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Abstract
We study the propagation of hydraulic fractures using the fixed stress splittingmethod.
The phase field approach is applied and we study the mechanics step involving dis-
placement and phase field unknowns, with a given pressure. We present a detailed
derivation of an incremental formulation of the phase field model for a hydraulic frac-
ture in a poroelastic medium. The mathematical model represents a linear elasticity
system with fading elastic moduli as the crack grows that is coupled with an elliptic
variational inequality for the phase field variable. The convex constraint of the vari-
ational inequality assures the irreversibility and entropy compatibility of the crack
formation. We establish existence of a minimizer of an energy functional of an incre-
mental problem and convergence of a finite dimensional approximation. Moreover,
we prove that the fracture remains small in the third direction in comparison to the first
two principal directions. Computational results of benchmark problems are provided
that demonstrate the effectiveness of this approach in treating fracture propagation.
Another novelty is the treatment of the mechanics equation with mixed boundary
conditions of Dirichlet and Neumann types. We finally notice that the corresponding
pressure step was studied by the authors in Mikelić et al. (SIAM Multiscale Model
Simul 13(1):367–398, 2015a).
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1 Introduction

The coupling of flow and geomechanics in porous media is a major research topic in
energy and environmental modeling. Of specific interest is induced hydraulic fractur-
ing or hydrofracturing commonly known as fracking. This technique is used to release
petroleum and natural gas that includes shale gas, tight gas, and coal seam gas for
extraction. Here fracking creates fractures from a wellbore drilled into reservoir rock
formations. In 2012, more than one million fracturing jobs were performed on oil
and gas wells in the United States and this number continues to grow. Clearly there
are economic benefits of extracting vast amounts of formerly inaccessible hydrocar-
bons. In addition, there are environmental benefits of producing natural gas, much of
which is produced in the United States from fracking. Opponents to fracking point
to environmental impacts such as contamination of ground water, risks to air quality,
migration of fracturing chemical and surface contamination from spills to name a
few. For these reasons, hydraulic fracturing is being heavily scrutinized resulting in
the need for accurate and robust mathematical and computational models for treating
fluid field fractures surrounded by a poroelastic medium.

Even in the most basic formulation, hydraulic fracturing is complicated to model
since it involves the coupling of (i) mechanical deformation; (ii) the flow of fluids
within the fracture and in the reservoir; and (iii) fracture propagation. Generally, rock
deformation is modeled using the theory of linear elasticity, i.e. they are modeled
as an impermeable elastic medium. Using Green’s function, an integral equation that
determines a relationship between fracturewidth and the fluid pressure can be adopted.
Fluid flow in the fracture is modeled using lubrication theory that relates fluid flow
velocity, fracture width and the gradient of pressure.

Fluid flow in the reservoir is modeled as a Darcy flow and the respective fluids are
coupled through a leakage term. The experiments show an analogy between hydraulic
fracture propagation and crack propagation in fracture mechanics of solids. The cri-
terion for fracture propagation is usually given by the conventional energy-release
rate approach of linear elastic fracture mechanics (LEFM) theory; that is the fracture
propagates if the stress intensity factor at the tip matches the rock toughness. Detailed
discussions of the development of hydraulic fracturing models for use in petroleum
engineering can be found in Adachi et al. (2007), Dean and Schmidt (2014), Hwang
and Sharma (2013), McClure and Kang (2017) and in mechanical engineering and
hydrology in de Borst et al. (2006), Gupta and Duarte (2014), Irzal et al. (2013),
Schrefler et al. (2006) and in references cited therein.

In the literature, numerical models of fracture can be classified into two categories:
discrete and continuum approaches. The discrete approach treats fractures as discon-
tinuities. Its positive side is the simplicity in terms of modeling. One disadvantage
is to consider topology changes in the implementation and mesh dependent fracture
propagation is restricted to follow mesh lines. Some of these approaches, however,
have difficulties with joining or branching fracture or with heterogeneous materials.
For a detailed literature overview of various fracture propagation models, we refer
the reader to Wick et al. (2016). In the following, we restrict our focus to a specific
continuum approach, which has received a lot of attention.
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In the last two decades, variational phase fieldmodels of brittle fracture gained pop-
ularity in fracturemechanics. In fracturemechanics, the fracture is a lower dimensional
manifold. The phase-field variable is a smoothed indicator function that smoothly inter-
polates between the broken and unbroken regions. The change from the intact medium
to a fracture takes place in a narrow mushy region. Francfort and Marigo developed in
(1998) a variational formulation for quasi-static fracture evolution in a brittle material
based on the minimization of the combined elastic energy in the bulk material and
the fracture energy. It has been serving as a basis for a vast literature with numerical
simulations and theoretical developments. The approach allows simulation of com-
plex fracturing processes, such as branching and joining. Handling heterogeneous
media does not pose major additional difficulties and updating the fracture shape is
automatically contained in the model.

Because of the abovementioned analogy between fracturemechanics and hydraulic
fracturing, it is appealing to simply borrow the approach of Francfort andMarigo. Nev-
ertheless, it is important to recall that contrary to fracture mechanics, where Griffiths
criterion has a deep physical meaning, using a phase field approach in hydraulic frac-
turing corresponds to a phenomenological overall behavior. The fractures are slender
flow domains, but, nevertheless, their width is much bigger than the typical pore size
of a porous medium. The mechanical interactions of the fracture interacting with the
pore structure is not well understood and an open question. Furthermore, we do not
consider the equations of fluid–structure, posed at the pore level, but their upscaled
simplified form. Consequently, flow and deformation are described by Biot’s equa-
tions (e.g., Tolstoy 1992), which are not fundamental physical equations. This is a
very important modeling aspect because one wants to couple the upscaled poroelas-
tic medium possibly with Stokes or Navier–Stokes flow in the fracture, which are
first principle equations. Here, interface conditions have to be carefully derived. An
alternative is a lubrication approximation, which does not contain enough information
about (the prediction) of the tip velocity. Hence there are difficulties with including
a correct description of the interaction between the hydraulic fracture and the sur-
rounding poroelastic medium. More physical reasoning based on the energy could be
necessary. For correct modeling of these processes, only experiments can indicate how
far the analogy of fracture behavior with solid mechanics works.

In this paper, we present our phase-field fracture model for pressurized fractures
in a porousmedium. Our approach is based on the observation that phase fieldmodels
require the energy functional in the case of elasticity (Francfort and Marigo 1998) and
a free energy in the case of poroelasticity (Mikelić et al. 2015b). The Biot equations are
obtained by upscaling and for a hydraulic fracture being a lower dimensional manifold
we do not know how to formulate such an energy functional. But in the elastic case,
where the pressure is given, we can modify the regularized phase field elastic energy
of Francfort and Marigo, and study the corresponding phase field system. We note
that now the fracture is a three dimensional slender body. Similarly, in the case of
the full Biot system, one would modify Biot’s free energy by inserting the phase field
function.

Parts of this work are based on two preprints ICES-1315 (Mikelić et al. 2013) and
ICES-1418 (Mikelić et al. 2014) that were published in the years 2013 and 2014 at
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the Institute of Computational Engineering and Sciences at the University of Texas at
Austin.

The outline of this paper is as follows: First in Sect. 2, we provide general
background information. In Sect. 3, we introduce an incremental formulation of a
phase-field model for a pressurized crack. Here, the crack-pressure is incorporated
with an interface law. In Sect. 4, we present a mathematical analysis of the incremen-
tal problem. In Sect. 5, a numerical formulation is briefly described. Finally in Sect. 6
we provide numerical experiments for classical benchmark cases, e.g. Sneddon’s pres-
surized crack with constant fluid pressure (see Sect. 6.1 and Sneddon 1946). Here, we
also focus on the behavior when working with mixed boundary conditions of Dirichlet
and Neumann types.

2 Fundamental background information

In this section, we explain the idea of our approach and provide background infor-
mation. We finish with a current literature overview of phase-field models used for
hydraulic facturing.

2.1 The Biot system and fixed-stress iterative coupling

Major difficulties in simulating hydraulic fracturing in a deformable porous medi-
um are treating crack propagation induced by high-pressure slick water injection and
later the coupling to a multiphase reservoir simulator for production. A computational
effective procedure in modeling coupled multiphase flow and geomechanics is to
apply an iterative coupling algorithm as described in Mikelić and Wheeler (2012),
and Mikelić et al. (2014).

Iterative coupling is a sequential procedurewhere either the flowor themechanics is
solved first followed by solving the other problemusing the latest solution information.
At each time step the procedure is iterated until the solution converges within an
acceptable tolerance. There are four well-known iterative coupling procedures and we
are interested primarily in one referred to as the fixed stress split iterative method.

