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Abstract In this paper, we discuss the application of generalized multiscale finite
element method (GMSFEM) to elasticity equation in heterogeneous media. We con-
sider steady state elasticity equations though some of our applications are motivated
by elastic wave propagation in subsurface where the subsurface properties can be
highly heterogeneous and have high contrast. We present the construction of main
ingredients for GMSFEM such as the snapshot space and offline spaces. The latter
is constructed using local spectral decomposition in the snapshot space. The spectral
decomposition is based on the analysis which is provided in the paper. We consider
both continuous Galerkin and discontinuous Galerkin coupling of basis functions.
Both approaches have their cons and pros. Continuous Galerkin methods allow avoid-
ing penalty parameters though they involve partition of unity functions which can alter
the properties of multiscale basis functions. On the other hand, discontinuous Galerkin
techniques allow gluing multiscale basis functions without any modifications. Because
basis functions are constructed independently from each other, this approach provides
an advantage. We discuss the use of oversampling techniques that use snapshots in
larger regions to construct the offline space. We provide numerical results to show
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that one can accurately approximate the solution using reduced number of degrees of
freedom.

Keywords Multiscale finite element method - Elasticity - Multiscale -
Model reduction

Mathematics Subject Classification 65N99

1 Introduction

Many materials in nature are highly heterogeneous and their properties can vary at dif-
ferent scales. Direct numerical simulations in such multiscale media are prohibitively
expensive and some type of model reduction is needed. Multiscale approaches such as
homogenization and numerical homogenization (Cao 2005; Abdulle 2006; Schroder
2014; Buck et al. 2013; Francfort and Murat 1986; Oleinik et al. 2009; Vinh and Tung
2011; Liu et al. 2009) have been routinely used to model macroscopic properties and
macroscopic behavior of elastic materials. These approaches compute the effective
material properties based on representative volume simulations. These properties are
further used to solve macroscale equations. In this paper, our goal is to design multi-
scale method for elasticity equations in the media when the media properties do not
have scale separation and classical homogenization and numerical homogenization
techniques do not work. We are motivated by seismic wave applications when elastic
wave propagation in heterogeneous subsurface formation is studied where the sub-
surface properties can contain vugs, fractures, and cavities of different sizes. In this
paper, we develop multiscale methods for static problems and present their analysis.

In this paper, we design a multiscale model reduction techniques using GMsFEM
for steady state elasticity equation in heterogeneous media

0
3—)Q(Cijkz(X)ek1(M)) = fj(x), (D

where ey (u) = %(%fo + g%i) and c; i (x) is a multiscale field with a high contrast.
GMSFEM has been studied for a various applications related to flow problems (see
Efendiev et al. 2013a, 2014a; Chung et al. 2014; Efendiev et al. 2013c, 2014b). In
GMSsFEM, we solve Eq. (1) on a coarse grid each coarse grid consists of a union of
fine-grid blocks. In particular, we design (1) a snapshot space (2) an offline space
for each coarse patch. The offline space consists of multiscale basis functions that are
coupled in a global formulation. In this paper, we consider several choices for snapshot
spaces, offline spaces, and global coupling. The main idea of the snapshot space in
each coarse patch is to provide an exhaustive space where an appropriate spectral
decomposition is performed. This space contains local functions that can mimic the
global solution behavior in the coarse patch for all right hand sides or boundary
conditions. We consider two choices for the snapshot space. The first one consists of
all fine-grid functions in each coarse patch and the second one consists of harmonic
extensions. Next, we propose a local spectral decomposition in the snapshot space
which allows selecting multiscale basis functions. This local spectral decomposition
is based on the analysis and depends on the global coupling mechanisms. We consider
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several choices for the local spectral decomposition including oversampling approach
where larger domains are used in the eigenvalue problem. The oversampling technique
uses larger domains to compute snapshot vectors that are more consistent with local
solution space and thus can have much lower dimension.

To couple multiscale basis functions constructed in the offline space, we consider
two methods, conforming Galerkin (CG) approach and discontinuous Galerkin (DG)
approach based on symmetric interior penalty method for (1). These approaches are
studied for linear elliptic equations in Efendiev et al. (2013a,b). Both approaches pro-
vide a global coupling for multiscale basis functions where the solution is sought in the
space spanned by these multiscale basis functions. This representation allows approx-
imating the solution with a reduced number of degrees of freedom. The constructions
of the basis functions are different for continuous Galerkin and discontinuous Galerkin
methods as the local spectral decomposition relies on the analysis. In particular, for
continuous Galerkin approach, we use partition of unity functions and discuss several
choices for partition of unity functions. We provide an analysis of both approaches.
The offline space construction is based on the analysis.

