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Abstract The empirical mode decomposition (EMD) algorithm, introduced by Huang
et al. (Proc Roy Soc Lond Ser A Math Phys Eng Sci 454(1971):903–995, 1998), is
arguably the most popular mathematical scheme for non-stationary signal decompo-
sition and analysis. The objective of EMD is to separate a given signal into a number
of components, called intrinsic mode functions (IMF’s) after which the instantaneous
frequency (IF) and amplitude of each IMF are computed through Hilbert spectral
analysis (HSA). On the other hand, the synchrosqueezed wavelet transform (SST),
introduced by Daubechies and Maes (Wavelets in Medicine and Biology, pp. 527–
546, 1996) and further developed by Daubechies et al. (Appl Comput Harmon Anal
30:243–261, 2011), is applied to estimate the IF’s of all signal components of the
given signal, based on one single reference “IF function”, under the assumption that
the signal components satisfy certain strict properties of a so-called adaptive harmonic
model, before the signal components of the model are recovered. The objective of our
paper is to develop a hybrid EMD-SST computational scheme by applying a “modified
SST” to each IMF of the EMD, as an alternative approach to the original EMD-HSA
method. While our modified SST assures non-negative instantaneous frequencies of
the IMF’s, application of the EMD scheme eliminates the dependence on a single
reference IF value as well as the guessing work of the number of signal components in
the original SST approach. Our modification of the SST consists of applying vanishing
moment wavelets (introduced in a recent paper by C.K. Chui, Y.-T. Lin and H.-T. Wu)
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with stacked knots to process signals on bounded or half-infinite time intervals, and
spline curve fitting with optimal smoothing parameter selection through generalized
cross-validation. In addition, we formulate a local cubic spline interpolation scheme
for real-time realization of the EMD sifting process that improves over the standard
global cubic spline interpolation, both in quality and computational cost, particularly
when applied to bounded and half-infinite time intervals.

Keywords Time–frequency analysis · Instantaneous frequency · Empirical mode
decomposition · Intrinsic mode functions · Synchrosqueezing wavelet transform ·
Hilbert transform · Hilbert spectrum · Adaptive harmonic model · Local spline
interpolation
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1 Introduction

Time–frequency analysis is one of the most important and powerful mathematical tools
for data analysis, understanding, visualization, and manipulation, when the data may
change with the time variable (as in signal processing and time series analysis), the
spatial variables (as in digital image compression and manipulation), or both time and
spatial variables (as in the study of heat diffusion, vibrating strings or membranes,
seismic waves, and digital videos). The study of time–frequency analysis originates
from quantum mechanics in the late 1920s. In the development of its mathematical
foundation, Werner Heisenberg stated in his 1927 paper (Heisenberg 1927) that “the
more precisely the position (of an elementary particle) is determined, the less precisely
the momentum is known in this instant, and vice versa”. In the following year, two
mathematicians, Earle Kennard and Hermann Weyl, independently derived the pre-
cise lower bound of this “position-momentum measurement”, called the Heisenberg
uncertainty principle (Kennard 1927; Weyl 1928). In the language of time–frequency
analysis, this principle is a restriction for simultaneous time–frequency localization
of a (finite-energy) signal. More precisely, when the Plancherel identity is applied
to the windowed Fourier transform (commonly called short-time Fourier transform,
STFT, in the signal processing literature), the area of the time–frequency localization
window (in the time–frequency plane) is bounded below precisely by 2, when the
standard deviation of the (one-variable) window function is used for the STFT.

In his 1946 pioneering paper (Gabor 1946) on the mathematical theory of commu-
nications, Dennis Gabor used the Gaussian function

gσ (x) = 1

2σ
√
π

e
−

(
x

2σ

)2

as the window function to achieve the uncertainty lower bound, introducing the Gabor
transform by choosing σ = 1

2
√
π

. In the course of this investigation, Gabor also

introduced the notion of the complex signal extension f � (commonly called analytic
signal extension in the current signal processing literature) of a given real-valued
function f , defined by
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f �(t) = f (t)+ i(H f )(t), t ∈ R, (1)

where H denotes the Hilbert transform; that is, the Cauchy principal value of the
convolution over R with integral kernel 1

π t . Hence, by taking the real part of the polar
formulation of f �, the given function f has the representation

f (t) = A(t) cos 2πφ(t), (2)

where A(t) and φ(t), called the amplitude and phase of f , respectively, are given by

A(t) = | f �(t)| and φ(t) = 1

2π
tan−1 (H f )(t)

f (t)
. (3)

In the same volume of the IEE journal where (Gabor 1946) appeared, Van der Pol
(1946) arrived at this same representation of f (t) in (2)–(3), by considering the simple
harmonic motion. Since a mono-tone signal f1(t) with frequency ω1 Hz (where Hz
stands for the unit Hertz, for measuring the number of cycles of oscillation per second,
when t is considered as the time variable) can be formulated as

f1(t) = a1 cos 2πω1t, (4)

for some positive constant a1, it is natural to define the so-called instantaneous fre-
quency (IF) of f in (2) by the derivative φ′(t) of its phase function φ(t). But is this
an acceptable definition for time–frequency representation of an arbitrary signal with
time domain R? More recently, there have been other attempts to define instantaneous
frequency, particularly in the early 1990s, with the most successful ones based on the
Wigner–Ville distribution method (see, for instance, Boashash 1992a, b). It is noted,
however, that all such studies share the same characteristics as the pioneering work
of Gabor and Van der Pol, in that only one frequency value of a given function f is
considered.

To address the above question, let us turn to the early study of partial differential
equations (PDE’s) in the “golden” period, shortly after the 1687 publication of Sir
Isaac Newton’s Principia, which is arguably the greatest mathematical treatise since
Euclid’s Elements. During their five-year collaboration between 1727 and 1732 at the
St. Petersburg Academy of Sciences, Daniel Bernoulli and Leonhard Euler accom-
plished an incredible amount of important pioneering work, particularly in areas of
hydrodynamics, theory of oscillations, political economics, and probability theory.
Therefore, it is surprising to learn that even these two mathematical giants could not
agree on the solution of the vibrating string PDE, described by

{
∂2

∂t2 u(x, t) = c2 ∂2

∂x2 u(x, t), 0 ≤ x ≤ L , t ≥ 0;
u(x, 0) = u0(x), 0 ≤ x ≤ L ,

(5)

where c is a positive constant and u0(x) is a continuous function on the interval [0, L]
that describes the initial displacement of the string. Bernoulli proposed that the solution
should be the infinite series
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u(x, t) = u0(0)+
∞∑

k=1

bk sin

(
kπx

L

)
cos

(
ckπ t

L

)
, (6)

for some constants bk, k = 1, 2, . . .. It is clear that the expression of u(x, t) in (6) satis-
fies the PDE in (5), at least formally, but Bernoulli could not formulate the coefficients
bk in terms of the initial displacement function u0(x). It should be pointed out that
this remarkable discovery by Bernoulli was more than 50 years before Joseph Fourier
introduced the concept of Fourier series. However, Euler thought that Bernoulli’s
proposed solution was absurd, pointing out that it excludes any initial displacement
function u0(x) with u0(L) �= u0(0). Euler then proposed his own solution:

u(x, t) = 1

2
(u0(x + ct)+ u0(x − ct)). (7)

Of course, both Bernoulli and Euler were correct, and their solutions are actually
identical. This can be easily justified by using the Fourier series expansion of the odd
function extension of u0(x)− u0(0), namely

u0(x) = u0(0)+
∞∑

k=1

bk sin

(
kπx

L

)
, −L ≤ x ≤ L . (8)

Indeed, while the solution (6) of Bernoulli can be obtained by applying the current
standard method of separation of variables in PDE, Euler’s solution (7) yields the same
formulation as (6) when the Fourier sine series representation in (8) of u0 is used in
(7), with x in (8) replaced by x + ct and by x − ct , respectively.

Returning to Bernoulli’s solution, observe that, for any fixed x ∈ [0, L], the infinite
series (6) is an example of the general Fourier cosine series

f (t) = 1

2
c0 +

∞∑
k=1

ck cos

(
2πkt

T

)
, −T

2
≤ t ≤ T

2
, (9)

with T = 2L
c , f (t) = u(x, t), c0 = 2u0(0), and ck = bk sin

( kπx
L

)
, k = 1, 2, . . ..

In addition, the mono-tone signal f1(t) in (4) is also a special case of the general
signal in (9), with a1 = ck0 for some k0 ≥ 1, ck = 0 for k0 �= k = 0, 1, . . ., and
ω1 = k0

T . In general, by considering the Fourier series of even function extensions,
every finite-energy signal f on the bounded interval [0, T

2 ] has a Fourier cosine series
representation given by (9). Therefore, every periodic signal f , with period T as in
(9), has frequencies ωk = k

T for all positive integers k, provided that ck �= 0.
On the other hand, for a finite-energy signal f with time-domain R, the Fourier

transform is commonly used, instead, to study its frequency content. For the sake
of mathematical elegance, let us consider the following formulation of the Fourier
transform g(ω) := f̂ (ω) and the corresponding inverse Fourier transform ǧ(t):
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{
g(ω) = f̂ (ω) := ∫

R
f (t)e−i2πωt dt;

ǧ(t) := ∫
R

g(ω)ei2πωt dω.