In order to fix ideas we address the simplest model of real applied importance,
namely, the quasi-static single phase Biot system. Let C denote any open set homeo-
morphic to an ellipsoid strictly contained in (0, L)3 ⊂ R

3 (a crack set). Its boundary
is a closed surface ∂C. In most applications C is a curved 3d domain, with two dimen-
sions significantly smaller than the dominant one. Nevertheless, we consider C as
a 3d domain and use its particular geometry only when discussing the stress inter-
face conditions. The boundary of (0, L)3 is denoted by ∂(0, L)3 = ∂Ω\∂C divided
into Dirichlet and Neumann parts, ∂DΩ and ∂N (0, L)3 respectively. We assume that
meas(∂DΩ) > 0. Boundary conditions on ∂(0, L)3 = ∂DΩ ∪∂N (0, L)3 for the above
situation involve displacements and tractions as well as pressure and flux.

Remark 1 We notice that in many references on fracture propagation, the crack C is
considered as a lower dimensional manifold and the lubrication theory is applied to
describe the fluid flow (see e.g. Adachi et al. 2007; Ganis et al. 2014; Girault et al.

123



GEM - International Journal on Geomathematics (2019) 10 :2 Page 5 of 33 2

Table 1 Unknowns and effective
coefficients

Symbol Quantity Unit

u Displacement m

p Fluid pressure Pa

σ por Total poroelasticity tensor Pa

e(u) = (∇u + ∇τu)/2 Linearized strain tensor Dimensionless

K Permeability Darcy

α Biot’s coefficient Dimensionless

ρb Bulk density kg/m3

η Fluid viscosity kg/m s

M Biot’s modulus Pa

G Gassman rank-4 tensor Pa

Kdr Drained bulk modulus Pa

2015). We recall that the 3d flow in C can be reconstructed from a lower dimensional
lubrication approximation (see Mikelić et al. 2015a), except at the tips where a law
for their displacements has to be added separately.

The quasi-static Biot equations (see e.g. Tolstoy 1992) are an elliptic-parabolic
system of PDEs, valid in the poroelastic domain Ω = (0, L)3\C, where for every
t ∈ (0, T ) we have

σ por − σ0 = Ge(u) − α pI ; − div {σ por } = ρbg; (1)

∂t

(
1

M
p + div (αu)

)
+ div

{K
η

(ρ f g − ∇ p)

}
= f , (2)

where σ0 is the reference state total stress and g is the gravity and f represents volume
sources/sinks, respectively. By I , be denote the identity matrix. In the following, we
set g = 0 and σ0 = 0. The important parameters and unknowns are given in Table 1.

The fixed stress split iterative method consists in imposing constant volumetric
mean total stress σv . This means that the stress σv = Kdr div uI − α pI is kept
constant at the half-time step.

The iterative process reads as follows:

(
1

M
+ α2

Kdr

)
∂t p

n+1 + div

{K
η

(ρ f g − ∇ pn+1)

}

= − α

Kdr
∂tσ

n
v + f = f − α div ∂tun + α2

Kdr
∂t p

n; (3)

− div {Ge(un+1)} + α∇ pn+1 = 0. (4)

Remark 2 We remark that the fixed stress approach is useful in employing existing
reservoir simulators in that (3) can be extended to treat the mass balance equations
arising in black oil or compositional flows and allows decoupling of multiphase flow
and elasticity.
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Remark 3 Interest in the system (3)–(4) is based on its robust numerical convergence.
Under mild hypothesis on the data, the convergence of the iterations was studied in
Mikelić and Wheeler (2012) and it was proven that the solution operator S, mapping
{un, pn} to {un+1, pn+1} is a contraction on appropriate functional spaces with the
contraction constant γFS = Mα2

Kdr+Mα2 < 1. The corresponding unique fixed point
satisfies equations (1)–(2). Further important recent studies on the fixed-stress scheme
have been undertaken in Both et al. (2017), Castelletto et al. (2015), Gaspar and
Rodrigo (2017). For phase-field fracture, a very detailed computational analysis of the
fixed-stress scheme was performed in Lee et al. (2017a).

Remark 4 We finally notice that the (discretized) Biot equations (without fractures)
form amixed system that is subject to a (discrete) inf-sup condition. Theoretical studies
were undertaken in Murad and Loula (1992, 1994). Various finite element pairs have
been investigated in Ferronato et al. (2010), Liu (2004), Philips and Wheeler (2003).
More recent references can be found in Lee (2016), Rodrigo et al. (2016), Lee et al.
(2017c), Hong and Kraus (2018). Important is the choice of the pressure space, which
should be locally mass conservative, but can be still of lowest order. For these reasons,
fluid-filled phase-field fractures using the entire Biot system have been formulated
either with linear/linear elements for the displacements/pressure (see e.g., Mikelić
et al. 2015a) or linear/enriched-linear elements (Lee et al. 2016a), where an enriched
Galerkin formulation for the pressures ensures local mass conservation.

2.2 Focus on crack propagation in the fixed-stress elasticity step

Because of the complexity of this coupled nonlinear fluid-mechanics system, we fol-
low the above splitting strategy and restrict our attention to a simplified model in
which we assume that the pressure has been computed from the previous fixed-stress
fluid iteration step. Our focus in this paper is therefore on crack propagation in the
framework of the fixed-stress mechanics step (4) and we call this approach a fluid
filled crack with a given pressure.

Remark 5 The extension to the full poroelastic system for crack propagation and there-
fore employing a phase-field formulation of the pressure step (3) is studied in Mikelić
et al. (2015a) and called fluid-filled crack propagation in a poroelastic medium. In
the fixed stress iterative splitting, the pressure is known in the mechanics step and can
be included into the forcing terms. Then we arrive exactly in the situation studied in
the current article.

In the following, we present an incremental formulation of the hydraulic fracture
with a given pressure field surrounded by a poroelastic medium. The mathematical
model involves the coupling of a linear elasticity system with an elliptic variational
inequality for the phase field variable. With this approach, branching of fractures and
heterogeneities in mechanical properties can be effectively treated as demonstrated
numerically in Sect. 6.

Our formulation follows in Miehe et al. (2010) and is a thermodynamically con-
sistent framework for phase-field models of quasi-static crack propagation in elastic
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solids, together with incremental variational principles. The work by Miehe et al.
(2010) is further based on the variational approach to elastic fractures formulated by
Francfort and Marigo (1998); see also Bourdin et al. (2008). Our contribution repre-
sents an extension to a phase-field pressurized fracture model in a poroelastic medium
that we describe in the following in more detail.

Following Griffith’s criterion, we suppose that the crack propagation occurs when
the elastic energy restitution rate reaches its critical value Gc. In the classical setting
the crack C is a lower dimensional manifold and for a traction force τ applied at the
part of the boundary ∂NΩ , then we associate to the crack C the following total energy

E(u, C) =
∫

Ω

1

2
Ge(u) : e(u) dx −

∫
∂NΩ

τu dS −
∫

Ω

α pBdiv u dx + GcH2(C), (5)

where pB is the poroelastic medium pressure calculated in the previous iterative cou-
pling step and α ∈ (0, 1) is the Biot coefficient. In (5), the first three terms stem from
(4) and the last term, GcH2(C) is the surface energy related to the fracture.

This energy functional is then minimized with respect to the kinematically admis-
sible displacements u and any crack set satisfying a crack growth condition. The
computational modeling of this minimization problem treats complex crack topolo-
gies and requires approximation of the crack location and of its length. This was
overcome by regularizing the sharp crack surface topology in the solid by diffusive
crack zones described by a scalar auxiliary variable. This variable is a phase-field that
interpolates between the unbroken and the broken states of thematerial, which is intro-
duced through a time-dependent ϕ (the crack phase field), defined on (0, L)3× (0, T ).
The functional from (5) is regularized using the phase field unknown and the new
crack functional (the last term in (5) divided by Gc) reads

Γε(ϕ) =
∫

(0,L)3

(
1

2ε
(1 − ϕ)2 + ε

2
|∇ϕ|2

)
dx =

∫
(0,L)3

γ (ϕ,∇ϕ) dx, (6)

where γ is the crack surface density per unit volume. This regularization ofH2(C), in
the sense of the Γ −limit when ε → 0, was used in Bourdin et al. (2000).