We present numerical results where we study the convergence of continuous and dis-
continuous Galerkin methods using various snapshot spaces as well as with and without
the use of oversampling. We consider highly heterogeneous coefficients that contain
high contrast. Our numerical results show that the proposed approaches allow approx-
imating the solution accurately with fewer degrees of freedom. In particular, when
using the snapshot space consisting of harmonic extension functions, we obtain better
convergence results. In addition, oversampling methods and the use of snapshot spaces
constructed in the oversampled domains can substantially improve the convergence.

The paper is organized as follows. In Sect. 2, we state the problem and the notations
for coarse and fine grids. In Sect. 3, we give the construction of multiscale basis
functions, snapshot spaces and offline spaces, as well as global coupling via CG and
DG. In Sect. 4, we present numerical results. Sections 5—6 are devoted to the analysis
of the methods.

2 Preliminaries

In this section, we will present the general framework of GMsSFEM for linear elasticity
in high-contrast media. Let D C R? (or R?) be a bounded domain representing the
elastic body of interest, and let # = (u1, uz) be the displacement field. The strain
tensor € (u) = (€;(u))1<i, j<2 is defined by

1
e(u) = E(Vu + vul),
where Vu = (g%)lq,jq. In the component form, we have
J - -

1(8ui ou

Gij(”)zz ) 1<i,j<2.

ij 8x,'

In this paper, we assume the medium is isotropic. Thus, the stress tensor o (1) =
(0ij(u))1<i, j<2 is related to the strain tensor € («) in the following way
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o=2ue+AV-ul,

where A > 0 and > 0 are the Lamé coefficients. We assume that A and p have
highly heterogeneous spatial variations with high contrasts. Given a forcing term
f = (f1, f2), the displacement field u satisfies the following

—V.o=f, inD 2)
or in component form
do; do;
—(ﬂ+ﬂ)=f,-, inD,i=1,2 3)
dx 0x2

For simplicity, we will consider the homogeneous Dirichlet boundary condition u = 0
ondD.

Let 7 be a standard triangulation of the domain D where H > 0 is the mesh size.
We call 7# the coarse grid and H the coarse mesh size. Elements of 7 are called
coarse grid blocks. The set of all coarse grid edges is denoted by £ and the set of all
coarse grid nodes is denoted by S. We also use N to denote the number of coarse
grid nodes, N to denote the number of coarse grid blocks. In addition, we let 7" be a
conforming refinement of the triangulation 7. We call 7" the fine grid and & > 0
is the fine mesh size. We remark that the use of the conforming refinement is only to
simplify the discussion of the methodology and is not a restriction of the method.

Let V" be a finite element space defined on the fine grid. The fine-grid solution u,
can be obtained as

a(up,v) = (f,v), YveVh 4)

where
a(u,v)=/(2Me(u):e(v)+w.uv-v)dx, (f,v):/f.vdx (5)
D D

and

2

2
e(u):e(v) = Z €ju)ej(v), f-v= Zﬁvi. (6)
i=1

i,j=1

Now, we present GMSFEM. The discussion consists of two main steps, namely, the
construction of local basis functions and the global coupling. In this paper, we will
develop and analyze two types of global coupling, namely, the continuous Galerkin
coupling and the discontinuous Galerkin coupling. These two couplings will require
two types of local basis functions. In essence, the CG coupling will need vertex-
based local basis functions and the DG coupling will need element-based local basis
functions.

