth 2D Marmousi data set (Martin et al. 2006; Irons 2015) behind each
other in order to test the decomposition ability of the wavelets. We specifically accept
the downside of the model that it is constant in the y-direction in favor of the fact that
we have a complete interpretation of the model as depicted in Fig. 4.

3.1 Decomposition using Newton wavelets

Even if we are more interested in the decomposition of density data, our mathematical
setup allows us to also decompose the potential. Hence, we borrow the results of the
Newton case fromBlick (2015) and present them here as a foundation for the compari-
son to the Cauchy–Navier decomposition scheme. As the base model, we choose a 3D
variant of the Marmousi density data set depicted in Fig. 4 and present its decompo-
sition based on the Newton potential scaling function and wavelet for the case n = 0.
Afterward, we follow with the decorrelation of the density using the Newton source
scaling function and wavelet. It should be noted that we obtain a similar decompo-
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sition, if we select n ≥ 1. In fact, selecting a larger n ∈ N while simultaneously
choosing a lower scale parameter j results in a structurally alike decomposition, as
shown in Blick (2015).

Remark 3 The depicted figures in this section denote 2D-cuts of the complete 3D
convolution result of the 3DMarmousi density model as used in Blick (2015). Further,
for the convolution with the Newton source scaling function and wavelet, a border of
size τ j−1 is cut off in order to ignore border phenomena of the convolution due to the
discontinuity of the input data.

We clearly see in Fig. 5 that the low-pass filtered potential is extremely stiff regard-
ing the scale parameter, i.e., there is almost no change in the structure of the low-pass
filtered versions of the density potential. This is due to the fact that the magnitude of
the potential is of order 109, whereas the detail information is only of order 107 for
j = 4 and falls drastically to 105 for j = 9. That means, if we are only interested in
the potential of the density data, a lower scale parameter and hence, a coarse approx-
imation may be enough. In addition, the method provides trend information of the
input data by way of the detail information.

For the decomposition of the density, Fig. 6 indicates that we obtain the orig-
inal input data at scale j = 8. For lower scales, we can calculate a rough trend
of the input data (depicted in the scale-space). Furthermore, the detail-space shows
coarse information of the data for lower scales, which get consecutively finer as
j increases. If we study the detail information of scale j = 8 of the Marmousi
density model (Fig. 4), we recognize that we are able to highlight density infor-
mation. In fact, we can clearly identify the separating layers in the density model.
Here, the limit of the refinement is only determined by the denseness of the
data.

3.2 Decomposition using Cauchy–Navier wavelets

For the Cauchy–Navier wavelet decomposition, we have to prepare the data set before-
hand. The reason is, that the wavelets are based on the Cauchy–Navier equation, which
models a homogeneous medium with constant Lamé parameters λ and μ, as well as a
constant density ρ. Hence, we choose a reference medium, in this case sandstone,

with the parameters ρS = 2066.38 kgm3 , λ = 1.9 · 109 Pa and μ = 6.3 · 109 Pa
(Gopalakrishnan 2016) and decompose the density variation ρD = ρ − ρS . Fur-
ther, we need vectorial input data f with unit [ Nm3 ], i.e., density times acceleration.
Convolution of the input data with the Cauchy–Navier potential scaling function
and wavelet then results in a decomposition of the elastic potential u, i.e., the dis-
placement vector in [m], while convolution with the Cauchy–Navier source scaling
function and wavelet results in a decomposition of f itself. Here, we are only inter-

ested in the last case. Taking f = ρDei , i = 1, 2, 3, where ei is given in
[
m
s2
]
and

denotes the i-th Cartesian unit normal vector, the decomposition will be concentrated
along the xi direction in the i-th component of the resulting vector. Moreover the
remaining two components of the solution vector contain the decomposition in the
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Fig. 5 Multiscale approximation of the 3D Marmousi density potential by convolution of the density with
the Newton potential scaling function (scale-space) and the Newton potential wavelet (detail-space) for

n = 0 and τ j = 9200 · 2− j m in
[
kg
m

]
. It should be noted that the gravitational constant is not included in

the calculations above
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Fig. 6 Multiscale approximation of the 3DMarmousi density by convolution of the density with the Newton
source scaling function (scale-space) and the Newton source wavelet (detail-space) for n = 0 and τ j =
9200 · 2− j m in

[
kg
m3

]

diagonal direction of xi and x j , j �= i . Hence, for a complete decomposition, we
choose

f = (1, 1, 1)T m

s2
ρD = (e1 + e2 + e3)

m

s2
ρD (96)

and present as depicted in Fig. 7 the resulting decomposition in the form of convolu-
tions ∗ by
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Fig. 7 Cut of the input data for
the decomposition via the
Cauchy–Navier source scaling
functions and wavelets

