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Abstract In this paper, we discuss the application of generalized multiscale finite
element method (GMsFEM) to elasticity equation in heterogeneous media. We con-
sider steady state elasticity equations though some of our applications are motivated
by elastic wave propagation in subsurface where the subsurface properties can be
highly heterogeneous and have high contrast. We present the construction of main
ingredients for GMsFEM such as the snapshot space and offline spaces. The latter
is constructed using local spectral decomposition in the snapshot space. The spectral
decomposition is based on the analysis which is provided in the paper. We consider
both continuous Galerkin and discontinuous Galerkin coupling of basis functions.
Both approaches have their cons and pros. Continuous Galerkin methods allow avoid-
ing penalty parameters though they involve partition of unity functions which can alter
the properties of multiscale basis functions. On the other hand, discontinuous Galerkin
techniques allow gluing multiscale basis functions without any modifications. Because
basis functions are constructed independently from each other, this approach provides
an advantage. We discuss the use of oversampling techniques that use snapshots in
larger regions to construct the offline space. We provide numerical results to show
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that one can accurately approximate the solution using reduced number of degrees of
freedom.

Keywords Multiscale finite element method · Elasticity · Multiscale ·
Model reduction

Mathematics Subject Classification 65N99

1 Introduction

Many materials in nature are highly heterogeneous and their properties can vary at dif-
ferent scales. Direct numerical simulations in such multiscale media are prohibitively
expensive and some type of model reduction is needed. Multiscale approaches such as
homogenization and numerical homogenization (Cao 2005; Abdulle 2006; Schröder
2014; Buck et al. 2013; Francfort and Murat 1986; Oleinik et al. 2009; Vinh and Tung
2011; Liu et al. 2009) have been routinely used to model macroscopic properties and
macroscopic behavior of elastic materials. These approaches compute the effective
material properties based on representative volume simulations. These properties are
further used to solve macroscale equations. In this paper, our goal is to design multi-
scale method for elasticity equations in the media when the media properties do not
have scale separation and classical homogenization and numerical homogenization
techniques do not work. We are motivated by seismic wave applications when elastic
wave propagation in heterogeneous subsurface formation is studied where the sub-
surface properties can contain vugs, fractures, and cavities of different sizes. In this
paper, we develop multiscale methods for static problems and present their analysis.

In this paper, we design a multiscale model reduction techniques using GMsFEM
for steady state elasticity equation in heterogeneous media

∂

∂xi
(ci jkl(x)ekl(u)) = f j (x), (1)

where ekl(u) = 1
2 (
∂uk
∂xl

+ ∂ul
∂xk
) and ci jkl(x) is a multiscale field with a high contrast.

GMsFEM has been studied for a various applications related to flow problems (see
Efendiev et al. 2013a, 2014a; Chung et al. 2014; Efendiev et al. 2013c, 2014b). In
GMsFEM, we solve Eq. (1) on a coarse grid each coarse grid consists of a union of
fine-grid blocks. In particular, we design (1) a snapshot space (2) an offline space
for each coarse patch. The offline space consists of multiscale basis functions that are
coupled in a global formulation. In this paper, we consider several choices for snapshot
spaces, offline spaces, and global coupling. The main idea of the snapshot space in
each coarse patch is to provide an exhaustive space where an appropriate spectral
decomposition is performed. This space contains local functions that can mimic the
global solution behavior in the coarse patch for all right hand sides or boundary
conditions. We consider two choices for the snapshot space. The first one consists of
all fine-grid functions in each coarse patch and the second one consists of harmonic
extensions. Next, we propose a local spectral decomposition in the snapshot space
which allows selecting multiscale basis functions. This local spectral decomposition
is based on the analysis and depends on the global coupling mechanisms. We consider
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several choices for the local spectral decomposition including oversampling approach
where larger domains are used in the eigenvalue problem. The oversampling technique
uses larger domains to compute snapshot vectors that are more consistent with local
solution space and thus can have much lower dimension.

To couple multiscale basis functions constructed in the offline space, we consider
two methods, conforming Galerkin (CG) approach and discontinuous Galerkin (DG)
approach based on symmetric interior penalty method for (1). These approaches are
studied for linear elliptic equations in Efendiev et al. (2013a, b). Both approaches pro-
vide a global coupling for multiscale basis functions where the solution is sought in the
space spanned by these multiscale basis functions. This representation allows approx-
imating the solution with a reduced number of degrees of freedom. The constructions
of the basis functions are different for continuous Galerkin and discontinuous Galerkin
methods as the local spectral decomposition relies on the analysis. In particular, for
continuous Galerkin approach, we use partition of unity functions and discuss several
choices for partition of unity functions. We provide an analysis of both approaches.
The offline space construction is based on the analysis.

We present numerical results where we study the convergence of continuous and dis-
continuous Galerkin methods using various snapshot spaces as well as with and without
the use of oversampling. We consider highly heterogeneous coefficients that contain
high contrast. Our numerical results show that the proposed approaches allow approx-
imating the solution accurately with fewer degrees of freedom. In particular, when
using the snapshot space consisting of harmonic extension functions, we obtain better
convergence results. In addition, oversampling methods and the use of snapshot spaces
constructed in the oversampled domains can substantially improve the convergence.

The paper is organized as follows. In Sect. 2, we state the problem and the notations
for coarse and fine grids. In Sect. 3, we give the construction of multiscale basis
functions, snapshot spaces and offline spaces, as well as global coupling via CG and
DG. In Sect. 4, we present numerical results. Sections 5–6 are devoted to the analysis
of the methods.

2 Preliminaries

In this section, we will present the general framework of GMsFEM for linear elasticity
in high-contrast media. Let D ⊂ R

2 (or R
3) be a bounded domain representing the

elastic body of interest, and let u = (u1, u2) be the displacement field. The strain
tensor ε(u) = (εi j (u))1≤i, j≤2 is defined by

ε(u) = 1

2
(∇u + ∇uT ),

where ∇u = (
∂ui
∂x j
)1≤i, j≤2. In the component form, we have

εi j (u) = 1

2

( ∂ui

∂x j
+ ∂u j

∂xi

)
, 1 ≤ i, j ≤ 2.

In this paper, we assume the medium is isotropic. Thus, the stress tensor σ(u) =
(σi j (u))1≤i, j≤2 is related to the strain tensor ε(u) in the following way
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σ = 2με + λ∇ · u I,

where λ > 0 and μ > 0 are the Lamé coefficients. We assume that λ and μ have
highly heterogeneous spatial variations with high contrasts. Given a forcing term
f = ( f1, f2), the displacement field u satisfies the following

− ∇ · σ = f, in D (2)

or in component form

−
(∂σi1

∂x1
+ ∂σi2

∂x2

)
= fi , in D, i = 1, 2. (3)

For simplicity, we will consider the homogeneous Dirichlet boundary condition u = 0
on ∂D.

Let T H be a standard triangulation of the domain D where H > 0 is the mesh size.
We call T H the coarse grid and H the coarse mesh size. Elements of T H are called
coarse grid blocks. The set of all coarse grid edges is denoted by E H and the set of all
coarse grid nodes is denoted by S H . We also use NS to denote the number of coarse
grid nodes, N to denote the number of coarse grid blocks. In addition, we let T h be a
conforming refinement of the triangulation T H . We call T h the fine grid and h > 0
is the fine mesh size. We remark that the use of the conforming refinement is only to
simplify the discussion of the methodology and is not a restriction of the method.