Recall that ǧ = f if g ∈ L1(R). Therefore, the Fourier transform of the stationary
signal

f (t) =
K∑

k=1

ak cos 2π(ωk t + dk) (10)

is given by

f̂ (ω) = 1

2

K∑
k=1

akei2πωdk/ωk (δ(ω − ωk)+ δ(ω + ωk)),

for arbitrary frequency values ωk > 0 and real values dk , where k = 1, . . . , K , and
δ denotes the Dirac delta distribution. We remark that the signal f in (10) is said to
be stationary, since the frequencies ωk, k = 1, . . . , K , are independent of the time
variable t ∈ R. Hence, the frequencies of a stationary signal with time domain R can
be easily determined by applying the Fourier transform (and, in practice, by the fast
Fourier transform, FFT, followed by thresholding with a sufficiently large positive
parameter).

We are now ready to address the question on the notion of instantaneous frequency,
as discussed in the beginning of this section. For the stationary signal f defined by
(10), since the Hilbert transform of the cosine function is the sine function, it follows
from (1) that the analytic signal extension f � of f is given by

f �(t) =
K∑

k=1

akei2π(ωk t+dk),

which is called the Hilbert spectrum of the given signal f in the current signal process-
ing literature. Unfortunately, while each ωk , where k = 1, . . . , K , is a frequency of f ,
provided that ak �= 0, the formulation of f (t) in (2) with phase φ(t), resulting from
the definition (3), only yields one instantaneous frequency φ′(t). Furthermore, if the
stationary signal f in (10) is non-periodic (with the simple example: K = 2, ω1 = 1,
ω2 = √

2, d1 = 0, d2 = 0, a1 �= 0, and a2 �= 0 in [10)], the Fourier cosine series
representation of f , as given by (9), necessarily introduces infinitely many non-zero
frequencies k

T for any choice of T > 0, where k = 1, 2, . . .. In view of this discus-
sion, without any restriction to a suitable signal model, it is a daunting task to give
an acceptable definition of “instantaneous frequency” for an arbitrary signal, as an
extension of the definition of frequencies for stationary signals, regardless of bounded
or unbounded time intervals.

In this paper, we will consider the signal model AHM, which stands for the adaptive
harmonic model (see Daubechies et al. 2011; Thakur and Wu 2011; Chui et al. 2014;
Chui and Mhaskar 2015), defined by
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⎧⎨
⎩

f (t) =
K∑

k=1
fk(t)+ T (t);

fk(t) = Ak(t) cos 2πφk(t), k = 1, . . . , K ,
(11)

where T (t) is some polynomial (possibly embedded with noise), Ak(t) ≥ 0, and
φk(t) ∈ C1 with φ′

k(t) ≥ 0, for all t in the time interval, which may be bounded or
unbounded. Observe that this is a natural extension of (2) and (10), from one signal
component to an arbitrary number of components and from ωk t + dk to arbitrary
C1 functions φk(t), respectively. We will call T (t) and φ′

k(t), k = 1, . . . , K , the
trend and instantaneous frequencies, respectively, of the signal f (t) in (11) at the
time instant t . The signal f in the AHM (11) is said to be non-stationary if the phase
functions φk(t) are allowed to be non-linear, and it is called a non-linear signal if
the magnitude functions Ak(t) are allowed to be non-constants. We also introduce the
Hilbert spectrum

fhs(t) :=
K∑

k=1

Ak(t)e
i2πφk (t) (12)

of f in the AHM (11). Note that this signal f can be written as

f (t) = Re fhs(t)+ T (t).

Hence, after the trend is extracted from f , the Hilbert spectrum (12) facilitates the
computation of each signal component fk of f in (11), as disclosed in detail in our
recent paper (Chui and Mhaskar 2015).

The natural approach to find the instantaneous amplitudes (IA’s) Ak(t) and instan-
taneous frequencies (IF’s) φ′

k(t) in (11) is first to decompose the given signal and
estimate the IA’s and IF’s of the signal components separately. It is this approach
that we will follow in this paper, to be described in detail in the following section.
In this regard, it is important to point out that when the given signal f ∈ AHM is a
blind source, it is definitely not feasible to determine its specific signal components
fk, k = 1, . . . , K , in (11), by any decomposition scheme, without prior knowledge
of these components and/or specifying appropriate restrictions on the AHM. Hence,
the goal of our paper is not to recover the unknown signal components, but only to
modify and improve the empirical mode decomposition (EMD) scheme introduced in
Huang et al. (1998), allowing real-time implementation and adapting to time-domains
of bounded and half-infinite intervals, in order to compute more than one frequency of
the signal defined on any time-domain. The interested reader is referred to Daubechies
et al. (2011) for the synchrosqueezed wavelet transform (SST) approach, and to Chui
and Mhaskar (2015) for a direct and local approach, to recover the signal components
from a blind source, under certain specifications on the AHM.

This paper is organized as follows. The next section will be devoted to a discussion
of the preliminary materials and our hybrid EMD-SST approach. In particular, the
EMD scheme, along with its sifting process, via cubic-spline interpolation, is first
described, followed by a summary of the SST formulation, together with its real-time
algorithm via vanishing-moment (VM) wavelets introduced in Chui et al. (2014). In
Sect. 3, our real-time cubic spline local interpolation scheme is constructed, with the
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goal of adapting the sifting process to bounded and half-infinite time intervals. The
essential properties and computational algorithms of VM wavelets are described in
Sect. 4, with numerical examples of our method given in Sect. 5. In Sect. 6, we give the
details of the construction, along with proofs, of our local spline interpolation scheme;
and in Sect. 7, we compare the results of our hybrid EMD-SST scheme with those of
the original EMD approach via the Hilbert transform. In Sect. 8, we end this paper
with a brief discussion of replacing EMD by other signal decomposition schemes and
of our future investigation by replacing the SST with the direct local approach in Chui
and Mhaskar (2015) for our hybrid approach.

2 Preliminaries and discussion of our hybrid approach

This section is divided into three subsections, with the first subsection on a discussion
of the sifting process of the EMD scheme, the second subsection on the formulation
and description of the SST, and the third subsection on the motivation of our hybrid
approach due to the limitations of both the EMD scheme (particularly in adapting the
Hilbert transform to bounded and half-infinite intervals) and the SST approach (due
to its difficulty in determining the number of signal components and in estimating the
instantaneous frequencies based on a single value for the frequency reassignment rule).

2.1 Empirical mode decomposition

The EMD algorithm is one of the first methods to find the IA’s Ak(t) and IF’s φ′
k(t) of

a given (not necessarily stationary) signal in (11) by first decomposing the signal and
then estimating the IA’s and IF’s of the signal components separately. This is achieved
by separating the given signal into a number of oscillating components, called intrinsic
mode functions (IMF’s), and a monotone or slowly oscillating remainder, which may
be considered as the trend of the given signal. Each IMF is then extended to its analytic
signal extension through the Hilbert transform [as in (1)] in order to compute its IF
and IA.

More precisely, given a real-valued signal f , the EMD algorithm starts by setting
h1,0 := f and computing the cubic spline interpolants of the local maxima and minima
of h1,0, respectively, called the upper and lower envelopes of h10. Next, it computes
the average m1,1 of the upper and lower envelopes, and subtracts it from h1,0 to obtain
h1,1. This process of finding upper and lower envelopes and subtracting their mean
from the input signal is now repeated on h1,1 to find h1,2, h1,3, h1,4 and so on, until
for some 	 ≥ 1 the resulting h1,	 = h1,	−1 − m1,	 satisfies the definition of an IMF:

(i) its upper and lower envelopes are (at least approximately) symmetric about the
time axis; and

(ii) the difference between its number of local extrema and its number of zero crossings
equals −1, 0 or 1.

The first IMF h1,	 is then denoted by C1, and this process to find an IMF is called sifting.
To find the subsequent IMF’s Ck, k = 2, 3, . . ., the sifting procedure is repeated on
hk,0 := f − C1 − · · · − Ck−1. The stopping criterion can be chosen by the user.
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The above series of sifting procedures yields a decomposition of the original signal
f into K IMF’s C1, . . . ,CK (for some K ≥ 1) and a slowly oscillating remainder
RK , written as

f (t) =
K∑

k=1

Ck(t)+ RK (t). (13)

This constitutes the first part of the algorithm.
The second part of the algorithm is to find the instantaneous frequency and ampli-

tude of each IMF through Hilbert spectral analysis (HSA), described in (1)–(3), so
that ⎧⎨

⎩
f (t) =

K∑
k=1

Ck(t)+ RK (t);
fk(t) = Bk(t) cos 2πθk(t), k = 1, . . . , K ,

(14)

with

Bk(t) = |C�
k (t)|; and θk(t) = 1

2π
tan−1 (HCk)(t)

Ck(t)
. (15)

The derivative θ ′
k(t) of the phase function θk(t) is the IF of the IMF Ck .