The model proposed in this paper is a simple extension of the crack functional (6)
that, after the time discretization, can be analyzed both as a minimization problem
and as a variational PDE formulation. For simplicity the presentation of the time dis-
cretized (or the incremental problem) here is based on energy minimization, whereas
our treatment of the corresponding variational formulation can be found in Mikelić
et al. (2013) and the current paper. For the full quasi-static problemwe refer toMikelić
et al. (2015c).

2.3 Energyminimization versus the variational PDE formulation

In the numerical analysis of fracture propagation in solid mechanics, solving the min-
imization problem (Francfort and Marigo 1998; Bourdin et al. 2008) by considering
the variational formulation is for instance treated in Burke et al. (2010). Most other
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Fig. 1 Illustration of our
approach for a 2d situation: a
crack C ⊂ R embedded in a
porous medium (0, L)2. Here,
the dimensions of the crack are
assumed to be much larger than
the pore scale size (black dots)
of the porous medium (color
figure online)

C

Ω

(0, L)2

works also start from the energy level. We base our computational framework on the
variational PDE formulation since more additional realistic physical interfacial effects
(see Fig. 1 andAdachi et al. 2007) and associated dissipative terms and nonlinear phys-
ical models can be employed. Moreover, the Biot system does not correspond to an
energy minimization formulation in u and p, but has a free energy linked to a Lya-
punov functional. For these reasons, the variational PDE formulations allow for more
general settings, with the drawback that only stationary points are computed and not
only the minimizers.

2.4 Literature on hydraulic phase-field fracture modeling

In our knowledge, applying the phase field approach to the simulation of propagation
of pressurized fractures in an elasticmediumwas initiated by the SPE conference paper
(Bourdin et al. 2012). The pressurized fracture was described through a boundary term∫
C p[u · n], with the crack C being a surface and [u · n] the displacement jump across
the crack (see also Remark 7 in Sect. 3.2). The phase field handling of such terms goes
back to the work presented in Chambolle (2004).

In the years Mikelić et al. (2013) and (2014), the first model for pressurized frac-
tures in porous media (including Biot’s coefficient α) was proposed and rigorously
investigated. Here the displacement phase-field system was modeled in a monolithic
framework. Later, a decoupled model was investigated in Mikelić et al. (2015c) for
which a corresponding robust numerical augmented Lagrangian approach was devel-
oped in Wheeler et al. (2014). We also notice the development of a sharp interface
model for pressurized fractures using variational techniques in Almi et al. (2014).
The efficient and robust numerical solution of pressurized phase-field models based
on quasi-monolithic approaches was presented in Heister et al. (2015), Wick et al.
(2015). Based on the first models (Mikelić et al. 2013, 2014) (and also the current
paper), fully monolithic solution techniques for pressurized fractures have been devel-
oped in Wick (2017a, b). For a different treatment of the decoupled model (Mikelić
et al. 2015c), using the discontinuous Galerkin (DG) formulation for the displace-
ments, we refer to Engwer and Schumacher (2017). Various adaptive mesh refinement
schemes for pressurized phase-field fracture, with focus on the crack path or other
quantities of interest, have been proposed in Heister et al. (2015), Lee et al. (2016b),
Wick (2016b).
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The pressurized phase-field method has been then further extended to fluid-filled
fractures in which a Darcy type equation is used for modeling fracture flow (Mikelić
et al. 2015a) and similar studies have appeared simultaneously (Miehe and Mauthe
2016; Miehe et al. 2015; Markert and Heider 2015). A rigorous mathematical analysis
including detailed numerical studies of a fully-coupled fluid geomechanics phase-field
model in porousmediawas first presented inMikelić et al. (2015b).Here, the important
phenomenon of negative pressures at fracture tips was observed. This feature is known
to appear in such configurations, but was not yet quantified using a phase-fieldmethod.
In the year 2016, we note further contributions to fluid-filled phase-field fractures from
Heider and Markert (2017), Lee et al. (2016b). To reduce the computational cost, we
notice that parallel computation frameworks have been implemented in most groups,
e.g., Bourdin et al. (2012), Heister et al. (2015), Miehe et al. (2015), Lee et al. (2016b).
Coupling to other codes and reservoir simulators has been first accomplished in Wick
et al. (2016). However, further research is necessary because the current modeling,
the coupling algorithm, and the treatment of the multi-scale nature of the problem
must be further improved.

Recent results concentrated on the extension to proppant flow (Lee et al. 2016a),
two-phase flow inside the fracture (Lee et al. 2018), single phase-flow for nonlinear
poroelastic media (van Duijn et al. 2018), fractures in partially saturated porous media
(Cajuhi et al. 2017), fracture initialization with probability maps of fracture networks
(Lee et al. 2017b), consequences on further multiphysics coupling of the pressurized
fractures interface law (Wick 2016a), more accurate crack width computations and
computational analysis of fixed-stress splitting (Lee et al. 2017a), a phase-field formu-
lation (in elasticity) with a lower-dimensional lubrication formulation (Santillan et al.
2017), and a multirate analysis in which different time steps for different regimes are
used (Almani et al. 2017).

3 An incremental phase field formulation

We introduce the time-dependent crack phase field ϕ, defined on (0, L)3 × (0, T ).
The regularized crack functional is given by (6). Our further considerations are based
on the fact that the evolution of cracks is fully dissipative in nature. First, the crack
phase field ϕ is intuitively a regularization of 1 − 1C and we impose its negative
evolution

∂tϕ ≤ 0. (7)

3.1 A global constitutive dissipation functional

Next we followMiehe et al. (2010) and Bourdin et al. (2000) and replace the energy (5)
by a global constitutive dissipation functional for a rate independent fracture process.
That is
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Eε(u, ϕ) =
∫

(0,L)3

1

2

(
(1 − k)ϕ2 + k

)
Ge(u) : e(u) dx −

∫
∂NΩ

τu dS

−
∫

(0,L)3
αϕ2 pBdiv u dx + Gc

∫
(0,L)3

(
1

2ε
(1 − ϕ)2 + ε

2
|∇ϕ|2

)
dx . (8)

We remark that ∂NΩ contains both the outer boundary and the fracture boundary.
Moreover, k is a positive regularization parameter for the elastic energy, with k � ε,
e.g., Braides (1998). We notice that k > 0 is necessary for quasi-static phase-field
fracture models in order to avoid a singular discrete system. For dynamic fracture,
k = 0 may be chosen, see e.g., Borden et al. (2012). Due to the presence of the
acceleration term, in the limit ϕ → 0 non-zero respective matrix entries are assured,
removing the degeneracy.

We note that the pressure cross term reads

∫
(0,L)3

αϕ2 pBdiv u dx,

instead of
∫

(0,L)3
αϕ pBdiv u dx .

This is linked to the behavior for negative values of the phase field variable. Moreover,
if ϕ ≤ 0, there should be no contribution. Therefore instead of

∫
(0,L)3

αϕ2 pBdiv u dx,

we use
∫

(0,L)3
αϕ2+ pBdiv u dx .

Using ϕ2+ yields a higher regularity and avoids difficulties in the differentiation since
we need first and second order derivatives for Newton’s method. We notice that for
0 ≤ ϕ ≤ 1, using ϕ2+, instead of ϕ+ in the pressure cross term should not affect the
phase field approximation. If ϕ = 1C , we do not see any difference.

We explain this choice in more detail in the following. In the incremental formu-
lation, the entropy condition ∂tϕ ≤ 0 leads to a condition similar to the obstacle
problem, which guarantees that ϕ ≤ 1. On the contrary, the presence of the pressure
gradient can lead to negative values of the phase field variable. Later in Theorem 2, we
show for the incremental, continuous in space problem that ϕ ≥ 0. For the formulation
which is discretized in space, the approximation for ϕ is not necessarily nonnegative.
It becomes nonnegative only when passing to the space continuous problem. For this
reason, working with ϕ+ is a safeguard choice, which in the end does not modify the
original problem and is numerically stable. There are formulationswith good estimates
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for the time derivatives in which ϕ is nonnegative only in the space–time continuous
formulation, which has been proven in Mikelić et al. (2015c).

In the following, we consider a quasi-static formulation where velocity changes
are small. First, we derive an incremental form, i.e., we replace the time derivative in
inequality (7) with a discretized version; more precisely

∂tϕ → ∂Δtϕ = (ϕ − ϕp)/(Δt),

where Δt > 0 is the time step and ϕp is the phase field from the previous time step.
After time discretization, our quasistatic constrained minimization problem becomes
a stationary problem, called the incremental problem.