Let V h be a finite element space defined on the fine grid. The fine-grid solution uh

can be obtained as

a(uh, v) = ( f, v), ∀v ∈ V h, (4)

where

a(u, v) =
∫

D

(
2με(u) : ε(v)+ λ∇ · u ∇ · v

)
dx, ( f, v) =

∫

D
f · v dx (5)

and

ε(u) : ε(v) =
2∑

i, j=1

εi j (u)εi j (v), f · v =
2∑

i=1

fivi . (6)

Now, we present GMsFEM. The discussion consists of two main steps, namely, the
construction of local basis functions and the global coupling. In this paper, we will
develop and analyze two types of global coupling, namely, the continuous Galerkin
coupling and the discontinuous Galerkin coupling. These two couplings will require
two types of local basis functions. In essence, the CG coupling will need vertex-
based local basis functions and the DG coupling will need element-based local basis
functions.

For each vertex xi ∈ S H in the coarse grid, we define the coarse neighborhood ωi

by
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Fig. 1 Illustration of a coarse neighborhood, oversampled coarse neighborhood, coarse block and over-
sampled coarse block

ωi =
⋃

{K j : K j ⊂ T H , xi ∈ K j }.

That is, ωi is the union of all coarse grid blocks K j having the vertex xi (see Fig. 1). A
snapshot space V i,snap is constructed for each coarse neighborhood ωi . The snapshot
space contains a large set that represents the local solution space. A spectral problem is
then constructed to get a reduced dimensional space. Specifically, the spectral problem
is solved in the snapshot space and eigenfunctions corresponding to dominant modes
are used as the final basis functions. To obtain conforming basis functions, each of these
selected modes will be multiplied by a partition of unity function. The resulting space
is denoted by V i,off, which is called the offline space for the i-th coarse neighborhood
ωi . The global offline space V off is then defined as the linear span of all these V i,off, for
i = 1, 2, . . . , NS . The CG coupling can be formulated as to find uCG

H ∈ V off such that

a(uCG
H , v) = ( f, v), ∀v ∈ V off. (7)

The DG coupling can be constructed in a similar fashion. A snapshot space V i,snap

is constructed for each coarse grid block Ki . A spectral problem is then solved in the
snapshot space and eigenfunctions corresponding to dominant modes are used as the
final basis functions. This space is called the offline space V i,off for the i-th coarse grid
block. The global offline space V off is then defined as the linear span of all these V i,off,
for i = 1, 2, . . . , N . The DG coupling can be formulated as: find uDG

H ∈ V off such that

aDG(u
DG
H , v) = ( f, v), ∀v ∈ V off, (8)

where the bilinear form aDG is defined as

aDG(u, v) = aH (u, v)−
∑

E∈E H

∫

E

(
{σ(u) nE } · [v] + {σ(v) nE } · [u]

)
ds

+
∑

E∈E H

γ

h

∫

E
{λ+ 2μ}[u] · [v] ds (9)
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with

aH (u, v) =
∑

K∈TH

aK
H (u, v), aK

H (u, v) =
∫

K

(
2με(u) : ε(v)+ λ∇ · u∇ · v

)
dx,

(10)

where γ > 0 is a penalty parameter, nE is a fixed unit normal vector defined on the
coarse edge E and σ(u) nE is a matrix-vector product. Note that, in (9), the average
and the jump operators are defined in the classical way. Specifically, consider an inte-
rior coarse edge E ∈ E H and let K + and K − be the two coarse grid blocks sharing
the edge E . For a piecewise smooth function G, we define

{G} = 1

2
(G+ + G−), [G] = G+ − G−, on E,

where G+ = G|K + and G− = G|K − and we assume that the normal vector nE is
pointing from K + to K −. For a coarse edge E lying on the boundary ∂D, we define

{G} = [G] = G, on E,

where we always assume that nE is pointing outside of D. For vector-valued func-
tions, the above average and jump operators are defined component-wise. We note that
the DG coupling (8) is the classical interior penalty discontinuous Galerkin (IPDG)
method with our multiscale basis functions.

Finally, we remark that, we use the same notations V i,snap, V i,off and V off to denote
the local snapshot, local offline and global offline spaces for both the CG coupling and
the DG coupling to simplify notations.

3 Construction of multiscale basis functions

This section is devoted to the construction of multiscale basis functions.

3.1 Basis functions for CG coupling

We begin by the construction of local snapshot spaces. Letωi be a coarse neighborhood,
i = 1, 2, . . . , NS . We will define two types of local snapshot spaces. The first type of
local snapshot space is

V i,snap
1 = V h(ωi ),

where V h(ωi ) is the restriction of the conforming space to ωi . Therefore, V i,snap
1

contains all possible fine scale functions defined on ωi . The second type of local
snapshot space contains all possible harmonic extensions. Next, let V h(∂ωi ) be the
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restriction of the conforming space to ∂ωi . Then we define the fine-grid delta function
δk ∈ V h(∂ωi ) on ∂ωi by

δk(xl) =
{

1, l = k

0, l �= k,

where {xl} are all fine grid nodes on ∂ωi . Given δk , we find uk1 and uk2 by

−∇ · σ(uk1) = 0, in ωi

uk1 = (δk, 0)T , on ∂ωi
(11)

and
−∇ · σ(uk2) = 0, in ωi

uk2 = (0, δk)
T , on ∂ωi .

(12)

The linear span of the above harmonic extensions is our second type of local snapshot
space V i,snap

2 . To simplify the notations, we will use V i,snap to denote V i,snap
1 or V i,snap

2
when there is no need to distinguish the two type of spaces. Moreover, we write

V i,snap = span{ψ i,snap
k , k = 1, 2, . . . ,Mi,snap},

where Mi,snap is the number of basis functions in V i,snap.
We will perform a dimension reduction on the above snapshot spaces by the use of

a spectral problem. First, we will need a partition of unity function χi for the coarse
neighborhood ωi . One choice of a partition of unity function is the coarse grid hat
functions �i , that is, the piecewise bi-linear function on the coarse grid having value
1 at the coarse vertex xi and value 0 at all other coarse vertices. The other choice is
the multiscale partition of unity function, which is defined in the following way. Let
K j be a coarse grid block having the vertex xi . Then we consider

−∇ · σ(ζi ) = 0, in K j

ζi = (�i , 0)T , on ∂K j .
(13)

Then we define the multiscale partition of unity as �̃i = (ζi )1. The values of �̃i on
the other coarse grid blocks are defined similarly.

Based on our analysis to be presented in the next sections, we define the spectral
problem as

∫

ωi

(
2με(u) : ε(v)+ λ∇ · u ∇ · v

)
dx = ξ

∫

ωi

κ̃u · v dx, (14)

where ξ denotes the eigenvalue and

κ̃ =
NS∑

i=1

(λ+ 2μ)|∇χi |2. (15)
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The above spectral problem (14) is solved in the snapshot space. We let (φk, ξk) be
the eigenfunctions and the corresponding eigenvalues. Assume that

ξ1 ≤ ξ2 ≤ · · · ≤ ξMi,snap .

Then the first Li eigenfunctions will be used to construct the local offline space. We
define

ψ
i,off
l =

Mi,snap∑
k=1

φlkψ
i,snap
k , l = 1, 2, . . . , Li , (16)

where φlk is the k-th component of φl . The local offline space is then defined as

V i,off = span{χiψ
i,off
l , l = 1, 2, . . . , Li }.

Next, we define the global continuous Galerkin offline space as

V off = span{V i,off, i = 1, 2, . . . , NS}.

3.2 Basis functions for DG coupling

We will construct the local basis functions required for the DG coupling. We also
provide two types of snapshot spaces as in CG case. The first type of local snapshot
space is all possible fine grid bi-linear functions defined on Ki . The second type of
local snapshot space V i,snap for the coarse grid block Ki is defined as the linear span
of all harmonic extensions. Specifically, given δk , we find uk1 and uk2 by

−∇ · σ(uk1) = 0, in Ki

uk1 = (δk, 0)T , on ∂Ki
(17)

and
−∇ · σ(uk2) = 0, in Ki

uk2 = (0, δk)
T , on ∂Ki .