For each vertex x; € S in the coarse grid, we define the coarse neighborhood w;
by
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T (Coarse Grid)
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Fig. 1 Tllustration of a coarse neighborhood, oversampled coarse neighborhood, coarse block and over-
sampled coarse block

w; = U{K/ : Kj C TH, Xi € K/}

That is, w; is the union of all coarse grid blocks K ; having the vertex x; (see Fig. 1). A
snapshot space V5" is constructed for each coarse neighborhood w;. The snapshot
space contains a large set that represents the local solution space. A spectral problem is
then constructed to get a reduced dimensional space. Specifically, the spectral problem
is solved in the snapshot space and eigenfunctions corresponding to dominant modes
are used as the final basis functions. To obtain conforming basis functions, each of these
selected modes will be multiplied by a partition of unity function. The resulting space
is denoted by V°f, which is called the offline space for the i-th coarse neighborhood
w;. The global offline space V°I is then defined as the linear span of all these V/-°f for
i=1,2,..., Ns. The CG coupling can be formulated as to find u%G € VoI guch that

a@SE,v) = (f,v), Yve Vo (7)

The DG coupling can be constructed in a similar fashion. A snapshot space V/-s"ap
is constructed for each coarse grid block K;. A spectral problem is then solved in the
snapshot space and eigenfunctions corresponding to dominant modes are used as the
final basis functions. This space is called the offline space V*° for the i-th coarse grid
block. The global offline space V° is then defined as the linear span of all these V-,
fori = 1,2,..., N.The DG coupling can be formulated as: find u%G € V°ff such that

apc@BC,v) = (f,v), Yve Vo, (8)

where the bilinear form apg is defined as

apG (. v) = ap (u,v) = Y /E({o(u)nE}~[v]+{o(v>n5}-[u]) ds

Ec&f

+ > %/E{,\Jrzy,}[u] [v] ds )

EcEH
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with

ag(u,v) = Z ag(u, v), ag(u, V) =/ (2/16(14) e(v) + AV -uVv - v) dx,
KGTH K
(10)

where y > 0 is a penalty parameter, ng is a fixed unit normal vector defined on the
coarse edge E and o (1) ng is a matrix-vector product. Note that, in (9), the average
and the jump operators are defined in the classical way. Specifically, consider an inte-
rior coarse edge E € £ and let KT and K~ be the two coarse grid blocks sharing
the edge E. For a piecewise smooth function G, we define

{G}:%(G*JFG*), [G1=GT—-G~, onkE,

where Gt = G|+ and G~ = G|g- and we assume that the normal vector ng is
pointing from K+ to K. For a coarse edge E lying on the boundary 9 D, we define

{G}=[G]=G, onkE,

where we always assume that n g is pointing outside of D. For vector-valued func-
tions, the above average and jump operators are defined component-wise. We note that
the DG coupling (8) is the classical interior penalty discontinuous Galerkin (IPDG)
method with our multiscale basis functions.

Finally, we remark that, we use the same notations V5" v%-off and voif to denote
the local snapshot, local offline and global offline spaces for both the CG coupling and
the DG coupling to simplify notations.

3 Construction of multiscale basis functions

This section is devoted to the construction of multiscale basis functions.

3.1 Basis functions for CG coupling

We begin by the construction of local snapshot spaces. Let w; be a coarse neighborhood,
i=1,2,..., Ng. We will define two types of local snapshot spaces. The first type of
local snapshot space is

Vi = Vi),

where V" (w;) is the restriction of the conforming space to w;. Therefore, Vll stap

contains all possible fine scale functions defined on w;. The second type of local
snapshot space contains all possible harmonic extensions. Next, let V" (dw;) be the
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restriction of the conforming space to dw;. Then we define the fine-grid delta function
8k € VH(dw;) on dw; by

1, =k
5k(x1)={0 £k

where {x;} are all fine grid nodes on dw;. Given &, we find uy and uy, by

—V.o(ug) =0, inwj; an

upr = 8, 0)7,  on du;

and

—V.o(ug) =0, inw;
T (12)
ugp = (0,68;)", ondw;.

The linear span of the above harmonic extensions is our second type of local snapshot
space Vzl’Snap . To simplify the notations, we will use V**" to denote Vll 1P o Vzl’Snap
when there is no need to distinguish the two type of spaces. Moreover, we write

VISP — span{y, P, k= 1,2,..., M"Y,

where M$" is the number of basis functions in V-$"P

We will perform a dimension reduction on the above snapshot spaces by the use of
a spectral problem. First, we will need a partition of unity function x; for the coarse
neighborhood w;. One choice of a partition of unity function is the coarse grid hat
functions ®;, that is, the piecewise bi-linear function on the coarse grid having value
1 at the coarse vertex x; and value O at all other coarse vertices. The other choice is
the multiscale partition of unity function, which is defined in the following way. Let
K ; be a coarse grid block having the vertex x;. Then we consider

~V.0() =0, inKkK;

13
& = (®;,007, ondk;. ()

Then we define the multiscale partition of unity as &)i = (¢;)1. The values of 51- on
the other coarse grid blocks are defined similarly.