However, the EMD scheme, and the current modifications and improvements of it
(Wu and Huang 2004, 2009), have several limitations. Firstly, there is no guarantee that
the analytic signal extension of an IMF will yield a non-negative IF. This is a serious
defect, since negative frequency is meaningless for signals and limits the application
of EMD. As discussed in Huang et al. (1998) and Huang and Wu (2008), a necessary
condition to obtain a non-negative IF through the Hilbert transform method is a purely
oscillatory function with a zero reference level; in fact, this served as the motivation
for the definition of an IMF and for EMD to decompose a signal into IMF’s. However,
this condition is not sufficient to ensure a non-negative IF—indeed, as investigated
in Sharpley and Vatchev (2006), there exist several examples of functions that satisfy
the definition of an IMF, while its IF calculated through the Hilbert transform method
changes sign on intervals of positive measure.

Moreover, since the Hilbert transform is defined for functions f ∈ L p(−∞,∞)

with p > 1, while real-life signals are typically defined on bounded or half-infinite
intervals, artificial extension of an IMF to the real line is necessary in order to apply
the Hilbert transform, often yielding unreliable results.

Another important aspect of EMD is the construction of upper and lower envelopes
through interpolation of local maxima and minima. In the original formulation of EMD
in Huang et al. (1998), the authors proposed to use standard cubic spline interpolation.
Not being a local method, it becomes computationally expensive to obtain the inter-
polant when the number of extrema becomes very large. Taking care of the boundary
values is also somewhat problematic. One solution mentioned in Huang et al. (1998)
and Chen et al. (2006) is to extend the data signal at the boundaries according to
some user-defined rule; however, this is artificial and does not always yield accurate
results.
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2.2 Synchrosqueezed wavelet transform

Instead of computing the IF’s after the signal is decomposed as is done when applying
EMD, the approach that Daubechies et al. (Daubechies et al. 2011; Daubechies and
Maes 1996) proposed is first to estimate the IF’s of the signal components, under the
assumption that the signal satisfies certain strict properties of the AHM in (11), before
recovering the signal components of the model. For this purpose, the notion of the
synchrosqueezed wavelet transform was introduced to compute a single reference IF
function through which the IF’s of all the signal components are “squeezed out” from
the input signal in the form of a digital image, allowing the estimation of the individual
IF functions and the signal components themselves.

More precisely, the SST works through “squeezing” the continuous wavelet trans-
form (CWT), defined for any function g ∈ L2(R) by the inner product

(Wψg)(a, b) := 〈g, ψ(a,b)〉, (16)

with ψ(a,b) given by

ψ(a,b)(t) := 1

a
ψ

(
t − b

a

)
, (17)

where the analysis wavelet ψ is required to be admissible in the sense that its Fourier
transform vanishes on the negative frequency axis. The “squeezing out” of IF’s is
achieved through the single reference IF function

ωg(a, b) :=
{
∂b(Wψ g)(a,b)

2π i(Wψ g)(a,b) , if (Wψg)(a, b) �= 0;
−∞, otherwise,

(18)

called the frequency reassignment (FRA) rule. The SST is then computed through

(S�,α f )(b, ξ) =
∫

{a:|(Wψ f )(a,b)|>�}
(Wψ f )(a, b)hα(|ξ − ω f (a, b)|)da

a
, (19)

where

hα(x) := 1

α
h

( x

α

)
, 0 < α << 1 (20)

is some “smooth” function so that {hα} converges to the delta distribution for α →
0, and � is a thresholding parameter. In other words, the SST is a special type of
reassignment method on the CWT which reallocates the values of the CWT from the
scale-time point (a, b) to a time–frequency position (b, ξ).

The output of the SST is displayed as a two-dimensional digital image representing
a set of “IF curves”, which may be extracted through a suitable curve fitting method
(Chen et al. 2014; Thakur and Wu 2011). In practice, the curves are extracted one
by one, where the image pixels that constitute a particular curve are removed from
the image before the next curve is found. This process is repeated until no obvious
curve remains in the digital image. The curves extracted in this way are estimations
of the IF’s φ′

k(t) of the components constituting the given signal [in (11)]. This curve
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extraction process requires supervision, especially if the thresholding parameter is
small.

Once the K IF’s φ′
k(t), k = 1, . . . , K have been determined, they may be used to

estimate the signal components in the AHM in (11) through

f �,�k (t) := R−1
ψ

∫ 1+�
φ′

k (t)

1−�
φ′

k (t)

(Wψ f )(a, t)χ{a:|(Wψ f )(a,b)|>�}(a)
da

a
,

for some sufficiently small constant � > 0, with

Rψ :=
∫ ∞

0

ψ̂(ζ )

ζ
dζ.

(This construction formula can be shown to be equivalent to obtaining f �,�k (t)
through the inverse CWT.)

An obstacle of the SST approach is that the analysis wavelet of the CWT must be
admissible so that ψ̂(ω) = 0, ω < 0. Hence, a Meyer-like wavelet was used for the
SST in Daubechies et al. (2011) and Daubechies and Maes (1996), with off-line imple-
mentation. In our recent work (Chui et al. 2014), the notion of compactly supported
spline vanishing moment (VM) wavelets was introduced for real-time computation of
the CWT as well as for avoiding numerical estimation of the derivative of the CWT in
the FRA rule (18). However, with a single reference IF function ωg in (18) to estimate
the IF’s of all the signal components, it is not convincing that the SST approach could
yield accurate results, particularly for over 4 or 5 IMF’s. Furthermore, since computa-
tion of the signal components must depend on the accuracy of the estimated IF’s, the
SST approach alone cannot be very reliable.

2.3 Our approach

In this paper, we develop a hybrid EMD-SST computational scheme by combining the
“best” parts of EMD and SST, as an alternative approach to the original EMD method.
In a nutshell, we apply a modified SST to each IMF of the EMD. While our modified
SST assures non-negative instantaneous frequencies of the IMF’s, the EMD eliminates
the guessing work of the number of signal components from the digital image of the
original SST approach. More specifically, we modify the SST to process signals on
bounded or half-infinite time intervals by applying VM wavelets with stacked knots,
and in addition, we replace the Hilbert transform of the original EMD approach by
our modified SST to avoid artificial extension of the IMF’s to the real line.

Another important contribution of our paper is the formulation of a real-time cubic
spline interpolation scheme for a bounded interval for the sifting process of the EMD
algorithm. This scheme has a local formulation and is designed to include shape-
preserving conditions at the boundary values, which yield more accurate results near
the boundaries than the standard cubic spline interpolation used in the original formu-
lation of EMD.
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Fig. 1 Left the output from the (improved) SST (with our analytic VM wavelet and boundary considerations)
applied to the mixed input signal. Right the output from the hybrid EMD-SST approach

Lastly, we apply a smoothing spline curve fitting scheme, with automatic optimal
smoothing through generalized cross-validation (Wahba 1975; Craven and Wahba
1978; Golub et al. 1979; Carew et al. 2003), to the digital image output of the SST,
instead of the custom curve fitting scheme described in Chen et al. (2014).

To illustrate the advantage of first decomposing a given signal using the EMD
algorithm before estimating each component’s IF using the modified SST, we consider
the non-linear, non-stationary signal f (t) = f1(t)+ f2(t), with

f1(t) = 0.1(t4 − 12t3 + 44t2 − 48t) cos 2π(3t + 0.2t2);
f2(t) = e(−0.15t) cos 2π(2t + 0.2 cos t),

so that

φ′
1(t) = 3 + 0.4t and φ′

2(t) = 2 − 0.2 sin t.

In Fig. 1, we display the result of the original SST approach applied to the mixed signal,
where we used our analytic VM wavelet in the CWT with boundary considerations, as
well as the result of our hybrid EMD-SST approach. We note that, as a result of first
applying EMD to separate the input signal into IMF components, the shapes of the IF
curves displayed in the digital SST images from our hybrid EMD-SST approach are
much clearer than in the original SST output.

3 Construction of envelopes through blending

In this section, we introduce the completely local interpolation scheme to be used in the
sifting process of EMD to construct upper and lower envelopes (through interpolation
of the local maxima and minima, respectively).
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For a given sequence

x : x−3 = · · · = a = x0 < x1 < · · · < xN+1 = b = · · · = xN+4,

let Sx,4[a, b] denote the linear space of cubic polynomial splines on [a, b] with knots
in x. The set of normalized cubic B-splines

{
Nx,4, j : j = −3, . . . , N

}

is a locally supported basis for Sx,4[a, b] (Curry and Schoenberg 1966). The cubic
B-splines Nx,4, j are defined in terms of divided differences of truncated powers by

Nx,4, j (x) := (x j+4 − x j )[x j , . . . , x j+4](· − x)3+, j = −3, . . . , N , (21)

where the divided differences are defined by

[u, . . . , u]g := g	(u)

	! (22)

if there are 	+ 1 entries in [u . . . , u], and

[u0, . . . , un]g := [u1, . . . , un]g − [u0, . . . , un−1]g
un − u0

(23)

if u0 ≤ u1 ≤ · · · ≤ un with un > u0, where [ui ]g := g(ui ). Truncated powers are
defined by

xn+ := (max {0, x})n . (24)

Given a signal f , our objective is to construct an interpolation operator P in terms
of the cubic B-splines in (21) such that the following conditions are satisfied:

(i) P is local in the sense that the value of P f at any x∗ ∈ [xi , xi+1] inside [a, b]
only depends on the values of f in the neighborhood [xi−6, xi+7] of x∗;

(ii) P preserves polynomials of degree n ≤ 3; that is,

(P p)(x) = p(x), p ∈ π3, x ∈ [a, b]; (25)

(iii) P f interpolates f at the values x0, . . . , xN+1; that is,

(P f )(xi ) = f (xi ), i = 0, 1, . . . , N + 1; (26)

(iv) P preserves derivatives of f at x0 and xN+1 with

{
(P f )(n)(x0) = f (n)(x0), n = 1, 2, 3;
(P f )(n)(xN+1) = f (n)(xN+1), n = 1, 2.