(18)

The linear span of the above harmonic extensions is the local snapshot space V i,snap.
We also write
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V i,snap = span{ψ i,snap
k , k = 1, 2, . . . ,Mi,snap},

where Mi,snap is the number of basis functions in V i,snap.
We will perform a dimension reduction on the above snapshot spaces by the use

of a spectral problem. Based on our analysis to be presented in the next sections, we
define the spectral problem as

∫

Ki

(
2με(u) : ε(v)+ λ∇ · u∇ · v) dx = ξ

H

∫

∂Ki

〈λ+ 2μ〉 u · v ds, (19)

where ξ denotes the eigenvalues and 〈λ+ 2μ〉 is the maximum value of {λ+ 2μ} on
∂Ki . The above spectral problem (19) is again solved in the snapshot space V i,snap.
We let (φk, ξk), for k = 1, 2, . . . ,Mi,snap be the eigenfunctions and the corresponding
eigenvalues. Assume that

ξ1 ≤ ξ2 ≤ · · · ≤ ξMi,snap .

Then the first Li eigenfunctions will be used to construct the local offline space. Indeed,
we define

ψ
i,off
l =

Mi,snap∑
k=1

φlkψ
i,snap
k , l = 1, 2, . . . , Li , (20)

where φlk is the k-th component of φl . The local offline space is then defined as

V i,off = span{ψ i,off
l , l = 1, 2, . . . , Li }.

The global offline space is also defined as

V off = span{V i,off, i = 1, 2, . . . , N }.

3.3 Oversampling technique

In this section,we present an oversampling technique for generating multiscale basis
functions. The main idea of oversampling is to solve local spectral problem in a larger
domain. This allows obtaining a snapshot space that has a smaller dimension since
snapshot vectors contain solutions oscillating near the boundaries. In our previous
approaches, we assume that the snapshot vectors can have an arbitrary value on the
boundary of coarse blocks which yield to large dimensional coarse spaces.

For the harmonic extension snapshot case,we solve equation (11) and (12) in ω+
i

(see Fig. 1) instead of ωi for CG case, and solve the Eqs. (17) and (18) in K +
i instead

of Ki for DG case. We denote the solutions as ψ+,snap
i , and their restrictions on ωi or

Ki as ψ snap
i . We reorder these functions according to eigenvalue behavior and write
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R+
snap =

[
ψ

+,snap
1 , . . . , ψ

+,snap
Msnap

]
and Rsnap =

[
ψ

snap
1 , . . . , ψ

snap
Msnap

]
.

where Msnap denotes the total number of functions kept in the snapshot space.
For CG case we define the following spectral problems in the space of snapshot:

RT
snap ARsnap�k = ζ(R+

snap)
T M+ R+

snap�k, (21)

or

(R+
snap)

T A+ R+
snap�k = ζ(R+

snap)
T M+ R+

snap�k, (22)

where

A = [akl ] =
∫

ωi

(
2με(ψ snap

k ) : ε(ψ snap
l )+ λ∇ · ψ snap

k ∇ · ψ snap
l

)
dx,

A+ = [a+
kl ] =

∫

ω+
i

(
2με(ψ+,snap

k ) : ε(ψ+,snap
l )+ λ∇ · ψ+,snap

k ∇ · ψ+,snap
l

)
dx,

M+ = [m+
kl ] =

∫

ω+
i

κ̃ψ
+,snap
k · ψ+,snap

l dx,

where κ̃ is defined through (15).
The local spectral problem for DG coupling is defined as

(R+
snap)

T A+ R+
snap�k = ζ(R+

snap)
T M+

1 R+
snap�k (23)

or

(R+
snap)

T A+ R+
snap�k = ζ(R+

snap)
T M+

2 R+
snap�k (24)

in the snapshot space, where

A+ = [a+
kl ] =

∫

K +
i

(
2με(ψ+,snap

k ) : ε(ψ+,snap
l )+ λ∇ · ψ+,snap

k ∇ · ψ+,snap
l

)
dx,

M+
1 = [m+

1,kl ] = 1

H

∫

K +
i

{λ+ 2μ}ψ+,snap
k · ψ+,snap

l dx,

M+
2 = [m+

2,kl ] = 1

H

∫

∂K +
i

{λ+ 2μ}ψ+,snap
k · ψ+,snap

l ds.

After solving above local spectral problems, we form the offline space as in the no
oversampling case, see Sect. 3.1 for CG coupling and Sect. 3.2 for DG coupling.
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Fig. 2 Young’s modulus (Model 1)

4 Numerical result

In this section, we present numerical results for CG-GMsFEM and DG-GMsFEM
with two models. We consider different choices of snapshot spaces such as local-
fine grid functions and harmonic functions and use different local spectral problems
such as no-oversampling and oversampling described in the previous section. For the
first model, we consider the medium that has no-scale separation and features such
as high conductivity channels and isolated inclusions. The Young’s modulus E(x)
is depicted in Fig. 2, λ(x) = ν

(1+ν)(1−2ν) E(x), μ(x) = 1
2(1+ν) E(x), the Poisson

ratio ν is taken to be 0.22. For the second example, we use the model that is used in
Gao et al. (2014) for the simulation of subsurface elastic waves (see Fig. 3). In all
numerical tests, we use constant force and homogeneous Dirichlet boundary condi-
tion. In all tables below, �∗ represent the minimum discarded eigenvalue of the cor-
responding spectral problem. We note that the first three eigenbasis (that correspond
to the first three smallest eigenvalues) are constant and linear functions, therefore we
present our numerical results starting from fourth eigenbasis in all cases. In the below,
dimension of a solution represents the total number of basis used for the finite element
space.

• We observe a fast decay in the error as more basis functions are added in both
CG-GMsFEM and DG-GMsFEM

• We observe the use of multiscale partition of unity improves the accuracy of CG-
GMsFEM compared to the use of piecewise bi-linear functions

• We observe an improvement in the accuracy (a slight improvement in CG case and
a large improvement in DG case) when using oversampling for the examples we
considered and the decrease in the snapshot space dimension.
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Fig. 3 Left λ, Right μ (Model 2)

4.1 Numerical results for Model 1 with conforming GMsFEM (CG-GMsFEM)

For the first model, we divide the domain D = [0, 1] × [0, 1] into 10 × 10 coarse
grid blocks, inside each coarse block we use 10 × 10 fine scale square blocks, which
results in a 100 × 100 fine grid blocks. The number of basis functions used to get the
reference solution is 20,402. We will show the performance of CG-GMsFEM with
the use of local fine-scale snapshots and harmonic extension snapshots. Both bi-linear
and multiscale partition of unity functions (see Sect. 3.1) will be considered. For each
case, we will provide the comparison using oversampling and no-oversampling. For
the error measure, we use relative weighted L2 norm error and weighted H1 norm
error to compare the accuracy of CG-GMsFEM, which is defined as

eL2 = ‖(λ+ 2μ)(u H − uh)‖L2(D)

‖(λ+ 2μ)uh‖L2(D)
, eH1 =

√
a(u H − uh, u H − uh)

a(uh, uh)

where u H and uh are CG-GMsFEM defined in (7) and fine-scale CG-FEM solution
defined in (4) respectively.