Based on our analysis to be presented in the next sections, we define the spectral
problem as

/(Z,ue(u):e(v)+kV-uV~v)dx=E/ fu - v dx, (14)

wj

where £ denotes the eigenvalue and
F=> 42wVl (15)
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The above spectral problem (14) is solved in the snapshot space. We let (¢, &) be
the eigenfunctions and the corresponding eigenvalues. Assume that

&1 <& < - < &pisnap.

Then the first L; eigenfunctions will be used to construct the local offline space. We
define

Mi.snap

1pli,off _ Z ¢lk¢lﬁ,snap7 1=1,2,...,L;, (16)
k=1

where ¢y is the k-th component of ¢;. The local offline space is then defined as
yioff — span{x,-gbli’()ff, 1=1,2,...,L;}.
Next, we define the global continuous Galerkin offline space as

yoft — span{Vi’Off, i=1,2,..., Ng}.

3.2 Basis functions for DG coupling

We will construct the local basis functions required for the DG coupling. We also
provide two types of snapshot spaces as in CG case. The first type of local snapshot
space is all possible fine grid bi-linear functions defined on K;. The second type of
local snapshot space V" for the coarse grid block K; is defined as the linear span
of all harmonic extensions. Specifically, given 8y, we find uy| and uy; by

—V-o(uk) =0, ink;
) (17)
ugr = (8¢, 0)", ondk;

and
—V.o(ukp) =0, inKk;

(18)
uk = (0,87, ondK;.

The linear span of the above harmonic extensions is the local snapshot space V1P,
We also write
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yisnap — Span{l/fl SRk =1,2,..., MR,

where M$"% is the number of basis functions in V-1

We will perform a dimension reduction on the above snapshot spaces by the use
of a spectral problem. Based on our analysis to be presented in the next sections, we
define the spectral problem as

/ (Z/LG(M) e(w) +AV - -uV - v) E/ A+2u)u-vds, (19)
K;

where & denotes the eigenvalues and (A 4 2u) is the maximum value of {A 4+ 2u} on
dK;. The above spectral problem (19) is again solved in the snapshot space V"3,
We let (¢, &), fork =1,2,...,. M 1,n2p he the eigenfunctions and the corresponding
eigenvalues. Assume that

El = '§>:2 == gMi,snap.

Then the first L; eigenfunctions will be used to construct the local offline space. Indeed,
we define

Mi snap

w_lzoff Z o Il/lsnap’ 1=1,2,...,L;, (20)

where ¢y is the k-th component of ¢;. The local offline space is then defined as
yi-off span{wll off 1 —1,2, ... L)
The global offline space is also defined as

yoff — span{Vi’Off, i=1,2,...,N}

3.3 Oversampling technique

In this section,we present an oversampling technique for generating multiscale basis
functions. The main idea of oversampling is to solve local spectral problem in a larger
domain. This allows obtaining a snapshot space that has a smaller dimension since
snapshot vectors contain solutions oscillating near the boundaries. In our previous
approaches, we assume that the snapshot vectors can have an arbitrary value on the
boundary of coarse blocks which yield to large dimensional coarse spaces.

For the harmonic extension snapshot case,we solve equation (11) and (12) in col+
(see Fig. 1) instead of w; for CG case, and solve the Eqs. (17) and (18) in K l.+ instead
of K; for DG case. We denote the solutions as er 1P “and their restrictions on w; or
K; as 1//lsnap. We reorder these functions according to eigenvalue behavior and write
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+,snap ~+,snap snap snap
R = [w ey ] and Rsnap_[w , ..,mep].

where Mgp,p denotes the total number of functions kept in the snapshot space.
For CG case we define the following spectral problems in the space of snapshot:

RSTnapARsnap k= éﬁ(RSHHP) M+Rsnap\pk’ 20
or
(RSﬂaP) A+Rsnaquk = §(Rsnap) M+Rsnaplllk, (22)
where
A = [au] —/ (2ue(1//,:nap) Le(™) 4 AV - P Y wlsnap) dx.
w;
At = [af] = / (ZMG(% D) (SR |y g gy Sndp) dx.
o
MT =[m}] = /w+ Ew};‘r,snap ) wl-‘r,snap dx.

i

where i is defined through (15).
The local spectral problem for DG coupling is defined as

(Rsnap)TA+Rerrlap é(Rsnap) M?_ snaquk (23)
or
(Rsnap)TA+R;’r_1ap (Rsnap)TM+R;’r_1apqlk (24)

in the snapshot space, where

At [akl] = /K+ (zue(w:,snap) : e(w;r,snap) LAV wk Snap ¢+ Snap) dx.