(27)
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In (iv), since the derivatives of a signal f are generally not known in practice, we
approximate the nth derivative of f at x0 and xN+1 by the nth order divided difference
of f at x0 and xN+1, respectively, when applying our method.

Our idea is to develop a locally supported quasi-interpolation operator Q (as intro-
duced by de Boor and Fix 1973) in terms of the cubic B-splines on the bounded interval
[a, b] to achieve properties (i) and (ii). Our quasi-interpolation method is based on a
quasi-interpolation scheme for real-time application described in Chen et al. (1988).
We remark that the method in Chen et al. (1988) is derived for data values on an
unbounded interval, and it is adapted here for the bounded interval [a, b].

Then, to achieve the interpolation conditions (iii) and (iv) above (while preserving
local support), we will develop a local interpolation operator R as well, which, together
with the quasi-interpolation operator Q, leads to the blending operator P , introduced
in Chui and Diamond (1990), defined by

P := R ⊕ Q, (28)

where
R ⊕ Q := Q + R(I − Q) = Q + R − RQ, (29)

with I denoting the identity operator. From this formulation, it becomes clear that the
idea of the blending operation is to first apply the local quasi-interpolation operator Q
to f to ensure high approximation order and smoothness, and then to apply the local
interpolation operator R to the error produced by Q to achieve interpolation at the
interpolation points x0, . . . , xN+1 and preservation of the derivatives at the boundaries
x = a and x = b. (Note that the operators Q and R are not commutative.)

This interpolation scheme may be applied in the context of constructing upper and
lower envelopes during the sifting procedure of EMD, with the interpolation points xi

equal to the local maxima and minima, respectively. For easy implementation, we note
that the knot sequence x for the cubic B-splines (which form the basis functions of our
interpolation scheme) is chosen to coincide with the interpolation points x0, . . . , xN+1
(with the stacked knots x−3 = x−2 = x−1 = x0 and xN+1 = xN+2 = xN+3 = xN+4
appended on either side).

We proceed, in Sects. 3.1–3.3, to describe the quasi-interpolation operator Q, the
local interpolation operator R, and the blending operator P , respectively.

3.1 Quasi-interpolation operator

To define the quasi-interpolation operator Q, we will need the following notations.
First, D(xk, . . . , xk+	) denotes the Vandermonde determinant of xk, . . . , xk+	; that

is,

D(xk, . . . , xk+	) =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
xk xk+1 · · · xk+	
...

...
...

x	k x	k+1 · · · x	k+	

∣∣∣∣∣∣∣∣∣
; (30)
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and D(xk, . . . , xk+q−1, ξ j , xk+q+1, . . . , xk+	) is obtained from D(xk, . . . , xk+	) by
replacing its qth column with the vector

ξ j := [ξ0( j), . . . , ξ 	( j)]T , (31)

with {
ξ0( j) = 1;
ξn( j) = σ n(x j+1,...,x j+	)

(	n)
, n = 1, . . . , 	; (32)

and where σ n(r1, . . . , rs) denotes the classical symmetric function, defined by

{
σ 0(r1, . . . , rs) = 1;
σ n(r1, . . . , rs) = ∑

1≤t1<t2<···<tn≤s
rt1rt2 · · · rtn , n = 1, . . . , 	. (33)

Furthermore, DC (xk, . . . , xk+n, x (1)k+n, . . . , x (p)
k+n, xk+n+1, . . . , xk+	) denotes the

confluent Vandermonde determinant; that is, for j = 1, . . . , p, the (n + 1 + j)th
column of DC is given by

(DC )i,n+1+ j =
{

0 if i ≤ j;
(i−1)!
(i−1− j)! x

i−1− j
k+n if i > j.

(In other words, confluent columns are derivatives of the original Vandermonde
columns.) The remaining 	 + 1 columns of DC are regular Vandermonde columns
corresponding to xk, . . . , xk+	 [as in (30)]. Similar as above, DC (xk, . . . , xk+n,

x (1)k+n, . . . , x (q−1)
k+n , ξ j , x (q+1)

k+n , . . . , x (p)
k+n, xk+n+1, . . . , xk+	) is obtained from

DC (xk, . . . , xk+n, x (1)k+n, . . . , x (p)
k+n, xk+n+1, . . . , xk+	) by replacing its (n + q + 1)th

column with ξ j .

Definition 1 (Quasi-interpolation operator) The quasi-interpolation operator Q is
defined by

(Q f )(x) :=
3∑
	=1

f (	)(x0)M−	(x)+
N+1∑
i=0

f (xi )Mi (x)+
2∑

r=1

f (r)(xN+1)MN+1+r (x),

(34)
in terms of the spline molecules

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M−	(x) :=
3−	∑
j=0

a−	, j Nx,4, j−3(x), 	 = 1, 2, 3;

Mi (x) :=
3∑

j=0
ai, j Nx,4,i+ j−3(x), i = 0, . . . , N ;

MN+1+r (x) :=
2∑

j=r
aN+1+r, j Nx,4,N+ j−2(x), r = 0, 1, 2,

(35)

where the coefficients are given by:
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– For i = 0, 1, 2, j = 3 − i, . . . , 3 and i = 3, . . . , N − 3, j = 0, . . . , 3 and
i = N − 2, . . . , N , j = 0, . . . , N − i :

ai, j = D(xi+ j−3, . . . , xi−1, ξi+ j−3, xi+1, . . . , xi+ j )

D(xi+ j−3, . . . , xi+ j )
; (36)

– For i = 0, 1, 2, j = 0, . . . , 2 − i :

ai, j = DC (x0, . . . , x (3−i− j)
0 , x1, . . . , xi−1, ξi+ j−3, xi+1, . . . , xi+ j )

DC (x0, . . . , x (3−i− j)
0 , x1, . . . , xi+ j )

; (37)

– For 	 = 1, 2, 3, j = 0, . . . , 3 − 	:

a−	, j = DC (x0, . . . , x (	−1)
0 , ξ j−3, x (	+1)

0 , . . . , x (3− j)
0 , x1, . . . , x j )

DC (x0, . . . , x (3− j)
0 , x1, . . . , x j )

; (38)

– For i = N − 2, . . . , N , j = N − i + 1, . . . , 3:

ai, j = DC (xi+ j−3, . . . , xi−1, ξi+ j−3, xi+1, . . . , xN+1, x (1)N+1, . . . , x (i+ j−N−1)
N+1 )

DC (xi+ j−3, . . . , xN+1, x (1)N+1, . . . , x (i+ j−N−1)
N+1 )

;
(39)

– For r = 0, 1, 2, j = r, . . . , 2:

aN+1+r, j = DC (xN+ j−2, . . . , xN+1, x (1)N+1, . . . , x (r−1)
N+1 , ξN+ j−2, x (r+1)

N+1 , . . . , x ( j)
N+1)

DC (xN+ j−2, . . . , xN+1, x (1)N+1, . . . , x ( j)
N+1)

.

(40)

We note that the molecules in the definition above are compactly supported, with

⎧⎨
⎩

suppM−	 = [x0, x4−	], 	 = 1, 2, 3;
suppMi = [xi−3, xi+4], i = 0, . . . , N ;
suppMN+1+r = [xN−2+r , xN+1], r = 0, 1, 2.

(41)

With these definitions, we can show that (25) in condition (ii) above is satisfied.

Theorem 1 For N ≥ 9, the quasi-interpolation operator Q, formulated in (34) in
Definition 1, satisfies the condition

(Qp)(x) = p(x) (42)

for all x ∈ [a, b] and p ∈ π3.

We leave the proof until Sect. 6.
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3.2 Local interpolation operator

Next, we define the local interpolation operator R to achieve properties (iii) and
(iv) above, while preserving local support. To construct R, we will consider a knot
sequence x̃ ⊃ x, constructed by inserting one additional knot in between every two
(unstacked) knots of x, so that

x̃2 j+2 = x j , j = 1, . . . , N .

Furthermore, to facilitate the Hermite interpolation conditions (27) at the bound-
aries x = x0 and x = xN+1, we will insert three evenly spaced additional knots
x̃1, x̃2, x̃3 in the interval (x0, x1), with x̃0 := x0, as well as two evenly spaced addi-
tional knots x̃2N+3, x̃2N+4 in the interval (xN , xN+1), with x̃2N+5 := xN+1. Also,
the knot sequence x̃ is extended with stacked knots in the same way as x, so that
x̃i = xi , i = −1,−2,−3 and x̃2 j+5+i = xN+1+i , i = 1, 2, 3.