Tables 1 and 2 show the numerical results of using local fine-scale snapshots with
piecewise bi-linear function and multiscale functions as partition of unity respectively.
As we observe, when using more multiscale basis, the errors decay rapidly, especially
for multiscale partition of unity. For example, we can see that the weighted L2 error
drops from 24.9 to 1.1 % in the case of using bi-linear function as partition of unity with
no oversampling, while the dimension increases from 728 to 2,672. If we use multiscale
partition of unity, the corresponding weighted L2 error drops from 8.4 to 0.6 %, which
demonstrates a great advantage of multiscale partition of unity. Oversampling can help
improve the accuracy as our results indicate. The local eigenvalue problem used for
oversampling is Eq. (22).

Next, we present the numerical results when harmonic extensions are used as snap-
shots in Tables 3 and 4. We can observe similar trends as in the local fine-scale snapshot
case. The errors decrease as the number of basis functions increase. The L2 error is less
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Table 1 Relative errors between CG-MsFEM solution and the fine-scale CG-FEM solution, piecewise
bi-linear partition of unity functions are used

Dimension 1/�∗ eL2 eH1

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

728 1.3e+07 1.4e+07 0.249 0.215 0.444 0.409

1,214 3.1e+06 5.6e+06 0.048 0.047 0.220 0.213

1,700 7.0e+05 2.7e+06 0.027 0.024 0.162 0.153

2,186 1.8e+00 1.7e+06 0.018 0.016 0.133 0.123

2,672 9.9e−01 1.4e+06 0.011 0.010 0.105 0.099

The case with local fine-scale snapshots

Table 2 Relative errors between CG-MsFEM solution and the fine-scale CG-FEM solution, multiscale
partition of unity functions are used

Dimension 1/�∗ eL2 eH1

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

728 6.9e+06 6.2e+06 0.084 0.110 0.254 0.274

1,214 5.8e+00 3.2e+06 0.031 0.028 0.166 0.160

1,700 2.1e+00 1.2e+06 0.015 0.012 0.111 0.105

2,186 1.3e+00 5.9e+05 0.009 0.008 0.088 0.083

2,672 9.4e−01 1.0e+01 0.006 0.005 0.071 0.066

The case with local fine-scale snapshots

Table 3 Relative errors between CG-MsFEM solution and the fine-scale CG-FEM solution, piecewise
bi-linear partition of unity functions are used

Dimension 1/�∗ eL2 eH1

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

728 1.3e+07 1.2e+07 0.254 0.218 0.446 0.418

1,214 2.1e+06 5.5e+06 0.047 0.048 0.218 0.217

1,700 2.8e+05 3.2e+06 0.024 0.022 0.153 0.148

2,186 1.2e+00 9.8e+05 0.016 0.015 0.124 0.122

2,672 5.8e−01 2.1e+04 0.008 0.010 0.102 0.099

The case with harmonic snapshots

than 1 % when about 13 % of degrees of freedom is used. Similarly, the oversampling
method helps to improve the accuracy. In this case, the local eigenvalue problem used
for oversampling is Eq. (21).
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Table 4 Relative errors between CG-MsFEM solution and the fine-scale CG-FEM solution, multiscale
partition of unity functions are used

Dimension 1/�∗ eL2 eH1

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

728 7.0e+06 7.2e+06 0.087 0.112 0.259 0.291

1,214 5.5e+00 3.2e+06 0.034 0.032 0.174 0.169

1,700 1.9e+00 1.5e+06 0.015 0.013 0.115 0.112

2,186 1.0e+00 2.5e+05 0.009 0.008 0.090 0.089

2,672 7.1e−01 1.7e+00 0.007 0.006 0.075 0.074

The case with harmonic snapshots

4.2 Numerical results for Model 1 with DG-GMsFEM

In this section, we consider numerical results for DG-GMsFEM discussed in Sect. 3.2.
To show the performance of DG-GMsFEM, we use the same model (see Fig. 2) and
the coarse and fine grid settings as in the CG case. We will also present the result of
using both harmonic extension and eigenbasis (local fine-scale) as snapshot space. To
measure the error, we define broken weighted L2 norm error and H1 norm error

eH1 =
√∑

K∈TH

∫
K σ(u H − uh)) : ε(u H − uh)) dx∑
K∈TH

∫
K σ(uh) : ε(uh) dx

where u H and uh are DG-GMsFEM defined in (8) and fine-scale DG-FEM solution
defined in (50) respectively. We note that the dimension of the reference solution uh

here is 24,200.
In Table 5, the numerical results of DG-MsFEM with local fine-scale functions as

the snapshot space is shown. We observe that DG-MsFEM shows a better approxi-
mation compared to CG-MsFEM if oversampling is used. The error decreases more
rapidly as we add basis. More specifically, the relative broken L2 error and H1 error

Table 5 Relative errors between DG-MsFEM solution and the fine-scale DG-FEM solution

Dimension 1/�∗ eL2 eH1

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

728 4.9e−03 1.5e−03 0.281 0.141 0.554 0.525

1,184 3.0e−03 8.5e−04 0.118 0.019 0.439 0.209

1,728 2.1e−03 5.6e−04 0.108 0.012 0.394 0.145

2,184 1.2e−03 3.5e−04 0.073 0.007 0.348 0.096

2,696 1.0e−03 2.7e−04 0.056 0.002 0.300 0.058

The case with local fine-scale snapshots
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Table 6 Relative errors between DG-MsFEM solution and the fine-scale DG-FEM solution

Dimension 1/�∗ eL2 eH1

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

Without
oversampling

With
oversampling

728 2.9e−01 1.6e−01 0.285 0.149 0.557 0.528

1,184 1.6e−01 6.5e−02 0.193 0.076 0.515 0.366

1,728 1.0e−01 5.4e−02 0.114 0.009 0.432 0.155

2,184 7.1e−02 3.9e−02 0.081 0.004 0.326 0.078

2,696 6.3e−02 2.8e−02 0.043 0.002 0.231 0.060

The case with harmonic snapshots

decrease from 14.1, 52.5 to 0.2 and 5.8 % respectively, while the degrees of free-
dom of the coarse system increase from 728 to 2,696, where the latter is only 13.2 %
of the reference solution. The local eigenvalue problem used for oversampling is
Eq. (23).

Table 6 shows the corresponding results when harmonic functions are used to
construct the snapshot space. We observe similar errors decay trend as local fine-scale
snapshots are used. Oversampling can help improve the results significantly. Although
the error is very large when the dimension of coarse system is 728 (4 multiscale basis
is used), the error becomes very small when the dimension reaches 1,728 (9 multiscale
basis is used). The local eigenvalue problem used for oversampling here is Eq. (24).
We remark that oversampling can not only help decrease the error, but also decrease
the dimension of the snapshot space greatly in periodic case.

4.3 Numerical results for Model 2

The purpose of this example is to test a method for an earth model that is used in Gao
et al. (2014). The domain for the second model is D = (0, 6,000)2 (in meters) which
is divided into 900 = 30 × 30 square coarse grid blocks, inside each coarse block we
generate 20×20 fine scale square blocks. The reference solution is computed through
standard CG-FEM on the resulting 600 × 600 fine grid. We note that the dimension
of the reference solution is 722,402. The numerical results for CG-MsFEM and DG-
MsFEM are presented in Tables 7 and 8 respectively. We observe the relatively low
errors compared to the high contrast case and the error decrease with the dimension
increase of the offline space. Both coupling methods (CG and DG) show very good
approximation ability.