3.2 Interface coupling of a pressurized crack with a porousmedium

The crack is filled with a fluid and, consequently, it is pressurized. However, the energy
Eε given by (8) is incomplete though andwe need to include the crack-pressure. To this
end, we work with an internal interface between the fracture and the porous medium
and derive appropriate interface conditions. A general description of a crack embedded
in a porous medium is illustrated in Fig. 1. Here, we consider a setting in which the
complex interface crack/pore structure is simplified. We notice that such a complex
structure would require the solution of a variational problem since the formulation as
energyminimizationmight not be well defined. Furthermore, we assume that the crack
is a 3d thin domain with a width much less than its length, then lubrication theory can
be applied. Hence, the leading order of the stress in C is −p f I .

At the crack boundary, we assume the continuity of the pressures and the continuity
of contact forces:

p f = pB, σn = (Ge(u) − α pB I )n = −p f n, (9)

where p f denotes the fracture fluid pressure and n the normal vector. We recall that
∂Ω consists of ∂C, ∂NΩ\∂C = ∂N (0, L)3 and ∂DΩ = ∂D(0, L)3. The Neumann and
interface boundary parts can be written as ∂NΩ = ∂N (0, L)3 ∪ ∂C. On ∂D(0, L)3 we
set the Dirichlet condition u = 0 and on ∂N (0, L)3, we have σn = τ .

Before introducing the phase field variable, we eliminate the traction crack surface
integrals and obtain

∫
Ω

α pBdiv w dx +
∫

∂C
σnw dS

=
∫

Ω

α pBdiv w dx −
∫

∂C
p f wn dS

=
∫

Ω

α pBdiv w dx −
∫

Ω

div (pBw) dx +
∫

∂N (0,L)3
pBwn dS

=
∫

Ω

(α − 1)pBdiv w dx −
∫

Ω

∇ pBw dx +
∫

∂N (0,L)3
pBwn dS, (10)
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wherew·n denotes the normal component of the vector functionw, where n is oriented
towards interior of C.

Remark 6 To date, inmost studies dealing with pressurized fractures, the outer domain
boundary conditions are of homogeneous Dirichlet type. Here, the test function w
cancels

∫
∂N (0,L)3

pBwn dS. However, this last integral is important when Neumann
boundary conditions are prescribed, where the test function w does not vanish. We
present such a case in Sect. 6.2.

In the above calculations, surface integrals are now treated with Gauss’ divergence
theorem:

−
∫

∂N (0,L)3
τw dS +

∫
∂C

pwn dS −
∫

Ω

α p div w dx

= −
∫

Ω

(α − 1)p div w dx +
∫

Ω

∇ pw dx −
∫

Ω

div (T w) dx

= −
∫

Ω

(α − 1)p div w dx +
∫

Ω

(∇ p − div T )w dx −
∫

Ω

T : e(w) dx, (11)

where T is a smooth symmetric 3×3 matrix with compact support in a neighborhood
of ∂(0, L)3, such that T n = τ + pn on ∂N (0, L)3. The tensor T is introduced in order
to handle the phase field only in volume terms. Assuming that the crack C does not
interact with ∂NΩ , it can be eliminated by using Green’s formula. Hence the solution
does not depend on the choice of T . We set

F = −(α − 1)pI − T , f = ∇ p − div T . (12)

In the case of ∂NΩ = ∅, we have T ≡ 0. Then, the terms in (12) for F and f reduce
to F = −(α − 1)pI and f = ∇ p.

After the above transformation and after taking σ0 = 0 and neglecting the gravity
term ρbg, the weak formulation of problem (1) reads as follows

0 =
∫

Ω

σ por : e(w) dx −
∫

∂NΩ

τ · w dS

=
∫

Ω

Ge(u) : e(w) dx −
∫

Ω

(α − 1)p div w dx +
∫

Ω

∇ p · w dx

−
∫

∂NΩ\∂C
(τ + pn) · w dS

=
∫

Ω

Ge(u) : e(w) dx +
∫

Ω

(F : e(w) + f · w) dx (13)

for all w ∈ {w ∈ H1(Ω)3| w = 0 on ∂DΩ}. To the variational equation (13) corre-
sponds the following variant of the energy functional (8):
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Ẽε(u, ϕ) =
∫

(0,L)3

1

2

(
(1 − k)ϕ2 + k

)
Ge(u) : e(u) dx

+
∫

(0,L)3
ϕ2(F : e(u) + f · u) dx

+ Gc

∫
(0,L)3

(
1

2ε
(1 − ϕ)2 + ε

2
|∇ϕ|2

)
dx . (14)

Remark 7 We note that introduction of the phase field approximation of the pressured
fracture in this section was introduced, differs from Bourdin et al. (2012). In fact, the
presence of the term

∫
Ω

pu · ∇ϕ dx must be treated carefully numerically and we
have derived therefore a different phase field energy functional. The Γ −limit of our
formulation was calculated for a particular one dimensional setting in Engwer and
Schumacher (2017), which leads to the same formulation for the lower dimensional
fracture as in Bourdin et al. (2012).

Remark 8 We emphasize that the previous choice pB = p f on the fracture boundary
is one possible modeling choice. It may be justified to assume that p f � pB such
that a discontinuous pressure could be more appropriate. Such a modeling is left for
future studies.

Remark 9 In the fixed stress splitting F and f depend on the pressure. For details we
refer the reader to Mikelić et al. (2015b).

3.3 The final energy functional

In the case of elastic cracks it can be shown that the phase field unknown satisfies
0 ≤ ϕ ≤ 1. In order to establish this property for the spatially continuous incremental
problem, we first modify (14) for negative values of ϕ. As previously discussed, we
now use ϕ+ instead of ϕ in terms where negative ϕ could lead to incorrect physics in
the bulk energy, traction and pressure forces. With this modification, the final energy
functional reads

Eε(u, ϕ) =
∫

(0,L)3

1

2

(
(1 − k)ϕ2+ + k

)
Ge(u) : e(u) dx

+
∫

(0,L)3
ϕ2+(F : e(u) + f · u) dx

+ Gc

∫
(0,L)3

(
1

2ε
(1 − ϕ)2 + ε

2
|∇ϕ|2

)
dx . (15)

As functional space of admissible displacements, we choose

VU = {z ∈ H1((0, L)3)3 | z = 0 on ∂DΩ}.

The entropy condition (7) is imposed in its discretized form and we introduce a convex
set K :

K = {ψ ∈ H1((0, L)3) | ψ ≤ ϕp ≤ 1 a.e. on (0, L)3}, (16)

123



2 Page 14 of 33 GEM - International Journal on Geomathematics (2019) 10 :2

whereϕp(x) is the value of the phase field from the previous time step. The incremental
minimization problem now reads:

Definition 1 Find u ∈ VU and a nonnegative ϕ ∈ K such that

Eε(u, ϕ) = min{v,ψ}∈VU×K
Eε(v, ψ). (17)

Note that the value of the phase field unknown ϕ from the previous time step enters
only the convex set K , as the obstacle ϕp. The goal of Sect. 4 is to establish a solution
to the minimization problem (17).

3.4 The Euler–Lagrange equations in strong form

From the energy functional, we obtain by differentiation and application of the funda-
mental lemma of calculus of variations the strong formulation: Find u : (0, L)3 → R

3

and ϕ : (0, L)3 → R such that

− div
((

(1 − k)ϕ2+ + k
)
Ge(u)

)
+ ϕ2+f − div (ϕ2+F) = 0 in (0, L)3, (18)

u = 0 on ∂D(0, L)3, (19)(
(1 − k)ϕ2+ + k

)
Ge(u)n = −ϕ2+Fn on ∂N (0, L)3, (20)

and

∂Δtϕ ≤ 0 on (0, L)3 and
∂ϕ

∂n
= 0 on ∂(0, L)3, (21)

−GcεΔϕ − Gc

ε
(1 − ϕ) + (1 − k)Ge(u) : e(u)ϕ+

+2ϕ+(F : e(u) + f · u) ≤ 0 in (0, L)3, (22){
−GcεΔϕ − Gc

ε
(1 − ϕ) + (1 − k)Ge(u) : e(u)ϕ+

+2ϕ+(F : e(u) + f · u)

}
∂Δtϕ = 0 in (0, L)3, (23)

where (23) is the strong form of Rice’ condition (which is a well-known comple-
mentarity condition). This two-field formulation can be compared with the Model I
formulation given in Miehe et al. (2010) (see p. 1289). The main difference is that the
system (18)–(23) is a variational inequality; and in Miehe et al. (2010) a penalization
term is used for solving the inequality.
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4 Well-posedness of themodel

4.1 Existence of aminimizer to the energy functional E"

In this section, we seek for a solution to the minimization problem (17). The strategy
is to consider the integrand of (15), using the notation z := (v, ϕ), and ξ stands for
the components of the gradient of the displacements and the gradient of the phase-
field function. With z4, we access the fourth component of z, namely the phase-field
function. Lastly, z4+ denotes the positive part of the phase-field unknown. Then,

g(x, z, ξ) = 1

2

(
(1 − k)(inf{z4+, 1})2 + k

) 3∑
i, j,k,r=1

Gi jkrξkrξi j + Gc(
1

2ε
(1 − z4)

2

+ε

2
|∇z4|2) + (inf{z4+, 1})2

⎛
⎝ 3∑

i, j=1

Fi jξi j +
3∑

i=1

fi zi

⎞
⎠ , (24)

defined on (0, L)3 ×R
4 ×R

12 → R∪ {+∞}. It is convex in ξ and we will prove that
it is

(i) a Caratheodory function (i.e. a continuous function onR4×R
12 for every x from

(0, L)3 and a measurable function on (0, L)3 for every {z, ξ} from R
4 × R

12);
(ii) the energy functional (15) is coercive.