In the following, we will use the notation N{x̃a ,x̃b,x̃c,x̃d ,x̃e},4 to denote the cubic
B-spline spanning the knots {x̃a, x̃b, x̃c, x̃d , x̃e}. We will make use of the particular
sequences

⎧⎪⎪⎨
⎪⎪⎩

x̃−3 = {x̃−3, . . . , x̃0, x̃4} ; x̃1 = {x̃1, x̃2, x̃4, x̃5, x̃6} ;
x̃−2 = {x̃−2, . . . , x̃0, x̃2, x̃4} ; x̃N+1 = {x̃2N+2, . . . , x̃2N+6} ;
x̃−1 = {x̃−1, x̃0, x̃1, x̃2, x̃4} ; x̃N+2 = {x̃2N+2, x̃2N+3, x̃2N+5, . . . , x̃2N+7} ;
x̃0 = {x̃0, . . . , x̃4} ; x̃N+3 = {x̃2N+2, x̃2N+5, . . . , x̃2N+8} .

Definition 2 (Local interpolation operator) The local interpolation operator R is
defined by

(R f )(x) :=
3∑
	=1

f (	)(x0)L−	(x)+
N+1∑
i=0

f (xi )Li (x)+
2∑

r=1

f (r)(xN+1)L N+1+r (x),

(43)
in terms of the spline molecules

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−	(x) :=
3∑

k=0
b−	,k Nx̃−3+k ,4(x), 	 = 0, 1, 2, 3;

L1(x) := Nx̃1,4(x)
Nx̃1,4(x1)

;
Li (x) := Nx̃,4,2i (x)

Nx̃,4,2i (xi )
, i = 2, . . . , N ;

L N+1+r (x) :=
2∑

k=0
bN+1+r,k Nx̃N+1+k ,4(x), r = 0, 1, 2,

(44)

with the coefficients b−	,k, k, 	 = 0, 1, 2, 3 and bN+1+r,k, k, r = 0, 1, 2 determined
by the conditions

L(n)−	(x0) = δ	−n, 	, n = 0, 1, 2, 3; L(n)N+1+r (xN+1) = δr−n, r, n = 0, 1, 2, (45)
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where δi− j denotes the Kronecker delta function

δi− j :=
{

1 if i = j;
0 otherwise.

The above molecules are compactly supported, with

⎧⎪⎪⎨
⎪⎪⎩

suppL−	 = [x0, x1], 	 = 0, 1, 2, 3;
suppL1 = [x̃1, x2];
suppLi = [xi−1, xi+1], i = 2, . . . , N ;
suppL N+1+r = [xN , xN+1], r = 0, 1, 2.

(46)

From the construction in (44), it is clear that

Li (x j ) = δi− j , i = 1, . . . , N ; j = 0, . . . , N + 1. (47)

By using also (45), the following result follows immediately.

Theorem 2 The local interpolation operator R, formulated in (43) in Definition 2,
satisfies the Hermite interpolation conditions

(R f )(xi ) = f (xi ), i = 0, . . . , N + 1,

and

{
(R f )(n)(x0) = f (n)(x0), n = 1, 2, 3;
(R f )(n)(xN+1) = f (n)(xN+1), n = 1, 2.

3.3 Blending operator

With Q and R formulated in Definitions 1 and 2, respectively, the blending operator
P is now given by (28), (29).

An equivalent formulation of P may be obtained by expanding (29) in terms of the
spline molecules Mi and Li , i = −3, . . . , N + 3, so that P is given by

(P f )(x) =
3∑
	=1

f (	)(x0)J−	(x)+
N+1∑
i=0

f (xi )Ji (x)+
2∑

r=1

f (r)(xN+1)JN+1+r (x),

(48)
in terms of the spline i-molecules Ji , given by

123



18 Int J Geomath (2015) 6:1–42

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J−	(x) = M−	(x)+ L−	(x)−
3−	∑
j=0

M−	(x j )L j (x)−
3∑

k=1
M (k)

−	 (x0)L−k(x),

	 = 1, 2, 3;
Ji (x) = Mi (x)+ Li (x)−

i+4∑
j=i−3

Mi (x j )L j (x)−
3∑

k=1
M (k)

i (x0)L−k(x)

−
2∑

n=1
M (n)

i (xN+1)L N+1+n(x), i = 0, . . . , N + 1;

JN+1+r (x) = MN+1+r (x)+ L N+1+r (x)−
N∑

j=N−2+r
MN+1+r (x j )L j (x)

−
2∑

k=1
M (k)

N+1+r (xN+1)L N+1+k(x), r = 1, 2.

(49)
We can show that P then achieves all four conditions (i)–(iv).

Theorem 3 The blending operator P , defined by (28), (29), is local and satisfies the
polynomial preservation property of the quasi-interpolation operator Q as well as
the Hermite interpolation conditions of the local interpolation operator R; that is, P
satisfies (25), (26) and (27).

We leave the proof until Sect. 6.

4 VM wavelets

We now describe the analytic vanishing moment (VM) wavelets, introduced in Chui
et al. (2014), to be applied as the analysis wavelet in the CWT as part of the SST.

For an integer m ≥ 1 and an arbitrary knot sequence x with x j+1 ≥ x j and
x j+m > x j for all j ∈ Z, the normalized mth order B-splines Nx,m, j are defined by

Nx,m, j (x) := (x j+m − x j )[x j , . . . , x j+m](· − x)m−1+ , j ∈ Z (50)

[the general case of (21)], with the divided differences and truncated powers defined in
(22)–(24). Then, for an integer n ≥ 1, the vanishing moment waveletsψx,m,n, j , j ∈ Z,

are constructed in Chui et al. (2014) in terms of the mth order B-splines to have
minimum support and satisfy the n vanishing moment conditions

⎧⎨
⎩

∫ ∞
−∞ x	ψx,m,n, j (x)dx = 0, 	 = 0, 1, . . . , n − 1;

∫ ∞
−∞ xnψx,m,n, j (x)dx �= 0.

Under these conditions, it is shown in (Chui et al., 2014, Theorem 3.2) that the VM
wavelets ψx,m,n, j satisfy the unique formulation (up to a non-zero constant multiple)

ψx,m,n, j (x) = N (n)
x,m+n, j (x), j ∈ Z. (51)
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An immediate consequence of (51) is that the derivative of a VM wavelet is also a VM
wavelet, with

ψ ′
x,m,n, j (x) = ψx,m−1,n+1, j (x), j ∈ Z

(Chui et al., 2014, Corollary 3.3).
For our application of the VM wavelets as analysis wavelets in the CWT, let us

consider the knot sequence

x : x−m+1 = · · · = −L = x0 < x1 < · · · < xm+n = L = · · · = x2m+n−1, (52)

with x0, . . . , xm+n uniformly spaced in the bounded interval [−L , L], so that

x j = −L + jh, j = 0, . . . ,m + n, (53)

with knot spacing

h := 2L

(m + n)
. (54)

In this setting, we may derive a representation for the interior wavelet ψx,m,n,0 in
terms of the normalized mth order B-splines from (51) by applying the formula (de
Boor 2001, p. 131)

N ′
x,	,k(x) = 	− 1

x	+k−1 − xk
Nx,	−1,k(x)− 	− 1

x	+k − xk+1
Nx,	−1,k+1(x) (55)

n times, starting with N (n)
x,m+n,0, which leads to the formula

ψx,m,n,0(x) = 1

hn

n∑
k=0

(−1)k
(

n

k

)
Nx,m,0(x − kh).

We note that the support of ψx,m,n,0 spans the entire interval, so that

suppψx,m,n,0 = [−L , L].

The m − 1 boundary wavelets ψx,m,n, j , j = −m + 1, . . . ,−1 at the left hand side
endpoint x = −L , with supports

suppψx,m,n, j = [−L , L + jh], j = −m + 1, . . . ,−1,

and the m − 1 boundary wavelets ψx,m,n, j , j = 1, . . . ,m − 1 at the right hand side
endpoint x = L , with supports
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Fig. 2 Interior wavelet ψx,4,1,0 on the interval [−5, 5]

suppψx,m,n, j = [−L + jh, L], j = 1, . . . ,m − 1,

may be obtained similarly by applying (55) n times to (51), starting with N (n)
x,m+n, j for

j = −m + 1, . . . ,−1, 1, . . . ,m − 1, respectively.
Specifically, for m = 4 and n = 1, we have the following.

Theorem 4 For the knot sequence x in (52), (53), (54) with m = 4 and n = 1, the
cubic VM wavelets with 1 vanishing moment are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψx,4,1,0(x) = 1
h

(
Nx,4,0(x)− Nx,4,0(x − h)

) ;
ψx,4,1, j (x) = 4

h

(
1

4+ j Nx,4, j (x)− 1
5+ j Nx,4, j+1(x)

)
, j = −3,−2,−1;

ψx,4,1, j (x) = 4
h

(
1

5− j Nx,4, j (x)− 1
4− j Nx,4, j+1(x)

)
, j = 1, 2, 3.

(56)

The derivatives of the VM wavelets ψx,4,1, j , j = −3, . . . , 3 are given by

ψ ′
x,4,1, j (x) = ψx,3,2, j (x), j = −3, . . . , 3.

The cubic VM wavelets in Theorem 4 are shown in Figs. 2 and 3 (with the specific
choice of L = 5).