= [m{ 1= / D209,y

My = m3l = 4 /a 2 g ds.

After solving above local spectral problems, we form the offline space as in the no
oversampling case, see Sect. 3.1 for CG coupling and Sect. 3.2 for DG coupling.
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Fig. 2 Young’s modulus (Model 1)
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4 Numerical result

In this section, we present numerical results for CG-GMsFEM and DG-GMsFEM
with two models. We consider different choices of snapshot spaces such as local-
fine grid functions and harmonic functions and use different local spectral problems
such as no-oversampling and oversampling described in the previous section. For the
first model, we consider the medium that has no-scale separation and features such
as high conductivity channels and isolated inclusions. The Young’s modulus E(x)
is depicted in Fig. 2, (x) = gty E(), p(x) = ﬁE(x), the Poisson
ratio v is taken to be 0.22. For the second example, we use the model that is used in
Gao et al. (2014) for the simulation of subsurface elastic waves (see Fig. 3). In all
numerical tests, we use constant force and homogeneous Dirichlet boundary condi-
tion. In all tables below, A, represent the minimum discarded eigenvalue of the cor-
responding spectral problem. We note that the first three eigenbasis (that correspond
to the first three smallest eigenvalues) are constant and linear functions, therefore we
present our numerical results starting from fourth eigenbasis in all cases. In the below,
dimension of a solution represents the total number of basis used for the finite element
space.

e We observe a fast decay in the error as more basis functions are added in both
CG-GMsFEM and DG-GMsFEM

e We observe the use of multiscale partition of unity improves the accuracy of CG-
GMSsFEM compared to the use of piecewise bi-linear functions

e We observe an improvement in the accuracy (a slight improvement in CG case and
a large improvement in DG case) when using oversampling for the examples we
considered and the decrease in the snapshot space dimension.
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4.1 Numerical results for Model 1 with conforming GMsFEM (CG-GMsFEM)

For the first model, we divide the domain D = [0, 1] x [0, 1] into 10 x 10 coarse
grid blocks, inside each coarse block we use 10 x 10 fine scale square blocks, which
results in a 100 x 100 fine grid blocks. The number of basis functions used to get the
reference solution is 20,402. We will show the performance of CG-GMsFEM with
the use of local fine-scale snapshots and harmonic extension snapshots. Both bi-linear
and multiscale partition of unity functions (see Sect. 3.1) will be considered. For each
case, we will provide the comparison using oversampling and no-oversampling. For
the error measure, we use relative weighted L> norm error and weighted H' norm
error to compare the accuracy of CG-GMsFEM, which is defined as

€2 =

10+ 2 et — w2y \/a(uH—MhsMH—Mh)
, 1=
G+ 2)unll 12y " a(up, up)

where u gy and uj; are CG-GMSFEM defined in (7) and fine-scale CG-FEM solution
defined in (4) respectively.

Tables 1 and 2 show the numerical results of using local fine-scale snapshots with
piecewise bi-linear function and multiscale functions as partition of unity respectively.
As we observe, when using more multiscale basis, the errors decay rapidly, especially
for multiscale partition of unity. For example, we can see that the weighted L error
drops from 24.9to 1.1 % in the case of using bi-linear function as partition of unity with
no oversampling, while the dimension increases from 728 to 2,672. If we use multiscale
partition of unity, the corresponding weighted L2 error drops from 8.4 to 0.6 %, which
demonstrates a great advantage of multiscale partition of unity. Oversampling can help
improve the accuracy as our results indicate. The local eigenvalue problem used for
oversampling is Eq. (22).