Then Corollary 3.24, p. 97, from Dacorogna’s monograph (2008) yields the lower
semi-continuity of the energy functional. Proving existence of at least one point of
minimum is then a classical task.

We start with a result which follows directly from the basic theory:

Lemma 1 Let f and F ∈ L2; and Gc, b be nonnegative constants. Let ε be a positive
small parameter. Then the integrand g(·, ·, ·) given by (24) is a Caratheodory function.
Proposition 1 Under the assumptions of Lemma 1, the functional

Φ(v, ϕ) =
∫

(0,L)3
g(x, {v, ϕ}, {e(v),∇ϕ}) dx (25)

is coercive over VU × H1((0, L)3) ∩ K, i.e.

limΦ(v, ϕ) → ∞, when ||v||VU + ||ϕ||H1 → ∞. (26)

Proof Let us introduce the abbreviation ϕ̃ = inf{ϕ+, 1}. Let c be a generic constant.
We estimate all terms one by one:

∣∣∣∣
∫

(0,L)3
(ϕ̃)2(fv + F : e(v) dx

∣∣∣∣ ≤ ||v||L2 ||f ||L2 + ||ϕ̃e(v)||L2 ||F ||L2 . (27)
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The elastic energy terms yield

∫
(0,L)3

(
(1 − k)(ϕ̃)2 + k

)
Ge(v) : e(v) dx ≥ ck||e(v)||2L2 + c(1 − k)||ϕ̃e(v)||2L2 . (28)

We recall that, by Korn’s inequality,

||v||H1((0,L)3) ≤ CK ||e(v)||L2((0,L)3), ∀v ∈ VU . (29)

Therefore, putting together (27) and (28), and using (29), yields

Φ(v, ϕ) ≥ Gc

∫
(0,L)3

(
(1 − ϕ)2

2ε
+ ε|∇ϕ|2

)
dx + ck

4
||e(v)||2L2

+c(1 − k)

4
||ϕ̃e(v)||2L2 − ||F ||2

L2

c(1 − k)
− C2

K ||f ||2
L2

ck
. (30)

The coerciveness property (26) follows from (30). ��
Our goal is to prove the following theorem:

Theorem 1 (Existence of a minimizer to the incremental phase field problem) Let
ε, k > 0 and F , f ∈ L2, ϕp ∈ H1, 0 ≤ ϕp ≤ 1 a.e. on (0, L)3. Then the minimization
problem (17) has at least one solution {u, ϕ} ∈ VU × K and ϕ ≥ 0 a.e. on (0, L)3.

Proof Let {uk, ϕk}k∈N ∈ VU × K be a minimizing sequence for the minimization
problem (17) for Φ; that is a sequence of elements of VU × K such that Φ(uk, ϕk) →
infVU×K Φ(v, ϕ). By proposition (1) and the inequality (30) infVU×K Φ(v, ϕ) �= −∞.
The sequence {uk, ϕk}k∈N is uniformly bounded in VU ×K and {ϕk+}k∈N is uniformly
bounded in L∞((0, L)3). Therefore there exists {u, ϕ} and a subsequence, denoted by
the same superscript, such that for k → ∞

{uk, ϕk} → {u, ϕ} weakly in VU × H1((0, L)3),

strongly in Lq((0, L)3)4, q < 6,

and a.e. on (0, L)3. (31)

Next, inequality (30) yields

g(x, v, ξ) ≥ 〈a(x), ξ 〉 + B, for {v, ξ} ∈ R
4 × R

12 and a.e. x ∈ (0, L)3,

witha ∈ L2((0, L)3) and B ∈ R. Consequently,we are in a situation to applyCorollary
3.24, p. 97, from Dacorogna (2008). This result yields the weak lower semicontinuity
of the functional Φ and hence

Φ(u, ϕ) ≤ lim inf Φ(uk, ϕk) = inf
VU×K

Φ(v, ϕ). (32)
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Since

Φ(v, ψ) = Eε(v, ψ) on Vu × K ,

we have proven that {u, ϕ} ∈ VU ×H1((0, L)3)∩K is a solution for the minimization
problem.

It remains to prove that ϕ is nonnegative. We evaluate the functional Φ at the point
{u, ϕ+}. Obviously ϕ+ ∈ K . A direct calculation yields

Φ(u, ϕ+) = Φ(u, ϕ) − Gc

2ε

∫
(0,L)3

ϕ−(ϕ− − 2) dx − εGC

2

∫
(0,L)3

|∇ϕ−|2 dx . (33)

Therefore {u, ϕ} can be a point of minimum only if ϕ− = 0 and we conclude that
ϕ ≥ 0 a.e. on (0, L)3. ��
Corollary 1 (Euler–Lagrange weak PDE formulation) Let the hypotheses of Theorem
1 be satisfied. Then the Euler–Lagrange equations corresponding to the minimization
problem (17)∫

(0,L)3

(
(1 − k)ϕ2 + k

)
Ge(u) : e(w) dx +

∫

(0,L)3

ϕ2(F : e(w) + f · w) dx = 0, (34)

for all w ∈ VU , and∫

(0,L)3

(1 − k)ϕψGe(u) : e(u) dx + Gc

∫

(0,L)3

(
−1

ε
(1 − ϕ)ψ + ε∇ϕ · ∇ψ

)
dx

+2
∫

(0,L)3
ϕ(f · u + F : e(u))ψ dx ≤ 0, (35)

for all ψ ∈ H1((0, L)3), ψ ≥ 0 a.e. on (0, L)3, and
∫

(0,L)3

(1 − k)ϕ(ϕp − ϕ)Ge(u) : e(u) dx + Gc

∫

(0,L)3

(
−1

ε
(1 − ϕ)(ϕp − ϕ)

+ε∇ϕ · ∇(ϕp − ϕ)
)
dx + 2

∫

(0,L)3

ϕ(f · u + F : e(u))(ϕp − ϕ) dx = 0, (36)

admit a solution {u, ϕ} ∈ VU × H1((0, L)3) ∩ K, such that ϕ ≥ 0 a.e. on (0, L)3. We
observe that equation (36) is the Rice condition (see e.g. Francfort 2011).

In the next result, we show that our crack cannot become a ‘fat’ (balloon-like) crack,
but remains tiny in the third direction:

Corollary 2 Let the hypotheses of Theorem 1 be satisfied. Let in addition the previous
phase-field values ϕp satisfy
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∫
(0,L)3

(1 − ϕp)
2 dx = ||1 − ϕp||2L2((0,L)3)

= Cε

and

‖√ε∇ϕp‖L2((0,L)3) ≤ C .

Then the current phase-field variable ϕ satisfy the same estimates:

∫
(0,L)3

(1 − ϕ)2 dx = ||1 − ϕ||2L2((0,L)3)
= Cε

and

∫
{ϕ≤q}

dx = meas{ϕ ≤ q} ≤ Cε

(1 − q)2
∀q ∈ [0, 1).

Proof We evaluate

Φ(0, ϕp) = Gc

∫
(0,L)3

(
1

2ε
(1 − ϕp)

2 + ε|∇ϕp|2
)

= Gcε

∫
(0,L)3

|∇ϕp|2
︸ ︷︷ ︸

≤c

+Gc

2ε

∫
((0,L)3)

(1 − ϕp)
2 dx

≤ C .

Since Φ(u, ϕ) ≤ Φ(0, ϕp) we use (30) and obtain the claimed estimates. ��
Remark 10 This theoretical property in Corollary 2 has also been confirmed in our
numerical simulations in Sect. 6 in which the crack stays tiny in the second (2d) or
third direction (3d), but grows into the other (2d) or two other (3d) directions.