The VM wavelets ψx,3,2, j , j = −3, . . . , 3, can be obtained similarly to
ψx,4,1, j , j = −3, . . . , 3, in (56) by applying the formula (55) twice to (51) (with
m = 3 and n = 2). This leads to the formulations in terms of quadratic B-splines
(defined in (50) with m = 3)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψx,3,2,0(x) = 1
h2

(
Nx,3,0(x)− 2Nx,3,0(x − h)+ Nx,3,0(x − 2h)

);
ψx,3,2,−3(x) = 12

h

(− 3
2 Nx,3,−2(x)+ 1

4 Nx,3,−1(x)
);

ψx,3,2, j (x) = 12
h

(
1

(4+ j)(3+ j)Nx,3, j (x)−
[

1
(4+ j)2

+ 1
(5+ j)(4+ j)

]
Nx,3, j+1(x)

+ 1
3(5+ j)Nx,3, j+2(x)

)
, j = −2,−1;

ψx,3,2, j (x) = 12
h

(
1

3(5− j)Nx,3, j (x)−
[

1
(4+ j)2

+ 1
(5+ j)(4+ j)

]
Nx,3, j+1(x)

+ 1
(4− j)(3− j)Nx,3, j+2(x)

)
, j = 1, 2;

ψx,3,2,3(x) = 12
h

( 1
4 Nx,3,3(x)− 3

2 Nx,3,4(x)
)
.

(57)
We now turn our attention to applying the VM wavelets ψx,4,1, j , j = −3, . . . , 3,

developed in this section to the CWT, defined in (16), employed as part of the SST,
defined in (18), (19) and (20).

To this end, our first task is to pick an analysis waveletψ that is admissible according
to the definition of the frequency reassignment rule in (18); that is, it satisfies the
property ψ̂(ω) = 0, ω < 0. With the definition

ψ j (x) := ψx,4,1, j (x), j = −3, . . . , 3,

we will consider the analytic representation of ψ j , given by

ψ�j (x) = ψ j (x)+ i(Hψ j )(x), (58)

called analytic VM wavelets. We note that ψ�j is admissible, since

ψ̂�j (ω) = ψ̂ j (ω)+ i (̂Hψ j )(ω) = ψ̂ j (ω)+ i(−i sgnω)ψ̂ j (ω)

=
{

2ψ̂ j (ω) if ω ≥ 0;
0 if ω < 0.

We therefore use ψ�0 as the “center” interior analysis wavelet in the CWT, while
ψ�j , j = −3, . . . ,−1, 1, . . . , 3, are used to take care of the boundaries at x = −L
and x = L , respectively. The scaling and translation operations indicated in (17) are
applied as follows:

When scaling by 0 < a < 1, ψ0(
x
a ) is a VM wavelet on the uniformly spaced knot

sequence

xa : −L < −L + ah < −L + 2ah < · · · < L − 2ah < L − ah < L ,

with knot spacing ah, where h := 2L
5 , according to (54), and with the support of

ψ0(
x
a ) given by

suppψ0(
x
a ) = [−aL , aL].

ψ0(
x
a ) is also translated by b

a , where −L(1 − a) ≤ b ≤ L(1 − a), to ensure that
ψ0(

x−b
a ) stays inside the bounded interval [−L , L].
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For the boundary wavelets, we scale by 0 < a < 1 and let b = −L(1 − a), so that
the supports of ψ j (

x−b
a ), j = −3,−2,−1 are given by

suppψ j (
x−b

a ) = [−L ,−L(1 − 2a)+ jah], j = −3,−2,−1;

while for b = L(1 − a), the supports of ψ j (
x−b

a ), j = 1, 2, 3 are given by

suppψ j (
x−b

a ) = [L(1 − 2a)+ jah, L], j = 1, 2, 3.

As mentioned earlier, the derivative property in Theorem 4 is one of the key reasons
for employing the VM wavelets in the SST. The first step in the execution of the SST
is to calculate the FRA rule in (18), and this involves the calculation of the derivative
of the CWT. From Theorem 4, we have an explicit formulation for this derivative—
therefore, the FRA rule in (18) applied to a function g becomes

(ωg)(a, b)=
∂b(Wψ�j

g)(a, b)

2π i(Wψ�j
g)(a, b)

= 〈g(x), ∂bψ
�
j (

x−b
a )〉

2π i〈g(x), ψ�j ( x−b
a )〉 = − 1

a 〈g(x), ψ�x,3,2, j (
x−b

a )〉
2π i〈g(x), ψ�x,4,1, j (

x−b
a )〉 ,
(59)

for j = −3, . . . , 3 (unless (Wψ�x,4,1, j
g)(a, b) = 0), with ψx,3,2, j and ψx,4,1, j given in

(57) and (56), respectively.
Lastly in this section, we describe the computation of Hψ j in the construc-

tion of the analytic VM wavelets in (58). Since each ψ j = ψx,4,1, j is a linear
combination of the B-splines Nx,4,−3, . . . , Nx,4,4 [according to (56)], and since the
Hilbert transform is translation invariant, the computation of Hψ j consists in finding
HNx,4,−3, . . . ,HNx,4,4. To this end, we recall the recurrence formula for the calcula-
tion of the cubic B-spline Nx,4,k, k = −3, . . . , 4, in terms of lower order B-splines:
for 	 = 2, 3, 4,

Nx,	,k(x) = x − xk

x	+k−1 − xk
Nx,	−1,k(x)+ x	+k − x

x	+k − xk+1
Nx,	−1,k+1(x),

with initial function Nx,1,k := χ[k,k+1), the characteristic function on the interval
[k, k +1) (see de Boor 2001). It has been shown in Chen et al. (2006) that this relation
is preserved by the Hilbert transform, so that, for 	 = 2, 3, 4,

(HNx,	,k)(x) = x − xk

x	+k−1 − xk
(HNx,	−1,k)(x)+ x	+k − x

x	+k − xk+1
(HNx,	−1,k+1)(x),

with initial function

(HNx,1,k)(x) = 1

π
ln

∣∣∣∣
x − xk

x − xk+1

∣∣∣∣.
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This recurrence formulation may therefore be used to construct the analytic VM
waveletsψ�j = ψ�x,4,1, j , j = −3, . . . , 3, in (58). The same procedure may be applied
to obtain ψ�x,3,2, j , required in (59).

5 Implementation and numerical experiments

Our proposed method of instantaneous frequency estimation of signal components
can be summarized as follows:

1. Given a signal composed of a number of (not necessarily stationary) oscillating
components, we apply EMD, equipped with our real-time cubic spline interpola-
tion scheme, to separate the signal into its IMF components.

2. We apply the SST, with the analytic VM wavelet as analysis wavelet in the CWT,
to each IMF separately to estimate its IF.

3. Lastly, we apply a smoothing spline curve fitting scheme, with automatic optimal
smoothing parameter selection through generalized cross-validation, to the digital
image produced by the SST to obtain the IF curve of a given IMF.

In practice, to apply this curve fitting scheme to the SST grayscale image, we
proceed as follows.

Let S be theμ×ν output matrix of the SST, and let the entries in S be denoted by pi, j

for i = 1, . . . , μ and j = 1, . . . , ν. The entries pi, j may be interpreted as grayscale
image pixel intensities, with the definition that an entry value of 0 represents a white
pixel, and increasingly higher values represent increasingly darker pixels. (Note that
pixels with a low intensity usually represent dark pixels in practice, while high intensity
pixels usually represent light pixels. This setup is inverted in the above definition for
application to the SST output matrix S.)

For each j = 1, . . . , � νn �, if

p∗
nj := max

{
p1,nj , . . . , pμ,nj

}
> M,

where M > 0 (a thresholding parameter) and n > 0 (typically between 10 and 20)
are chosen by the user, we record the row index of p∗

nj and denote this value by rnj

(so that 1 ≤ rnj ≤ μ). Otherwise, we record the mean of the row indices of the pixel
intensities higher than the 99th percentile of

{
p1,nj , . . . , pμ,nj

}
and set this equal to

rnj .
Applying this process for each j = 1, . . . , � νn �, we obtain a sequence of ordered

pairs
{
(rn, n), . . . , (rn�ν/n�, n� νn �)}, to which we fit a smoothing spline curve with the

optimal smoothing parameter determined through generalized cross-validation (see
Wahba 1975; Craven and Wahba 1978; Golub et al. 1979; Carew et al. 2003).

We remark that the choice of using the 99th percentile of p1,nj , . . . , pμ,nj as a
thresholding parameter produces good results in practice, but it may be adjusted by
the user.