5 Error estimate for CG coupling

In this section, we present error analysis for both no oversampling and oversampling
cases. In the discussions below, a � b means a ≤ Cb, where C is a constant indepen-
dent of the mesh size and the contrast of the coefficient.
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Table 7 Relative errors between CG-MsFEM solution and the fine-scale CG-FEM solution, piecewise
bi-linear partition of unity functions are used

Dimension 1
�∗ eL2 eH1

6,968 4.9e+00 3.1e−03 5.4e−02

8,650 4.5e+00 2.7e−03 5.2e−02

10,332 3.9e+00 2.5e−03 4.9e−02

12,014 3.6e+00 2.2e−03 4.7e−02

The case with local fine-scale snapshots

Table 8 Relative errors
between DG-MsFEM solution
and the fine-scale CG-FEM
solution

The case with local fine-scale
snapshots

Dimension 1
�∗ eL2 eH1

7,200 6.3e−06 4.1e−03 7.1e−02

9,000 6.0e−06 4.0e−03 6.6e−02

10,800 4.6e−06 3.8e−03 6.3e−02

12,600 4.5e−06 3.1e−03 5.9e−02

5.1 No oversampling case

Lemma 1 Let ωn coarse neighborhood. For any ψ ∈ H1(ωn), we define r =
−div(σ (ψ)). Then we have

∫

ωn

2μχ2
n ε(ψ) : ε(ψ) dx +

∫

ωn

λχ2
n (∇ · ψ)2 dx

�
∣∣∣∣
∫

ωn

χ2
n r · ψ dx

∣∣∣∣ +
∫

ωn

(λ+ 2μ)|∇χn|2ψ2 dx, (25)

where χn is a scalar partition of unity subordinated to the coarse neighborhood ωn.

Proof Multiplying both sides of −div(σ (ψ)) = r by χ2
nψ , we have

∫

ωn

χ2
n r · ψ dx =

∫

ωn

2με(ψ) : ε(χ2
nψ) dx +

∫

ωn

λ∇ · ψ∇ · (χ2
nψ) dx

=
∫

ωn

2μχ2
n ε(ψ) : ε(ψ) dx +

∫

ωn

2μχnεi j (ψ)

(
ψi
∂χn

∂x j
+ ψ j

∂χn

∂xi

)
dx

+
∫

ωn

λχ2
n (∇ · ψ)2 dx +

∫

ωn

2λ∇ · ψχnψ · ∇χn dx

=
∫

ωn

2μχ2
n ε(ψ) : ε(ψ) dx +

∫

ωn

2
(√

2μχnεi j (ψ)
)

×
(√

μ/2

(
ψi
∂χn

∂x j
dx + ψ j

∂χn

∂xi

))
dx

+
∫

ωn

λχ2
n (∇ · ψ)2 dx +

∫

ωn

2
(√
λχn∇ · ψ)(√

λψ · ∇χn
)

dx . (26)
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Therefore,

∫

ωn

2μχ2
n ε(ψ) : ε(ψ) dx +

∫

ωn

λχ2
n (∇ · ψ)2 dx

≤
∣∣∣∣
∫

ωn

χ2
n r · ψ dx

∣∣∣∣ +
∣∣∣∣
∫

ωn

2
(√

2μχnεi j (ψ)
) (√

μ/2

(
ψi
∂χn

∂x j
+ ψ j

∂χn

∂xi

))
dx

+
∫

ωn

2(
√
λχn∇ · ψ)(√λψ · ∇χn) dx

∣∣∣∣

�
∣∣∣∣
∫

ωn

χ2
n r · ψ dx

∣∣∣∣ +
∫

ωn

(2λ+4μ)|∇χn|2ψ2 dx

�
∣∣∣∣
∫

ωn

χ2
n r · ψ dx

∣∣∣∣+
∫

ωn

(λ+2μ)|∇χn|2ψ2 dx . (27)

In the last step, we have used 2ab ≤ εa2 + 1
ε
b2, and (ab+cd)2 ≤ (a2 +c2)(b2 +d2).

��

Next, we will show the convergence of the CG-GMsFEM solution defined in (7)
without oversampling. We take Iωn uh to be the first Ln terms of spectral expansion of
u in terms of eigenfunctions of the problem −div(σ (φn)) = ξ κ̃φn solved in V h(ωn).
Applying Cea’s lemma, Lemma 1 and using the fact that χn � 1, we can get

∫

D

(
2με(uh − u H ) : ε(uh − u H )+ λ(∇ · (uh − u H ))

2
)

dx

�
Ns∑

n=1

∫

ωn

(
2με(χn(uh − Iωn uh)) : ε(χn(uh − Iωn uh))

+λ(∇ · (χn(uh − Iωn uh)))
2) dx

�
Ns∑

n=1

∫

ωn

2μχ2
n ε(uh − Iωn uh) : ε(uh − Iωn uh) dx

+
Ns∑

n=1

∫

ωn

λχ2
n (∇ · (uh − Iωn uh))

2 dx

+
Ns∑

n=1

∫

ωn

(λ+ 2μ)|∇χn|2(uh − Iωn uh)
2 dx

�
Ns∑

n=1

∫

ωn

(λ+ 2μ)|∇χn|2(uh − Iωn uh)
2 dx +

Ns∑
n=1

∣∣∣∣
∫

ωn

χ2
n g · (uh − Iωn uh)

∣∣∣∣ dx

�
Ns∑

n=1

∫

ωn

(λ+2μ)|∇χn|2(uh − Iωn uh)
2 dx+

Ns∑
n=1

∫

ωn

((λ+2μ)|∇χn|2)−1g2 dx,

(28)
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where g = fh + div(σ (Iωn uh)), fh is the L2 projection of f in V h , f is the right
hand side of (2).

Using the properties of the eigenfunctions, we obtain

∫

ωn

(λ+ 2μ)
Ns∑

s=1

|∇χs |2(uh − Iωn uh)
2 dx

� 1

ξ
ωn
Ln+1

∫

ωn

(
2με(uh − Iωn uh) : ε(uh − Iωn uh)+ λ(∇ · (uh − Iωn uh))

2
)

dx .

(29)

Then, the first term in the right hand side of (28) can be estimated as follows

Ns∑
n=1

∫

ωn

(λ+ 2μ)|∇χn|2(uh − Iωn uh)
2 dx

�
Ns∑

n=1

∫

ωn

(λ+ 2μ)
Ns∑

s=1

|∇χs |2|(uh − Iωn uh)
2 dx

�
Ns∑

n=1

1

ξ
ωn
Ln+1

∫

ωn

(
2με(uh − Iωn uh) : ε(uh − Iωn uh)

+λ(∇ · (uh − Iωn uh))
2
)

dx

�
Ns∑

n=1

α
ωn
Ln+1

ξ
ωn
Ln+1

∫

ωn

(
2μχ2

n ε(uh − Iωn uh) : ε(uh − Iωn uh)

+λχ2
n (∇ · (uh − Iωn uh))

2
)

dx

�
Ns∑

n=1

α
ωn
Ln+1

ξ
ωn
Ln+1

∫

ωn

(λ+ 2μ)|∇χn|2(uh − Iωn uh)
2 dx

+
Ns∑

n=1

α
ωn
Ln+1

ξ
ωn
Ln+1

∣∣∣∣
∫

ωn

χ2
n g · (uh − Iωn uh) dx

∣∣∣∣

� 1

�∗

( Ns∑
n=1

∫

ωn

(λ+ 2μ)|∇χn|2(uh − Iωn uh)
2 dx

+
Ns∑

n=1

∣∣∣∣
∫

ωn

χ2
n g · (uh − Iωn uh) dx

∣∣∣∣
)
, (30)

where

�∗ = minωn

ξ
ωn
Ln+1

α
ωn
Ln+1

,
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and

α
ωn
Ln+1 =

∫
ωn

2με(uh − Iωn uh) : ε(uh − Iωn uh) dx+∫
ωn
λ(∇ · (uh − Iωn uh))

2 dx∫
ωn

2μχ2
n ε(uh − Iωn uh) : ε(uh − Iωn uh) dx+∫

ωn
λχ2

n (∇ · (uh − Iωn uh))2 dx
.