4.2 A finite dimensional approximation

The finite dimensional approximation serves for two purposes. First, we continue our
well-posedness study. Secondly, by specifying the discrete basis function throughfinite
element functions with small support, we obtain a numerical procedure for a computer
implementation. Let {ψr }r∈N be a basis for H1((0, L)3) and {wr }r∈N be a basis for VU .
We start by defining a finite dimensional approximation to the minimization problem
(17).

Definition 2 (of a penalized approximation)
Let us suppose the assumptions of Theorem 1 and a penalization parameter δ ∈ R

and in particular, let δ := M ∈ N in this section. Let ϕ̃ = inf{1, ϕ+}. The pair

123



GEM - International Journal on Geomathematics (2019) 10 :2 Page 19 of 33 2

{uM , ϕM }, uM = ∑M
r=1 arw

r and ϕM = ∑M
r=1 brψr , is a finite dimensional approx-

imative solution for problem (17) if it is a minimizer to the problem

inf
V M
U ×WM

{
Φ(v, ϕ) +

∫
(0,L)3

δ

2
(ϕ − ϕM

p )2+ dx

}
, (37)

where V M
U = span {wr }r=1,...,M , WM = span {ψr }r=1,...,M and ϕM

p is a projection of
ϕp on WM .

Formulation 1 (Discrete weak formulation) Each solution for the problem (37) satis-
fies the discrete variational formulation

∫
(0,L)3

(
(1 − k)(ϕ̃M )2 + k

)
Ge(uM ) : e(wr ) dx

+
∫

(0,L)3
(ϕ̃M )2(F : e(wr ) + fwr ) dx = 0, ∀r = 1, . . . , M, (38)

Gc

∫
(0,L)3

(
−1

ε
(1 − ϕM )ψr + ε∇ϕM · ∇ψr

)
dx +

∫
(0,L)3

δ(ϕM − ϕM
p )+ψr dx

+2
∫

(0,L)3
(ϕ̃M )(F : e(uM ) + f · uM )ψr dx

+
∫

(0,L)3
(1 − k)ϕ̃MψrGe(uM ) : e(uM ) dx = 0, ∀ r = 1, . . . , M . (39)

Proposition 2 We assume the hypotheses of Theorem 1. Then there exists a penalized
finite dimensional approximation for problem (37) that satisfies the a priori estimate

Gc

∫
(0,L)3

(1 − ϕM )2

ε
dx +

∫
(0,L)3

M(ϕM − ϕM
p )2+ dx

+k||e(uM )||2L2 + ||ϕ̃Me(uM )||2L2 ≤ c, (40)

where c is independent of M.

Proof This is a consequence of (30) in Proposition (1) and the continuity of the inte-
grand. ��
Theorem 2 Assume the hypotheses of Theorem 1. Then there exists a subsequence of
{uM , ϕM } ∈ V M

U ×WM,denotedby the same symbol, and {u, ϕ} ∈ VU×H1((0, L)3)∩
K, ϕ ≥ 0 a.e., being a minimizer to the problem (17) and such that

{uM , ϕM } → {u, ϕ} in VU × H1((0, L)3). (41)

Proof By Proposition 2 there is a solution {uM , ϕM } for problem (37), satisfying the
a priori estimate (40). Therefore there exists {u, ϕ} and a subsequence, denoted by the
same superscript, such that
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{uM , ϕM } → {u, ϕ} weakly in VU × H1((0, L)3),

strongly in Lq((0, L)3)4, q < 6,

and a.e. on (0, L)3, as M → ∞. (42)

Obviously (ϕM − ϕM
p )+ → 0, as M → ∞, and ϕ ∈ K .

Next, let

ϕ ∈ K N = {z ∈ WN : z(x) ≤ ϕM
p (x) a.e. on (0, L)3}, N ≤ M .

Then we have

Φ(uM , ϕM ) +
∫

(0,L)3

M

2
(ϕM − ϕM

p )2+ dx ≤ Φ(v, ϕ),

for all {v, ϕ} ∈ V N
U × WN ∩ K . The limit M → ∞ yields

Φ(u, ϕ) ≤ Φ(v, ϕ), ∀{v, ϕ} ∈ V N
U × WN ∩ K .

After passing to the limit N → ∞, we conclude that {u, ϕ} ∈ VU × H1((0, L)3)∩ K
is a solution to problem (17). As before, it still can be shown that ϕ is nonnegative.

It remains to establish strong convergence of the gradients. Passing to the limit in
equation (38) is straightforward and we conclude that {u, ϕ} satisfies equation (34).
Next we choosew = uM as test function in (38) and pass to the limit M → ∞. Thus,

∫
(0,L)3

(
(1 − k)(ϕ+)2 + k

)
Ge(u) : e(u) dx

+
∫

(0,L)3
(ϕ+)2(F : e(u) + f · u) dx = 0. (43)

Therefore we have the convergence of the weighted elastic energies

lim
M→∞

∫
(0,L)3

(
(1 − k)(ϕ̃M )2 + k

)
Ge(uM ) : e(uM ) dx

=
∫

(0,L)3

(
(1 − k)(ϕ+)2 + k

)
Ge(u) : e(u) dx . (44)

Using Fatou’s lemma we have

∫
(0,L)3

lim inf
M→∞

(
(1 − k)(ϕ̃M )2 + k

)
Ge(uM ) : e(uM ) dx

≤ lim inf
M→∞

∫
(0,L)3

(
(1 − k)(ϕ̃M )2 + k

)
Ge(uM ) : e(uM ) dx

=
∫

(0,L)3

(
(1 − k)(ϕ+)2 + k

)
Ge(u) : e(u) dx . (45)

123



GEM - International Journal on Geomathematics (2019) 10 :2 Page 21 of 33 2

Consequently

uM → u strongly in VU , as M → ∞. (46)

For every ψ ∈ L∞((0, L)3) ∩ H1((0, L)3), (46) implies

lim
M→∞ |

∫
(0,L)3

ϕ̃MψGe(uM − u) : e(uM − u) dx | → 0, as M → ∞,

and

∫
(0,L)3

ϕ̃MψGe(uM ) : e(uM ) dx =
∫

(0,L)3
ϕ̃MψGe(uM − u) : e(uM − u) dx

+2
∫

(0,L)3
ϕ̃MψGe(uM ) : e(u) dx −

∫
(0,L)3

ϕ̃MψGe(u) : e(u) dx

→
∫

(0,L)3
ϕ+ψGe(u) : e(u) dx, as M → ∞. (47)

Next we use Minty’s lemma and write equation (39) in the equivalent form

∫
(0,L)3

(1 − k) inf{ϕM+ , 1}(ψ − ϕM )Ge(uM ) : e(uM ) dx

+Gc

∫
(0,L)3

(
(ψ − 1)

ε
(ψ − ϕM )

+ε∇ψ · ∇(ψ − ϕM )
)
dx

+2
∫

(0,L)3
(inf{ϕM+ , 1}) (f · uM + F : e(uM ))(ψ − ϕM )dx

+
∫

(0,L)3
M(ψ − ϕM

p )+(ψ − ϕM ) dx ≥ 0, ∀ ψ ∈ WM . (48)

After taking ψ = ϕM
p , we use the convergence (47) pass to the limit M → ∞ (see e.

g. Kinderlehrer and Stampacchia 2000), and obtain

lim
M→∞Gc

∫
(0,L)3

ε|∇ϕM |2 dx = −
∫

(0,L)3
(1 − k)ϕ(ϕ − ϕp)Ge(u) : e(u) dx

+
∫

(0,L)3

(
Gc

ε
(1 − ϕp)(ϕ − ϕp) − Gc

ε
(ϕ − ϕp)

2 + ε∇ϕ · ∇ϕp

)
dx

−2
∫

(0,L)3
ϕ+ (f · u + F : e(u))(ϕ − ϕp) dx = Gc

∫
(0,L)3

ε|∇ϕ|2 dx . (49)

This finishes the proof. ��
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5 Numerical approximation

We now formulate finite element approximations to (35)–(34), which are analogous
to equations (38)–(39). For spatial discretization, we apply a standard Galerkin finite
element method on quadrilaterals (2d) and hexahedra (3d), respectively. Specifically,
we approximate displacements by continuous bilinears (2d) or trilinears (3d) and refer
to the finite element space as Vh . Also, we take ϕ to be bilinears (2d) and trilinears (3d),
and denote this space as Wh ; see e.g. Ciarlet (1987). Here h represents the standard
approximation parameter. We deal with:

Formulation 2 (Weak form) Find {uh, ϕh} ∈ Vh × Wh such that

∫
(0,L)3

(
(1 − k)(ϕ̃h)2 + k

)
Ge(uh) : e(w) dx

+
∫

(0,L)3
(ϕ̃h)2(F : e(w) + f · w) dx = 0 ∀w ∈ Vh, (50)

Gc

∫
(0,L)3

(
−1

ε
(1 − ϕh)ψ + ε∇ϕh · ∇ψ

)
dx +

∫
(0,L)3

δ(∂Δtϕ
h)+ψ dx

+2
∫

(0,L)3
(ϕ̃h)(F : e(uh) + f · uh)ψ dx

+
∫

(0,L)3
(1 − k)ϕ̃hψGe(uh) : e(uh) dx = 0 ∀ ψ ∈ Wh . (51)

The incremental formulation (50)–(51) corresponds to the (pseudo-) time stepping
scheme based on a difference quotient approximation with backward differences for
the time derivatives. In the quasi-static model the time derivative δ[∂tϕ]+ is present
and is discretized as follows

δ[∂tϕ]+ → δ[∂Δtϕ]+ = δ
[ϕ − ϕn−1]+

Δt
,

with the time step size Δt , where n − 1 is used to indicate the preceding time step.
We then obtain for the weak form:

δ(ϕ+ − ϕn−1+ , ψ)L2 + Δt(B, ψ)L2 = 0, ∀ψ ∈ Wh . (52)

Here, (·, ·) denotes the discrete scalar product in L2 and A and B denote the operators
of all remaining terms for the present time step in the weak formulation, where the
equation (52) is related to equations (50) and (51). Finally, the spatially discretized
semi-linear form can be written in the following way:

Finite Element Formulation 1 Find Uh := {uh, ϕh} ∈ Vh × Wh such that:

A(Uh)(�) = δ([ϕh − ϕh,n−1]+, ψ)L2 + Δt AS(Uh)(�) = 0,
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with

AS(Uh)(�) =
(
((1 − k)(inf{ϕh+, 1})2 + k)Ge(uh), e(w)

)
L2

− 〈τ,w〉∂NΩ

− ((inf{ϕh+, 1})2(α − 1)pB,∇ · w)L2 + (∇ pB(inf{ϕh+, 1})2,w)L2

+
(
(1 − k)Ge(uh) : e(uh)(inf{ϕh+, 1}), ψ

)
L2

− Gc

ε
(1 − ϕh, ψ)L2

+ Gcε(∇ϕh,∇ψ)L2 − 2
(
(inf{ϕh+, 1})

(
(α − 1)pB∇ · uh − ∇ pB · uh

)
, ψ

)
L2

for all � = {w, ψ} ∈ Vh × Wh, where AS(·)(·) is the sum of equations (50) and (51)
and equality (11) is applied in the relation between τ and T .

5.1 Linearization and Newton’s method

The nonlinear problem is solved with Newton’s method. For the iteration steps m =
0, 1, 2, . . ., it holds:

A′(Uh,m)(�Uh,�) = −A(Uh,m)(�), Uh,m+1 = Uh,m + λ�Uh, (53)

with �Uh = {�Uh,Δϕh}, and a line search parameter λ ∈ (0, 1]. Here, we need the
(approximated) Jacobian of Finite Element Formulation 1 (defined without using the
subscript h):

A′(U)(�U,�) = δ(Δ[ϕ − ϕn−1]+, ψ)L2 + Δt A′
S(U)(�U,�),

with

A′
S(U)(�U,�)=

(
2(1 − k) inf{ϕ+, 1}H(1 − ϕ)ΔϕGe(u) + ((1 − k)(inf{ϕ+, 1})2

+k)Ge(Δu), e(w)
)
L2

− (2(inf{ϕ+, 1})H(1 − ϕ)Δϕ(α − 1)pB,∇ · w)L2

+(2(inf{ϕ+, 1})H(1 − ϕ)Δϕ∇ pB,w)L2 + (2(1 − k)Ge(u) : e(Δu) inf{ϕ+, 1}
+(1 − k)Ge(u) : e(u)H(1 − ϕ)Δϕ,ψ)L2 +Gc

ε
(Δϕ,ψ)L2 + Gcε(∇Δϕ,∇ψ)L2

−(α − 1)2(pB(H(1 − ϕ)Δϕ∇ · u + (inf{ϕ+, 1})∇ · Δu), ψ)L2

+2 (∇ pB · (H(1 − ϕ)Δϕu + (inf{ϕ+, 1})Δu), ψ)L2 ,

for all � = {w, ψ} ∈ Vh × Wh . Here, H(·) is Heaviside’s function.
Remark 11 The realization of (53) is based on a modified Newton method with
dynamic Jacobian modification developed inWick (2017b), where the terms related to
the nonconvex parts (i.e., in the displacement equation) are scaled accordingly. Other
monolithic solvers worthy to mention are Gerasimov and Lorenzis (2016) and Wick
(2017a) in which line-search assisted or error-oriented Newton methods were devel-
oped, respectively. Alternatively, a robust and efficient technique is to replace ϕh in
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the elasticity equation by a time-lagged extrapolated ϕh , which has been demonstrated
computationally to provide a robust and stable numerical scheme Heister et al. (2015)
(2d) and Lee et al. (2016b) (3d).

6 Numerical tests

Weperform four numerical tests. The first test assumes a constant pressure pB = 10−3

that acts in the pressure [Sneddon’s 2d benchmark (Sneddon and Lowengrub 1969)].
The second example considers again Sneddon’s 2d benchmark, but with Neumann
conditions on the bottom and top boundaries. In the third example, we study two
interacting propagating fractures subject to a nonconstant pressure. In the fourth test,
we address Sneddon’s 3d benchmark in which a penny-shaped fracture is subject to
a constant pressure, again pB = 10−3. The programming code is based on the finite
element software deal.II (see Arndt et al. 2017; Bangerth et al. 2007) and the
underlying monolithic numerical treatment is described in detail in Wick (2017a, b).

6.1 Constant pressure in a crack (Sneddons’s 2d benchmark)

The first example is motivated by Bourdin et al. (2012), Wheeler et al. (2014) and is
based on Sneddon’s theoretical calculations (1969, 1946). Specifically, we consider a
2d problem where a (constant) pressure pB is used to drive the deformation and crack
propagation. We assume a dimensionless form of the equations.

The configuration is displayed in Fig. 2. We prescribe the initial crack implicitly
(see e.g. Borden et al. 2012 and specifically for this setting Wheeler et al. 2014).
Therefore, we deal with the following geometric data: Ω = (0, 4)2 and a (prescribed)
initial crack with length 2l0 = 0.4 on ΩC = (1.8, 2.2) × (2 − h, 2 − h) ⊂ Ω where
h is the local mesh size. Thus, we deal with a 2d crack with a length much larger than
its width. As boundary conditions we set the displacements zero on ∂Ω . The test is

Fig. 2 Example 1: Configuration (left) and crack pattern (right)
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Fig. 3 Example 1: COD for
different h. Sneddon’s turquoise
line with squares corresponds to
his analytical solution. It is well
observed that the crack tips must
be resolved correctly as they are
not well approximated on coarse
meshes (color figure online)
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stationary, but we perform two (pseudo) time steps in order to account for the crack
irreversibility condition.

Applying the theory of Γ -convergence based on a related finite element analysis
in Bourdin (1999), we choose h � k � ε, i.e., k = 0.25

√
h and ε = 0.5

√
h.

Furthermore, it is well-known that δ must depend on h, i.e., here, we choose δ =
100 × h−2. The Biot coefficient and critical energy release rate are chosen as α = 0
and Gc = 1.0, respectively. The mechanical parameters are Young’s modulus and
Poisson’s ratio are set to be E = 1.0 and νs = 0.2. The applied fracture pressure is
pB = 10−3.

The goal is tomeasure the crack opening displacement (COD) and the volume of the
crack under spatial mesh refinement. To this end, we observe u alongΩC . Specifically,
the width is determined as the jump of the normal displacements COD := w :=
w(x, y) = [u · n]. This expression can be written in integral form as follows:

COD := w := w(x, y) =
∫ ∞

−∞
u · ∇ϕ dy. (54)

We note that the integration is perpendicular to the crack direction. Here, the crack is
aligned with the x-axis and therefore integration into the normal direction coincides
with the y-direction.