(
Φτ j ∗ (e1ρD) + Φτ j ∗ (e2ρD) + Φτ j ∗ (e3ρD)

) = Φτ j ∗ f . (97)

For the decomposition by use of Cauchy–Navier potential wavelets, we only
depicted selected low-pass and band-pass filtered versions of u due to the larger amount
of pictures. In general, the decomposition of u behaves similar to the Newton poten-
tial, that is, the potential is extremely stiff regarding the scale parameter as illustrated
in Figs. 8 and 9. Again, there is almost no change in the structure of the low-pass
filtered versions of the Cauchy–Navier potential. The trend information of the input
data in the detail information can also be recognized on the diagonal of the band-pass
filtered potential. The huge advantage however, is that the off-diagonal entries of the
band-pass filtered potential already show a decorrelation of the input density, which in
the Newton-case can only be detected by use of source wavelets. Specifically, the off-
diagonal entries in Fig. 8 highlight the major density transitions in the Cauchy–Navier
potential, however for the Newton case, the same transition can only be perceived by
using source wavelets (cf. Fig. 6 at scale j = 6). Even the finest density variations
emphasized by the Newton source wavelet at scale j = 8 (cf. Fig. 5) can already
be spotted in the decomposition of the Cauchy–Navier potential on the off-diagonal
at scale j = 8 as depicted in Fig. 9. Now we concern ourselves with the decom-
position via the Cauchy–Navier source wavelet exemplary for the scales j = 2 and
j = 8. On the right hand side of Figs. 10 and 11, we see that at the final stage of the
decomposition, we get the input data from Fig. 7 back. In addition at higher scales,
the decomposition result is very similar to the decomposition using Newton wavelets
in both the low-pass and band-pass filtered parts. The main difference can be found
in the lower scales j = 2, . . . , 6. Exemplary taking a look at the detail information at
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scale j = 2, we recognize that the structures expanding in the x1 and x2 direction are
highlighted in the first and second component of the decomposition vector, respec-
tively. In the x3 direction, the model is constant, so that we get similar results to the
decomposition using Newtonwavelets here. Now, we observe the breakdown of f into
the vectors eiρD on the left hand side of the decomposition. The decomposition of the
density variation in the xi direction can be identified on the diagonal in addition to
the mixed directions in the non-diagonal pictures. It is clear that the mixed directions
involving the direction x3 are close to zero with an amplitude of 10−15. This is due to
the corresponding entries of Φτ j being zero in x3 = 0. The major improvement com-
pared to the decomposition using Newton wavelets is, that due to the radial symmetry
of the Newton wavelet and scaling functions, every direction of the density model
is weighted equally. This is not the case for the Cauchy–Navier wavelet and scaling
functions (cf. Fig. 3). Hence, we can further decompose the model so that we can
precisely highlight structures stretching in the xi direction, as well as diagonally in the
data set. Therefore, an interpretation of a given density model using Cauchy–Navier
wavelets will be more precise then by applying Newton wavelets. This behavior is
clearly demonstrated in Fig. 10 for the band-pass filtered data f at scale j = 2. Here,
we find that the first diagonal entry of the band-pass filtered density variation f clearly
highlights the structures stretching in the x1 direction, while the second diagonal entry
emphasizes the structures spreading in the x2 direction. Due to the fact that the model
is constant in the x3 direction and that the profile of the figures is taken at x3 = 0,
the third diagonal entry is similar as in the case for the decomposition via the Newton
source wavelet. In addition, the density signatures stretching in the xi − x j direction,
i �= j are highlighted on the off-diagonal, so that every main spreading direction can
be emphasized. The same behavior is also true at higher scales however, the effect is
less noticeable due to the shrinking compact support of the wavelets.

4 Conclusion

We compared the scalar wavelet decomposition using Newton wavelets and presented
an approach for the directional interpretability by tensorialCauchy–Navierwavelet and
scaling functions. Decomposition results were presented and compared for both types
of wavelets. The Newton wavelets lead to a good decomposition of the data, which
aids the interpretation effort in exploration. The Cauchy–Navier wavelets however,
allow a more precise decomposition since the data set is even further disassembled
so that structures stretching in either of the three Cartesian directions as well as all
diagonal directions can be highlighted. In fact, the density signatures emphasized by
both the Newton potential and source wavelets can already be seen by decorrelation
via the Cauchy–Navier potential wavelets due to the tensorial setup. In addition, the
decomposition via the Cauchy–Navier source wavelet yields further information on
the density signatures by highlighting signatures spreading in the three Cartesian
coordinate directions on the diagonal and the mixed directions on the off-diagonal of
the decomposition.
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