Applying inequality (30) m times, we have

Ns∑
n=1

∫

ωn

(λ+ 2μ)|∇χn|2(uh − Iωn uh)
2 dx

�
(

1

�∗

)m Ns∑
n=1

∫

ωn

(λ+ 2μ)|∇χn|2(uh − Iωn uh)
2 dx

+
m∑

l=1

(
1

�∗

)l Ns∑
n=1

∣∣∣∣
∫

ωn

χ2
n g · (uh − Iωn uh) dx

∣∣∣∣

�
(

1

�∗

)m Ns∑
n=1

∫

ωn

(λ+ 2μ)|∇χn|2(uh − Iωn uh)
2 dx

+(�∗)m
(

1 −�−m∗
�∗ − 1

) Ns∑
n=1

∫

ωn

((λ+ 2μ)|∇χn|2)−1g2 dx, (31)

Taking into account that

Ns∑
n=1

∫

ωn

(λ+ 2μ)|∇χn|2(uh − Iωn uh)
2 dx

�
Ns∑

n=1

∫

ωn

(λ+ 2μ)
Ns∑

s=1

|∇χs |2(uh − Iωn uh)
2 dx, (32)

and

Ns∑
n=1

∫

ωn

(
2με(uh − Iωn uh) : ε(uh − Iωn uh) dx + λ(∇ · (uh − Iωn uh))

2
)

dx

�
∫

D

(
2με(uh) : ε(uh)+ λ(∇ · uh)

2
)

dx . (33)

inequality (28) becomes

∫

D

(
2με(uh − u H ) : ε(uh − u H )+ λ(∇ · (uh − u H ))

2
)

dx

�
(

1

�∗

)m+1 Ns∑
n=1

∫

ωn

(
2με(uh − Iωn uh) : ε(uh − Iωn uh)
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+λ(∇ · (uh − Iωn uh))
2
)

dx

+
(
�m∗

(
1 −�−m∗
�∗ − 1

)
+ 1

) Ns∑
n=1

∫

ωn

((λ+ 2μ)|∇χn|2)−1g2 dx

�
(

1

�∗

)m+1 ∫

D

(
2με(uh) : ε(u)+ λ(∇ · uh)

2
)

dx

+
(
(�∗)m

(
1 − (�∗)−m

�∗ − 1

)
+ 1

)
R, (34)

where R = ∑Ns
n=1

∫
ωn
((λ + 2μ)|∇χn|2)−1g2 dx . If |g| � 1, then

∫
ωn
((λ +

2μ)|∇χn|2)−1g2 dx � H2, from which we obtain

∫

D

(
2με(uh − u H ) : ε(uh − u H )+ λ(∇ · (uh − u H ))

2
)

dx

�
(

1

�∗

)m+1 ∫

D

(
2με(uh) : ε(u)+ λ(∇ · uh)

2
)

dx

+
(
(�∗)m

(
1 − (�∗)−m

�∗ − 1

)
+ 1

)
H2. (35)

Combining results above, we have

Theorem 1 Let uh ∈ V h
CG be the fine-scale CG-FEM solution defined in (4) and u H

be the CG-GMsFEM solution defined in (7) without oversampling. If �∗ > 1 and∫
D(λ+ 2μ)−1g2 dx � 1, let n = − log(H)

log�∗ , then

∫

D

(
2με(uh − u H ) : ε(uh − u H )+ λ(∇ · (uh − u H ))

2
)

dx

�
(

H

�∗

)(∫

D

(
2με(uh) : ε(uh)+ λ(∇ · uh)

2
)

dx + 1

)
.

5.2 Oversampling case

In this subsection, we will analyze the convergence of CG-GMsFEM solution defined
in (7) with oversampling. We define Iω

+
n uh as an interpolation of uh in ω+

n using
the first Ln modes for the eigenvalue problem (21). Let χ+

n be a partition of unity
subordinated to the coarse neighborhood ω+

n . We require χ+
n to be zero on ∂ω+

n and

|∇χn|2 � |∇χ+
n |2.

Using the same argument as Lemma 1, it is easy to deduce

∫

ω+
n

(
2μ|χ+

n |2ε(uh − Iω
+
n uh) : ε(uh − Iω

+
n uh)+ λ|χ+

n |2(∇ · (uh − Iω
+
n uh))

2
)

dx
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�
∣∣∣∣
∫

ω+
n

|χ+
n |2g · (uh − Iω

+
n uh) dx

∣∣∣∣ +
∫

ω+
n

(λ+ 2μ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx,

(36)

where g = fh + div(σ (Iωn uh)), Iωn uh = Iω
+
n uh in ωn .

Applying eigenvalue problem (21), we obtain

∫

ω+
n

(λ+ 2μ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx

� 1

ξ
ωn
Ln+1

∫

ωn

(
2με(uh − Iωn uh) : ε(uh − Iωn uh)+ λ(∇ · (uh − Iωn uh))

2
)

dx .

(37)

Using the definition of interpolation Iω
+
n uh and inequality (37), we have

Ns∑
n=1

∫

ωn

(λ+ 2μ)|∇χn|2(uh − Iωn uh)
2 dx

�
Ns∑

n=1

∫

ω+
n

(λ+ 2μ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx

�
Ns∑

n=1

1

ξ
ωn
Ln+1

∫

ωn

(
2με(uh − Iωn uh) : ε(uh − Iωn uh)

+λ(∇ · (uh − Iωn uh))
2) dx

�
Ns∑

n=1

1

ξ
ωn
Ln+1

∫

ω+
n

(
2μ|∇χ+

n |2ε(uh − Iω
+
n uh) : ε(uh − Iω

+
n uh) dx

+ λ|∇χ+
n |2(∇ · (uh − Iω

+
n uh))

2
)

dx

�
Ns∑

n=1

1

ξ
ωn
Ln+1

∫

ω+
n

(λ+ 2μ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx

+
Ns∑

n=1

1

ξ
ωn
Ln+1

∣∣∣∣
∫

ω+
n

|χ+
n |2g · (uh − Iω

+
n uh) dx

∣∣∣∣

� 1

�+∗

Ns∑
n=1

∫

ω+
n

(λ+ 2μ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx

+ 1

�+∗

Ns∑
n=1

∣∣∣∣
∫

ω+
n

|χ+
n |2g · (uh − Iω

+
n uh) dx

∣∣∣∣

� 1

�+∗

Ns∑
n=1

1

ξ
ωn
Ln+1

∫

ωn

(
2με(uh − Iωn uh) : ε(uh − Iωn uh)
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+λ(∇ · (uh − Iωn uh))
2) dx

+ 1

�+∗

Ns∑
n=1

∣∣∣∣
∫

ω+
n

|χ+
n |2g · (uh − Iω

+
n u) dx

∣∣∣∣ , (38)

where �+∗ = minωnξ
ωn
Ln+1.