The COD formula (54) is obvious since the phase-field variable ϕ can be related to a
level-set function. This level-set can be used to compute the (unit) normal vector, e.g.,
Nguyen et al. (2016), Lee et al. (2017a). Here, the normal vector is in the y-direction
and therefore, the above formula is obtained corresponding to [u · n] for ε = 0.

Second, following (Dean and Schmidt 2014, p. 710), the volume of the fracture is
V = πwl0. The analytical expression for the width (to which we compare) Dean and

Schmidt (2014) is w = 4 (1−ν2s )l0 p
E . Then, the analytical expression for the volume

becomes

V = 2π
(1 − ν2s )l

2
0 p

E
. (55)

In contrast to Bourdin et al. (2012), we use the numerical approximation of the phase-
field function instead of a synthetic choice of the crack indicator function.

123



2 Page 26 of 33 GEM - International Journal on Geomathematics (2019) 10 :2

Table 2 Example 1: Fracture volume

h 8.8 × 10−2 4.4 × 10−2 2.2 × 10−2 1.1 × 10−2 Exact

V 3.02 × 10−4 2.77 × 10−4 2.57 × 10−4 2.49 × 10−4 2.41 × 10−4

The exact formula is given in (55)

Fig. 4 Example 2: phase-field function for Case 1 and Case 2 at left and the Cases 3 and 4 at right

The crack pattern and the corresponding mesh are displayed in Fig. 2. Our findings
for different spatial mesh parameters h are summarized in Fig. 3. Specifically, we
observe overall convergence to Sneddon’s analytical solution (Sneddon and Lowen-
grub 1969) as well as much better approximation of the crack tips under local mesh
refinement. The obtained crack volumes are displayed in Table 2 in which the exact
value is computed by Formula (55).

6.2 Sneddon’s 2d-benchmark withmixed boundary conditions

In this second test, the domain and parameters are the same as in the previous example.
The only (major) change concerns the boundary conditions. The top Γtop and bottom
Γbottom boundaries form now a Neumann boundary ∂N (0, L)2 = Γtop ∪ Γbottom .
Here, we prescribe Neumann conditions τ of homogeneous and nonhomogeneous
type. Then, we compare these results to the previous setting. In total we design the
following tests:

– Case 1: ∂N (0, L)2 = ∅ and u = 0 on ∂D(0, L)2;
– Case 2: τ = (0, 0)T on ∂N (0, L)2 and u = 0 on ∂D(0, L)2;
– Case 3: τ = (0, 0.001)T on Γtop, τ = (0,−0.001)T on Γbottom

and u = 0 on ∂D(0, L)2;
– Case 4: τ = (0, 0.1)T on Γtop, τ = (0,−0.1)T on Γbottom

and u = 0 on ∂D(0, L)2.

These computations are performed on a 7 times uniformly refined mesh with h =
0.044. The phase-field function is displayed in Fig. 4.

The maximal crack width openings wmax at x = 2 computed with the help of (54)
in the middle of the fracture are:
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Fig. 5 Example 2: the y-displacements for all four cases

– Case 1: wmax (x = 2; 0 ≤ y ≤ 4) = 5.25244 × 10−4;
– Case 2: wmax (x = 2; 0 ≤ y ≤ 4) = 5.52572 × 10−4;
– Case 3: wmax (x = 2; 0 ≤ y ≤ 4) = 1.31092 × 10−3;
– Case 4: wmax (x = 2; 0 ≤ y ≤ 4) = 7.67588 × 10−2.

These findings are plausible: in Case 2 zero traction forces are applied on the top and
the bottom boundaries and the fracture pressure keeps the fracture open. In addition,
the maximal crack opening displacement is very similar (as expected) to Case 1. We
further remark that the pressure boundary term

∫
∂N (0,L)2

pBwn dS in (10) is important
when working with Neumann conditions. For instance, when

∫
∂N (0,L)2

pBwn dS is
not used in Case 2, we obtain a negative width, which is of course nonphysical for
this setting. The influence is significant for all cases when ‖τ‖ < ‖pn‖ (Case 2) and
‖τ‖ ≈ ‖pn‖ (Case 3). In the Cases 3 and 4, the domain is pulled, since now the
traction forces are strictly positive/negative, respectively. Consequently the fracture
opensmore than in the first two cases. Specifically, when the traction force is increased
by a magnitude of order 2, the fracture width is also higher about a magnitude of order
2. The y-displacement fields (here directly to the crack opening displacements since
the fracture is aligned with the x-axis) are displayed in Fig. 5.
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Fig. 6 Example 3: crack evolution in red in a homogeneous material at times T = 0, 15, 30 (color figure
online)

Fig. 7 Example 3: crack evolution in red in a heterogeneous material at times T = 30, 40, 50. The light
blue regions denote smooth material E ≈ 1 and dark blue stands for E ≈ 11.0 (color figure online)

6.3 Two-crack interaction subject to non-constant pressure

In this third example, we extend the previous setting to study the interaction of two
different fractures that are subject to a linearly increasing pressure pB . In the first part,
a homogeneous material is considered and in the second part a heterogenous material
field. The pressure function is given by pB(t) = 0.1+ t ·0.1,where t denotes the total
time, and Young’s modulus is set to be E = 1 in the first part and it varies between 1.1
and 11.0 in the second part. Poisson ratio is 0.2. The penalization parameter is chosen
as δ = 10h−2. The remaining parameters are chosen as in the previous example. Our
results in the Figs. 6 and 7 show two propagating, interacting fractures. Specifically,
they curve away due to stress-shadowing effects (see e.g., Castonguay et al. 2013).
The extension to nonconstant pressure evolution using Darcy’s law and application of
the fixed-stress splitting is studied in Wick et al. (2016) and Mikelić et al. (2015a).

6.4 Sneddons’s 3d benchmark with a constant pressure in a penny-shaped crack

The last example is again based on Sneddon’s theoretical calculations (Sneddon and
Lowengrub 1969, Section 3.3, pp. 138–139). Specifically, we consider a 3d problem
where a (constant) pressure pB = 10−3 is used to open a penny-shaped fracture.

The configuration is displayed in Fig. 8 and Ω = (0, 10)3. We prescribe the initial
crack implicitly by setting the intial value of the phase-field variable to zero in the
y = 5-plane with origin (5, 5, 5). The radius of the fracture is ρ = 1. As boundary
conditions we set the displacements zero on ∂Ω . We perform five (pseudo) time steps.
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Fig. 8 Example 4: A penny-shaped fracture and locally refinedmesh (left) and zoom-in at right. Specifically,
the fracture remains thin in the third direction as shown theoretically in Corollary 2
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Fig. 9 Example 4: Crack opening displacements. Graphical illustration of the y displacements (left) and
evaluation of the crack opening displacements for the four different h values. The reference curve of Sneddon
has been computed with the formula given in Sneddon and Lowengrub (1969) on p. 139

We choose k = 10−12 and ε = 2h and hmin = 1.08, 0.54, 0.27, 0.135. The
Biot coefficient and critical energy release rate are chosen as α = 0 and Gc = 1.0,
respectively. The mechanical parameters are Young’s modulus and Poisson’s ratio are
set to be E = 1.0 and νs = 0.2. The applied fracture pressure is pB = 10−3.

The locally refined mesh on the finest level and the penny-shaped fracture are
shown in Fig. 8. Specifically, we observe that the fracture remains thin in the third
direction as shown theoretically in Corollary 2. The crack opening displacement (here
the displacements in y direction) and the corresponding plots for the four different h
values are shown in Fig. 9. We notice that ε depends on h. For this reason, we cannot
expect ‘convergence’ in the classical sense. Such results however have been shown
in our other papers in which ε was fixed and only h was varied Lee et al. (2016b),
Wheeler et al. (2014).

123



2 Page 30 of 33 GEM - International Journal on Geomathematics (2019) 10 :2

7 Conclusion

In this paper, we discussed the mechanics step of hydraulic phase-field fractures with
a given pressure field for propagating cracks in a poroelastic medium. The phase-field
algorithm is based on an incremental formulation and existence of a minimizer is
established. We rigorously show that if the initial crack size was of order ε (with a
reasonable control of the gradient of its initial phase-field description), then the phase-
field function at the next (future) time step has the same property. Consequently, in our
model, the initially slender fractures remain indeed thin in the second (in 2d) or third
(3d) space dimensions during the incremental evolution. Numerical benchmarks are
demonstrating the correctness of the theory. Specifically, a numerical test with mixed
boundary conditions (Dirichlet and Neumann) was designed in which our modeling
of the pressure interface conditions was further confirmed. The modeling of this
paper forms the basis for extensions to crack growth in heterogeneous porous media,
fluid-filled, and proppant-filled crack evolutions.
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