We proceed to test our method on three representative signal types.
Our first test signal is a stationary signal with three components with integer fre-

quencies, given by
f (t) = f1(t)+ f2(t)+ f3(t), (60)
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Fig. 4 Top to bottom original signal f (t) and its components f1(t), f2(t), f3(t)

where

f1(t) = 1
2 cos 2π(16t); f2(t) = 2 cos 2π(4t); f3(t) = 8 cos 2π t. (61)

The signal f together with its three components are displayed in Fig. 4.
Figure 5 displays the three IMF’s C1, C2 and C3, approximating the components

f1, f2 and f3, respectively, constructed through applying EMD with our real-time
cubic spline interpolation scheme. In Fig. 6, we illustrate the results of applying our
modified SST (with the analytic VM wavelet of Sect. 4) to each IMF C1, C2 and C3
obtained from the modified EMD. The SST digital image output is shown in grayscale
in each case. The pixels selected for curve fitting are circled in red, and the resulting
smoothing spline curve is shown as a red dashed line in each case. With the true IF’s
given by φ′

2(t) = 4 and φ′
3(t) = 1, the estimated IF’s φ′

2 and φ′
3 in the second and

third rows in Fig. 6 are very accurate. For the higher frequency component, the SST
digital image in the first row of Fig. 6 displays a more noisy result, causing a lower
estimated IF than the true value of 16, although it still reveals a constant frequency.
We remark that greater noise reduction may be achieved by choosing an analytic VM
wavelet with a higher number of vanishing moments (at the expense of computation
time). The result here was obtained with an analytic VM wavelet with 5 vanishing
moments (in terms of cubic B-splines so that m = 4).

Second, we test our method on another stationary signal with three components,
two of which have irrational frequency values, given by

g(t) = g1(t)+ g2(t)+ g3(t), (62)

where

g1(t) = cos 2π(
√

29t); g2(t) = cos 2π(
√

13t); g3(t) = cos 2π t. (63)

The signal g together with its three components are displayed in Fig. 7.
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Fig. 5 First three IMF’s C1, C2 and C3 (top to bottom) constructed through applying EMD with our
real-time cubic spline interpolation scheme

Fig. 6 The estimated IF’s φ′
1, φ

′
2 and φ′

3 (top to bottom) of the IMF’s C1, C2, C3, respectively, graphed
as the red dashed line in each case. The IF’s are estimated from the digital image output of the SST applied
to each IMF separately, shown in grayscale in each case, by fitting a smoothing spline curve through the
pixels circled in red

Figure 8 displays the three IMF’s C1, C2 and C3, approximating the components
g1, g2 and g3, respectively, while Fig. 9 illustrates the results of applying our modified
SST to each IMF C1, C2 and C3, with the SST digital image output in grayscale, the
pixels selected for curve fitting circled in red, and the resulting smoothing spline curve
shown as a red dashed line in each case. The estimated IF’s obtained through curve
fitting applied to the SST digital image are remarkably accurate in each case.

Lastly, we implement our method for the non-linear, non-stationary signal with two
components considered in Sect. 2, given by
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Fig. 7 Top to bottom original signal g(t) and its components g1(t), g2(t), g3(t)

Fig. 8 First three IMF’s C1, C2 and C3 (top to bottom) constructed through applying EMD with our
real-time cubic spline interpolation scheme

h(t) = h1(t)+ h2(t), (64)

where {
h1(t) = 0.1(t4 − 12t3 + 44t2 − 48t) cos 2π(3t + 0.2t2);
h2(t) = e(−0.15t) cos 2π(2t + 0.2 cos t),

(65)

so that

φ′
1(t) = 3 + 0.4t; φ′

2(t) = 2 − 0.2 sin t.

The signal h and its two components are shown in Fig. 10.
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Fig. 9 The estimated IF’s φ′
1, φ

′
2 and φ′

3 (top to bottom) of the IMF’s C1, C2, C3, respectively, graphed
as the red dashed line in each case. The IF’s are estimated from the digital image output of the SST applied
to each IMF separately, shown in grayscale in each case, by fitting a smoothing spline curve through the
pixels circled in red

Fig. 10 Top to bottom original signal h(t) and its components h1(t) and h2(t)

Figure 11 displays the two IMF’s C1 and C2, approximating the components h1
and h2, respectively, while Fig. 12 illustrates the results of applying our modified SST
to each IMF C1 and C2, with the SST digital image output in grayscale, the pixels
selected for curve fitting circled in red, and the resulting smoothing spline curve shown
as a red dashed line in each case.

6 Proofs on blending operator construction

In this section, we provide proofs for Theorem 1, which states that the quasi-
interpolation operator Q of Definition 1 preserves polynomials of degree ≤ 3, and
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Fig. 11 First two IMF’s C1 and C2 constructed through applying EMD with our real-time cubic spline
interpolation scheme

Fig. 12 The estimated IF’s φ′
1 and φ′

2 of the IMF’s C1 and C2, respectively, graphed as the red dashed
line in each case. The IF’s are estimated from the digital image output of the SST applied to each IMF
separately, shown in grayscale in each case, by fitting a smoothing spline curve through the pixels circled
in red

Theorem 3, which states that the blending operator P has a local formulation and
satisfies the polynomial preservation property (25) and the Hermite interpolation con-
ditions (26) and (27).

Proof of Theorem 1 We divide the proof into three parts.

(a) Let x ∈ [x6, xN−5], so that (34) becomes simply
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(Q f )(x) =
N−3∑
i=3

f (xi )Mi (x), (66)

from the support properties of Mi in (41). We proceed to show that the constants
ai, j , i = 3, . . . , N − 3, j = 0, 1, 2, 3, satisfy the formulation (36) in Definition
1 if Q satisfies (42), for p(x) = x	, 	 = 0, 1, 2, 3.
To this end, by using (66) and the second equation in (35), the left-hand side of
(42) becomes

(Qp)(x) =
N−3∑
i=3

x	i

3∑
j=0

ai, j Nx,4,i+ j−3(x)

=
3∑

j=0

N−6+ j∑
k= j

x	k− j+3ak− j+3, j Nx,4,k(x)

=
N−3∑
k=0

min{3,k}∑
j=max{0,k−N+6}

x	k− j+3ak− j+3, j Nx,4,k(x), (67)

for p(x) = x	, 	 = 0, 1, 2, 3. Next, from Marsden’s identity on the interval
[x6, xN−5], we have

x	 =
N−6∑
k=3

ξ	(k)Nx,4,k(x), 	 = 0, 1, 2, 3, (68)

where ξ	 is defined in terms of the classical symmetric functions as in (31), (32)
and (33). By substituting (67) and (68) in (42), we obtain

min{3,k}∑
j=max{0,k−N+6}

x	k− j+3ak− j+3, j = ξ	(k), 	 = 0, 1, 2, 3,

for k = 3, . . . , N − 6, yielding (for N ≥ 9)

3∑
j=0

x	k− j+3ak− j+3, j = ξ	(k), 	 = 0, 1, 2, 3.

The formulation (36) in Definition 1 then follows by using Cramer’s rule.
(b) Next, let x ∈ [a, x6], so that (34) becomes

(Q f )(x) =
3∑
	=1

f (	)(x0)M−	(x)+
8∑

i=0

f (xi )Mi (x), (69)
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from the support properties of Mi in (41). As in the first part, we show that the
constants ai, j , i = −3, . . . , 2, satisfy the formulation (36), (37), (38) in Definition
1 if Q satisfies (42), for p(x) = x	, 	 = 0, 1, 2, 3.
By using (69) and the first two equations in (35), the left-hand side of (42) becomes

(Qp)(x) = (	)(	− 1)(	− 2)x	−3
0 a−3,0 Nx,4,−3(x)

+(	)(	− 1)x	−2
0

1∑
j=0

a−2, j Nx,4, j−3(x)

+	x	−1
0

2∑
j=0

a−1, j Nx,4, j−3(x)

+
8∑

i=0

x	i

3∑
j=0

ai, j Nx,4,i+ j−3(x)

= (	)(	− 1)(	− 2)x	−3
0 a−3,0 Nx,4,−3(x)

+
−2∑

k=−3

(	)(	− 1)x	−2
0 a−2,k+3 Nx,4,k(x)

+
−1∑

k=−3

	x	−1
0 a−1,k+3 Nx,4,k(x)

+
3∑

j=0

j+5∑
k= j−3

x	k− j+3ak− j+3, j Nx,4,k(x)

= (	)(	− 1)(	− 2)x	−3
0 a−3,0 Nx,4,−3(x)

+
−2∑

k=−3

(	)(	− 1)x	−2
0 a−2,k+3 Nx,4,k(x)

+
−1∑

k=−3

	x	−1
0 a−1,k+3 Nx,4,k(x)

+
8∑

k=−3

min{3,k+3}∑
j=max{0,k−5}

x	k− j+3ak− j+3, j Nx,4,k(x). (70)

Combining (42) and (70) with Marsden’s identity on the interval [a, x6], namely

x	 =
5∑

k=−3

ξ	(k)Nx,4,k(x), 	 = 0, 1, 2, 3,
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we have
[
	(	− 1)(	− 2)x	−3

0 a−3,0 + 	(	− 1)x	−2
0 a−2,0 + 	x	−1

0 a−1,0

+x	0a0,0

]
Nx,4,−3(x)

+
⎡
⎣	(	− 1)x	−2

0 a−2,1 + 	x	−1
0 a−1,1 +

1∑
j=0

x	1− j a1− j, j

⎤
⎦ Nx,4,−2(x)

+
⎡
⎣	x	−1

0 a−1,2 +
2∑

j=0

x	2− j a2− j, j

⎤
⎦ Nx,4,−1(x)

+
2∑

k=0

⎡
⎣

3∑
j=0

x	k− j+3ak− j+3, j

⎤
⎦ Nx,4,k(x) =

2∑
k=−3

ξ	(k)Nx,4,k(x).