Applying the last inequality m times with (37), we get

Ns∑
n=1

∫

ω+
n

(λ+ 2μ)|∇χ+
n |2(uh − Iω

+
n uh)

2 dx

�
(

1

�+∗

)m 1

ξ
ωn
Ln+1

Ns∑
n=1

∫

ωn

(2με(uh − Iωn uh) : ε(uh − Iωn uh)

+λ(∇ · (uh − Iωn uh))
2) dx

+
m∑

l=1

(
1

�+∗

)l Ns∑
n=1

∣∣∣∣
∫

ω+
n

|χ+
n |2g · (uh − Iω

+
n uh) dx

∣∣∣∣

�
(

1

�+∗

)m+1 Ns∑
n=1

∫

ωn

(2με(uh − Iωn uh) : ε(uh − Iωn uh)

+λ(∇ · (uh − Iωn uh))
2) dx

+(�+∗ )m
(

1 − (�+∗ )−m

�+∗ − 1

) Ns∑
n=1

∫

ω+
n

((λ+ 2μ)|∇χ+
n |2)−1g2 dx . (39)

Using Cea’s lemma and inequality (33) , we have

∫

D

(
2με(uh − u H ) : ε(uh − u H )+ λ(∇ · (uh − u H ))

2
)

dx

�
Ns∑

n=1

∫

ωn

(λ+ 2μ)|∇χn|2(uh − Iωn uh)
2 dx

+
Ns∑

n=1

∣∣∣∣
∫

ωn

χ2
n g · (uh − Iωn uh) dx

∣∣∣∣

�
(

1

�+∗

)m+1 ∫

D

(
2με(uh) : ε(uh)+ λ(∇ · uh)

2
)

dx

+
(
(�+∗ )m

(
1 − (�+∗ )−m

�+∗ − 1

)
+ 1

)
R. (40)

where R = ∑Ns
n=1

∫
ω+

n
((λ+ 2μ)|∇χ+

n |2)−1g2 dx .
Therefore, similar with the no oversampling case, we have
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Theorem 2 Let uh ∈ V h
CG be the fine-scale CG-FEM solution defined in (4) and

u H be the CG-GMsFEM solution defined in (7) with oversampling. If �+∗ > 1 and∫
D(λ+ 2μ)−1g2 dx � 1, let n = − log(H)

log�+∗
, then

∫

D

(
2με(uh − u H ) : ε(uh − u H )+ λ(∇ · (uh − u H ))

2
)

dx

�
(

H

�+∗

)(∫

D

(
2με(uh) : ε(uh)+ λ(∇ · uh)

2
)

dx + 1

)
.

6 Error estimate for DG coupling

In this section, we will analyze the DG coupling of the GMsFEM (8). For any u, we
define the DG-norm by

‖u‖2
DG = aH (u, u)+

∑
E∈EH

γ

h

∫

E
{λ+ 2μ}[u]2 ds.

Let K be a coarse grid block and let n∂K be the unit outward normal vector on ∂K .
We denote V h(∂K ) by the restriction of the conforming space V h on ∂K . The normal
flux σ(u) n∂K is understood as an element in V h(∂K ) and is defined by

∫

∂K
(σ (u) n∂K ) · v ds =

∫

K

(
2με(u) : ε(̂v)+ λ∇ · u∇ · v̂

)
dx, v ∈ V h(∂K ),

(41)

where v̂ is the harmonic extension of v in K . By the Cauchy–Schwarz inequality,

∫

∂K
(σ (u) n∂K ) · v ds ≤ aK

H (u, u)
1
2 aK

H (̂v, v̂)
1
2 .

By an inverse inequality and the fact that v̂ is the harmonic extension of v

aK
H (̂v, v̂) ≤ κK C2

invh−1
∫

∂K
|v|2 dx, (42)

where κK = maxK {λ + 2μ} and Cinv > 0 is the constant from inverse inequality.
Thus,

∫

∂K
(σ (u) n∂K ) · v ds ≤ κ

1
2
K Cinvh− 1

2 ‖v‖L2(∂K ) aK
H (u, u)

1
2 .

This shows that
∫

∂K
|σ(u) n∂K |2 ds ≤ κK C2

invh−1aK
H (u, u). (43)
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Our first step in the convergence analysis is to establish the continuity and the
coercivity of the bilinear form (9) with respect to the DG-norm.

Lemma 2 Assume that the penalty parameter γ is chosen so that γ > 2C2
inv. The

bilinear form aDG defined in (9) is continuous and coercive, that is,

aDG(u, v) ≤ ‖u‖DG ‖v‖DG, (44)

aDG(u, u) ≥ a0‖u‖2
DG, (45)

for all u, v, where a0 = 1 − √
2Cinvγ

− 1
2 > 0.

Proof By the definition of aDG, we have

aDG(u, v) = aH (u, v)−
∑

E∈E H

∫

E

(
{σ(u) nE } · [v] + {σ(v) nE } · [u]

)
ds

+
∑

E∈E H

γ

h

∫

E
{λ+ 2μ}[u] · [v] ds.

Notice that

aH (u, v)+
∑

E∈E H

γ

h

∫

E
{λ+ 2μ}[u] · [v] ds ≤ ‖u‖DG ‖v‖DG.

For an interior coarse edge E ∈ E H , we let K +, K − ∈ T H be the two coarse grid
blocks having the edge E . By the Cauchy–Schwarz inequality, we have

∫

E
{σ(u) nE } · [v] ds ≤

(
h

∫

E
{σ(u) nE }2{λ+2μ}−1 ds

) 1
2
( 1

h

∫

E
{λ+2μ}[v]2 ds

) 1
2
.

(46)

Notice that

h
∫

E
{σ(u) nE }2{λ+ 2μ}−1 ds

≤ h
( ∫

E
(σ (u+) nE )

2(λ+ + 2μ+)−1 ds +
∫

E
(σ (u−) nE )

2(λ− + 2μ−)−1 ds
)
,

where u± = u|K ± , λ± = λ|K ± and μ± = μ|K ± . So, we have

h
∫

E
{σ(u) nE }2{λ+ 2μ}−1 ds ≤ C2

inv

(
aK +

H (u+, u+)+ aK −
H (u−, u−)

)
.
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Thus (46) becomes

∫

E
{σ(u) nE } · [v] ds ≤Cinv

(
aK +

H (u+, u+)+aK −
H (u−, u−)

) 1
2

×
( 1

h

∫

E
{λ+ 2μ}[v]2 ds

) 1
2
. (47)

When E is a boundary edge, we have

∫

E
{σ(u) nE } · [v] ds ≤ CinvaK

H (u, u)
1
2

( 1

h

∫

E
{λ+ 2μ}[v]2 ds

) 1
2
, (48)

where K denotes the coarse grid block having the edge E . Summing (47) and (48) for
all edges E ∈ E H , we have

∑

E∈E H

∫

E
{σ(u) nE } · [v] ds ≤ √

2CinvaH (u, u)
1
2

⎛
⎝ ∑

E∈E H

1

h

∫

E
{λ+ 2μ}[v]2 ds

⎞
⎠

1
2

.

Similarly, we have

∑

E∈E H

∫

E
{σ(v) nE } · [u] ds ≤ √

2CinvaH (v, v)
1
2

⎛
⎝ ∑

E∈E H

1

h

∫

E
{λ+ 2μ}[u]2 ds

⎞
⎠

1
2

.

Hence

∑

E∈E H

∫

E
({σ(u) nE } · [v] + {σ(v) nE } · [u]) ds ≤ √

2Cinvγ
− 1

2 ‖u‖DG ‖v‖DG. (49)

This proves the continuity.
For coercivity, we have

aDG(u, u) = ‖u‖2
DG −

∑

E∈E H

∫

E

(
{σ(u) nE } · [u] + {σ(u) nE } · [u]

)
ds.

By (49), we have

aDG(u, u) ≥ (1 − √
2Cinvγ

− 1
2 )‖u‖2

DG,

which gives the desired result. ��
We will now prove the convergence of the method (8). Let uh ∈ V h

DG be the fine
grid solution which satisfies

aDG(uh, v) = ( f, v), ∀v ∈ V h
DG. (50)
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It is well-known that uh converges to the exact solution u in the DG-norm as the fine
mesh size h → 0. Next, we define a projection uS ∈ V snap of uh in the snapshot space
by the following construction. For each coarse grid block K , the restriction of uS on
K is defined as the harmonic extension of uh , that is,

−∇ · σ(uS) = 0, in K ,

uS = uh, on ∂K .
(51)

Now, we prove the following estimate for the projection uS .

Lemma 3 Let uh ∈ V h
DG be the fine grid solution defined in (50) and uS ∈ V snap be

the projection of uh defined in (51). Then we have

‖uh − uS‖DG ≤ C H
(

max
K∈T H

ηK

)
‖ f ‖L2(�),

where ηK = minK {λ+ 2μ}.
Proof Let K be a given coarse grid block. Since uS = uh on ∂K , the jump terms in
the DG-norm vanish. Thus, the DG-norm can be written as

‖uh − uS‖2
DG =

∑

K∈T H

aK
H (uh − uS, uh − uS).

Since uS satisfies (51) and uh − uS = 0 on ∂K , we have

aK
H (uS, uh − uS) = 0.

So,

‖uh − uS‖2
DG =

∑

K∈T H

aK
H (uh, uh − uS) = aDG(uh, uh − uS) = ( f, uh − uS).

By the Poincaré inequality, we have

‖uh − uS‖L2(K ) ≤ C H2η2
K aK

H (uh − uS, uh − uS),

where ηK = minK {λ+ 2μ}. Hence, we have

‖uh − uS‖DG ≤ C H
(

max
K∈T H

ηK

)
‖ f ‖L2(�).

��
In the following theorem, we will state and prove the convergence of the GMsFEM

(8).
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Theorem 3 Let uh ∈ V h
DG be the fine grid solution defined in (50) and u H be the

GMsFEM solution defined in (8). Then we have

‖uh − u H ‖2
DG ≤ C

( NE∑
i=1

H

〈λ+ 2μ〉 ξLi +1

(
1 + γ H

hξLi +1

) ∫

∂Ki

(σ (uS) · n∂K )
2 ds

+H2
(

max
K∈T H

η2
K

)
‖ f ‖2

L2(�)

)
,

where uS is defined in (51).

Proof First, we will define a projection ûS ∈ V off of uS in the offline space. Notice
that, on each Ki , uS can be represented by

uS =
Mi∑

l=1

clψ
i,off
l ,

where Mi = Mi,snap and we assume that the functions ψ i,off
l are normalized so that

∫

∂Ki

〈λ+ 2μ〉 (ψ i,off
l )2 ds = 1.

Then the function ûS is defined by

ûS =
Li∑

l=1

clψ
i,off
l .

We will find an estimate of ‖uS − ûS‖DG. Let K be a given coarse grid block. Recall
that the spectral problem is

∫

K
2με(u) : ε(v) dx +

∫

K
λ∇ · u∇ · v dx = ξ

H

∫

∂K
〈λ+ 2μ〉 uv ds.

By the definition of the flux (41), the spectral problem can be represented as

∫

∂K
(σ (u) · n∂K )v ds = ξ

H

∫

∂K
〈λ+ 2μ〉 uv ds.

By the definition of the DG-norm, the error ‖uS − ûS‖DG can be computed as

‖ûS − uS‖2
DG ≤

∑
K

(∫

K
2με(̂uS − uS)

2 ds +
∫

K
λ(∇ · (̂uS − uS))

2 ds

+γ
h

∫

∂K
{λ+ 2μ}(̂uS − uS))

2 ds

)
.
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Note that
∫

Ki

2με(̂uS − uS)
2 ds+

∫

Ki

λ(∇ · (̂uS − uS))
2 ds ≤ 1

h

∫

∂Ki

〈λ+ 2μ〉 (̂uS −uS)
2 ds

=
Mi∑

l=Li +1

ξl

H
c2

l ≤ H

ξLi +1

Mi∑
l=Li +1

(
ξl

H

)2

c2
l .

Also,

1

h

∫

∂Ki

{λ+ 2μ}(̂uS − uS)
2 ds = 1

h

Mi∑
l=Li +1

c2
l ≤ H2

hξ2
Li +1

Mi∑
l=Li +1

(
ξl

H

)2

c2
l .

Moreover,

Mi∑
l=Li +1

(
ξl

H

)2

c2
l ≤

Mi∑
l=1

(
ξl

H

)2

c2
l ≤ 1

〈λ+ 2μ〉
∫

∂Ki

(σ (uS) · n∂K )
2 ds.

Consequently, we obtain the following bound

‖uS − ûS‖2
DG ≤

NE∑
i=1

H

〈λ+ 2μ〉 ξLi +1

(
1 + γ H

hξLi +1

) ∫

∂Ki

(σ (uS) · n∂K )
2 ds.

Next, we will prove the required error bound. By coercivity,

a0‖ûS − u H ‖2
DG = aDG(̂uS − u H , ûS − u H )

= aDG(̂uS − u H , ûS − uS)

+aDG(̂uS − u H , uS − uh)+ aDG(̂uS − u H , uh − u H ).

Note that aDG(̂uS − u H , uh − u H ) = 0 since û − u H ∈ V off. Using the above results,

‖ûS − u H ‖2
DG ≤ C

( NE∑
i=1

H

〈λ+ 2μ〉 ξLi +1

(
1 + γ H

hξLi +1

) ∫

∂Ki

(σ (uS) · n∂K )
2 ds

+H2
(

max
K∈T H

η2
K

)
‖ f ‖2

L2(�)

)
. (52)

Finally, the desired bound is obtained by the triangle inequality

‖uh − u H ‖DG ≤ ‖uh − uS‖DG + ‖uS − ûS‖DG + ‖ûS − u H ‖DG.

��
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Table 9 Largest eigenvalue for
no oversampling and
oversampling

h �
snap
K �

snap
K +

1/10 3.91e+02 19.3

1/20 7.99e+02 19.2

1/40 1.61e+03 20.4

1/80 3.22e+03 20.4

Remark 1 It is worthwhile to note that (42) can be replaced by

aK
H (̂v, v̂) ≤ �

snap
K 〈λ+ 2μ〉

∫

∂K
|v|2 ds,

where �snap
K is the largest eigenvalue for the spectral problem (19). Therefore, (43)

becomes

∫

∂K
|σ(u) n∂K |2 ds ≤ �

snap
K 〈λ+ 2μ〉 aK

H (u, u).

Repeating above steps, one can choose γ in (52) that satisfies

γ > C̃h max
K⊂T H

�
snap
K ,

where the constant C̃ is defined as

C̃ = max
K⊂T H

maxE⊂∂K {λ+ 2μ}
minE⊂∂K {λ+ 2μ} .

If we assume every coarse element includes a high contrast region, then C̃ is O(1).
Table 9 shows�snap

K with and without oversampling for different h. We can see that
�

snap
K + is much smaller than �snap

K . Besides, the numerical experiments show �
snap
K + is

a very weak function of h, while �snap
K is proportional to h−1.

We can get similar error analysis for the case of oversampling by just following
steps shown in the above no oversampling case. But we can have better estimate in the
oversampling case. If we let γ = αC̃maxK⊂T H�

snap
K + , then the term C1 = 1+ γ H

hξLi +1
in

(52) becomes 1+ αC̃maxK⊂T H�
snap
K+ H

ξLi +1
. We have numerically shown that�snap

K + is almost

independent of h, which means C1 can be controlled. Therefore, the dominated error
comes from H

〈λ+2μ〉ξLi +1
. We emphasize that this remark is based on our numerical

observations while the analytical studies are complicated and it will be the subject of
our future research.
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7 Conclusions

In this paper, we design a multiscale model reduction method using GMsFEM for
elasticity equations in heterogeneous media. We design a snapshot space and an
offline space based on the analysis. We present two approaches that couple multiscale
basis functions of the offline space. These are continuous Galerkin and discontinuous
Galerkin methods. Both approaches are analyzed. We present oversampling studies
where larger domains are used for calculating the snapshot space. Numerical results
are presented.
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