The result follows by comparing the left hand side and right hand side for k =
−3, . . . , 2, and using Cramer’s rule. The formulation (36) corresponds to k =
0, 1, 2, while (37) and (38) (in terms of confluent Vandermonde determinants)
correspond to k = −3,−2,−1.

(c) Lastly, when x ∈ [xN−5, b], we obtain the coefficients in (36), (39) and (40) under
the requirement that Q satisfies (42). The proof follows a similar pattern as the
proof in part (b) above. ��

Using Theorems 1 and 2, we may prove Theorem 3.

Proof of Theorem 3 (i) Firstly, from (48), (49) and the support properties (41) and
(46), it is clear that P is local.

(ii) To show the polynomial preservation property (25), let p be a polynomial in π3.
Then, from Theorem 1,

(P p)(x) = (Qp)(x)+ (Rp)(x)− (R(Qp))(x)

= p(x)+ (Rp)(x)− (Rp)(x) = p(x),

for all x ∈ [a, b].
(iii) To show that P f interpolates f at xi , i = 0, . . . , N + 1, we may use Theorem

2 together with (43), (47) and (45) to deduce that

(P f )(xi ) = (Q f )(xi )+ (R f )(xi )− (R(Q f ))(xi )

= (Q f )(xi )+ f (xi )− (Q f )(xi ) = f (xi ),

for i = 0, . . . , N + 1, yielding (26).
(iv) Lastly, we observe that

(R(Q f ))(n)(x0) = (Q f )(n)(x0); n = 1, 2, 3;
(R(Q f ))(n)(xN+1) = (Q f )(n)(xN+1), n = 1, 2,
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from the construction of R and the spline molecules Li in Definition 2. Therefore,
using also Theorem 2, we have

(P f )(n)(x0) = (Q f )(n)(x0)+ (R f )(n)(x0)− (R(Q f ))(n)(x0)

= (Q f )(n)(x0)+ f (n)(x0)− (Q f )(n)(x0) = f (n)(x0),

for n = 1, 2, 3, and

(P f )(n)(xN+1) = (Q f )(n)(xN+1)+ (R f )(n)(xN+1)− (R(Q f ))(n)(xN+1)

= (Q f )(n)(xN+1)+ f (n)(xN+1)− (Q f )(n)(xN+1)

= f (n)(xN+1),

for n = 1, 2, so that (27) follows. ��

7 Comparison of methods

We now turn our attention to graphically comparing our hybrid EMD-SST computa-
tional scheme with the original EMD-HSA approach. To this end, we apply the two
methods to the three signals considered in Sect. 5.

In Fig. 13, we compare the construction of IMF’s through the two methods for
the first test signal f (t) defined in (60), (61). The true components f1(t), f2(t)
and f3(t) are shown in the left hand side column. The middle column displays the
IMF’s C O

1 (t), C O
2 (t) and C O

3 (t) constructed through the original EMD algorithm
using standard cubic spline interpolation in the sifting process, while the right hand
side column shows the IMF’s C S

1 (t), C S
2 (t) and C S

3 (t) obtained by applying the
modified EMD using our real-time cubic spline interpolation scheme in the sifting
process. The results are comparable for the first two components; however, our real-
time interpolation scheme produces a closer approximation of the third component,
especially close to the boundaries.

A comparison of the estimated IF’s is given in Fig. 14. The column on the left
displays the true IF’s φ′

1(t) = 16, φ′
2(t) = 4 and φ′

3(t) = 1. The middle column
displays the estimated IF’s φ′O

1 (t), φ′O
2 (t) and φ′O

3 (t), obtained by applying Hilbert
spectral analysis to each IMF C O

j , j = 1, 2, 3. On the right we show our estimated

IF’s φ′S
1 (t), φ

′S
2 (t) and φ′S

3 (t), constructed through smoothing spline curve fitting (with
generalized cross-validation) to our modified SST applied to each C S

j , j = 1, 2, 3
separately. Our hybrid EMD-SST method yield better results than the original EMD-
HSA approach close to the boundaries. Although our estimation φ′S

1 shows a constant
frequency, it is a bit lower than the true value of 16. As explained in Sect. 5, this
could be improved upon by implementing an analysis wavelet with a higher number
of vanishing moments.

In Fig. 15, we compare the construction of IMF’s for the signal g(t) defined in
(62), (63). The true components g1(t), g2(t) and g3(t) are shown in the left hand side
column. The middle column displays the IMF’s C O

1 (t), C O
2 (t) and C O

3 (t) constructed
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through the original EMD algorithm using standard cubic spline interpolation, while
the right hand side column shows the IMF’s C S

1 (t), C S
2 (t) and C S

3 (t) obtained by
applying the modified EMD using our real-time cubic spline interpolation scheme. Our
method provides a better approximation of especially the first and second components
(rows 1 and 2).

A comparison of the estimated IF’s is given in Fig. 16. The column on the left
displays the true IF’s φ′

1(t) = √
29 ≈ 5.385, φ′

2(t) = √
13 ≈ 3.606 and φ′

3(t) = 1.
The middle column displays the estimated IF’s φ′O

1 (t), φ′O
2 (t) and φ′O

3 (t), obtained
by applying Hilbert spectral analysis to each IMF C O

j , j = 1, 2, 3. On the right

we show our estimated IF’s φ′S
1 (t), φ

′S
2 (t) and φ′S

3 (t), constructed through smoothing
spline curve fitting (with generalized cross-validation) and our modified SST applied
to each C S

j , j = 1, 2, 3 separately. Our hybrid EMD-SST scheme yield much bet-
ter estimations of all three IF’s φ′

1(t), φ
′
2(t) and φ′

3(t) than the original EMD-HSA
approach.

In Fig. 17, we compare the construction of IMF’s for the non-stationary signal h(t),
defined in (64), (65). The true components h1(t) and h2(t) are shown in the left hand
side column. The middle column displays the IMF’s C O

1 (t) and C O
2 (t) constructed

through the original EMD algorithm using standard cubic spline interpolation in the
sifting process, while the right hand side column shows the IMF’s C S

1 (t) and C S
2 (t)

obtained by applying the modified EMD using our real-time cubic spline interpolation
scheme in the sifting process. Our method yield somewhat more accurate approxima-
tions of both signal components.

Lastly, a comparison of the estimated IF’s is given in Fig. 18. The column on the left
displays the true IF’s φ′

1(t) = 3 + 0.4t and φ′
2(t) = 2 − 0.2 sin t . The middle column

displays the estimated IF’s φ′O
1 (t) and φ′O

2 (t), obtained by applying Hilbert spectral
analysis to each IMF C O

j , j = 1, 2. On the right we show our estimated IF’s φ′S
1 (t)

andφ′S
2 (t), constructed through smoothing spline curve fitting (with generalized cross-

validation) and our modified SST applied to each C S
j , j = 1, 2 separately. Our hybrid

EMD-SST provide much better estimations of the IF’s of both signal components.

8 Final remarks

In this paper, the sifting process of the EMD scheme is used to decompose a given signal
f , by applying our local cubic spline interpolation of local maxima and local minima.
In a nutshell, while the first signal component f1 of f is obtained by subtracting
a certain cubic spline function s1 from f , the remaining signal components, fk =
sk−1 − sk , for k = 2, . . . , K , are cubic spline functions, where sk is based on cubic
spline interpolation of the local extrema of the previous cubic spline sk−1. Hence,
the decomposition of f into its signal components f1, . . . , fK may be viewed as
waveform-based decomposition. Observe that the frequency content of each fk is
inherited from the alternate neighboring local maxima and minima.

On the other hand, the popular signal decomposition schemes using wavelets and/or
wavelet-packets are based mainly on frequency bands (in terms of multi-level scales),
without direct consideration of waveforms. Therefore it is inconceivable that wavelet
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decomposition could be applied to compute the signal components from a blind source
signal in AHM. For example, let us consider the blind source

f (t) = cos 2π t + a cos 2πωt, a > 0, 0 < ω < 1, (71)

with two (unknown) frequencies 1 and ω, as considered in Wu et al. (2011). When
a wavelet decomposition scheme is applied to f in (71), it is necessary to iterate
significantly over 2 times to yield a slowly oscillating remainder, for any choice of
bi-orthogonal wavelet filter pair. Hence, there would be over two signal components
and instantaneous frequencies at each time instant t .

As mentioned in the introduction, the EMD scheme is not designed to separate a
blind source signal into specific components of the model AHM either. For instance,
the EMD is not capable of separating the blind source f in (71) at all for 0.75 < ω < 1
(Rilling and Flandrin 2008).

When certain specifications are imposed on the AHM, the SST method can be
applied directly, without EMD, to identify the frequency ω = 0.70, but fails for
0.90 ≤ ω < 1 (see Fig. 5 in Wu et al. 2011). On the other hand, under somewhat
less restrictive conditions, the direct method introduced in Chui and Mhaskar (2015)
is capable of finding the two (unknown) frequencies 1 and ω, even for ω = 0.99.
In a forthcoming paper, we will replace SST by this direct method for our hybrid
approach without imposing any specifications on the AHM. This is feasible, since the
signal restrictions in Chui and Mhaskar (2015) are mainly for finding the number K of
signal components of the AHM and separating the instantaneous frequencies. These
requirements are no longer necessary in view of our modified and improved sifting
process.
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