Next, we present the numerical results when harmonic extensions are used as snap-
shots in Tables 3 and 4. We can observe similar trends as in the local fine-scale snapshot
case. The errors decrease as the number of basis functions increase. The L? error is less
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Table 1 Relative errors between CG-MSsFEM solution and the fine-scale CG-FEM solution, piecewise
bi-linear partition of unity functions are used

Dimension 1/A €2 eyl

Without With Without With Without With
oversampling oversampling oversampling oversampling oversampling oversampling

728 1.3e+07 1.4e+07 0.249 0.215 0.444 0.409
1,214 3.1e+06 5.6e+06 0.048 0.047 0.220 0.213
1,700 7.0e+05 2.7e+06 0.027 0.024 0.162 0.153
2,186 1.8e+00 1.7e+06 0.018 0.016 0.133 0.123
2,672 9.9e—01 1.4e+06 0.011 0.010 0.105 0.099

The case with local fine-scale snapshots

Table 2 Relative errors between CG-MSFEM solution and the fine-scale CG-FEM solution, multiscale
partition of unity functions are used

Dimension 1/A €2 eyl

Without With Without With Without With
oversampling oversampling oversampling oversampling oversampling oversampling

728 6.9e+06 6.2e+06 0.084 0.110 0.254 0.274
1,214 5.8e+00 3.2e+06 0.031 0.028 0.166 0.160
1,700 2.1e+00 1.2e+06 0.015 0.012 0.111 0.105
2,186 1.3e+00 5.9e+05 0.009 0.008 0.088 0.083
2,672 9.4e—01 1.0e+01 0.006 0.005 0.071 0.066

The case with local fine-scale snapshots

Table 3 Relative errors between CG-MSsFEM solution and the fine-scale CG-FEM solution, piecewise
bi-linear partition of unity functions are used

Dimension 1/Ax €2 eyl

Without With Without With Without With
oversampling oversampling oversampling oversampling oversampling oversampling

728 1.3e+07 1.2e+07 0.254 0.218 0.446 0.418
1,214 2.1e+06 5.5e+06 0.047 0.048 0.218 0.217
1,700 2.8e+05 3.2e+06 0.024 0.022 0.153 0.148
2,186 1.2e+00 9.8e+05 0.016 0.015 0.124 0.122
2,672 5.8e—01 2.1e+04 0.008 0.010 0.102 0.099

The case with harmonic snapshots

than 1 % when about 13 % of degrees of freedom is used. Similarly, the oversampling
method helps to improve the accuracy. In this case, the local eigenvalue problem used
for oversampling is Eq. (21).
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Table 4 Relative errors between CG-MSFEM solution and the fine-scale CG-FEM solution, multiscale
partition of unity functions are used

Dimension 1/A €2 eyl

Without With Without With Without With
oversampling oversampling oversampling oversampling oversampling oversampling

728 7.0e+06 7.2e+06 0.087 0.112 0.259 0.291
1,214 5.5e+00 3.2e+06 0.034 0.032 0.174 0.169
1,700 1.9e+00 1.5e+06 0.015 0.013 0.115 0.112
2,186 1.0e+00 2.5e+05 0.009 0.008 0.090 0.089
2,672 7.1e—01 1.7e+00 0.007 0.006 0.075 0.074

The case with harmonic snapshots

4.2 Numerical results for Model 1 with DG-GMsFEM

In this section, we consider numerical results for DG-GMsFEM discussed in Sect. 3.2.
To show the performance of DG-GMsFEM, we use the same model (see Fig. 2) and
the coarse and fine grid settings as in the CG case. We will also present the result of
using both harmonic extension and eigenbasis (local fine-scale) as snapshot space. To
measure the error, we define broken weighted L2 norm error and H'! norm error

ZKETH f[( o(upg —up)) : e(uyg —up)) dx
> ket Jx o) e(up) dx

eyl =

where u gy and uj; are DG-GMSsFEM defined in (8) and fine-scale DG-FEM solution
defined in (50) respectively. We note that the dimension of the reference solution uy,
here is 24,200.

In Table 5, the numerical results of DG-MsFEM with local fine-scale functions as
the snapshot space is shown. We observe that DG-MsFEM shows a better approxi-
mation compared to CG-MsFEM if oversampling is used. The error decreases more
rapidly as we add basis. More specifically, the relative broken L error and H' error

Table 5 Relative errors between DG-MSFEM solution and the fine-scale DG-FEM solution

Dimension 1/Ax er2 eyl

Without With Without With Without With
oversampling oversampling oversampling oversampling oversampling oversampling

728 4.9e—03 1.5e—03 0.281 0.141 0.554 0.525
1,184 3.0e—03 8.5e—04 0.118 0.019 0.439 0.209
1,728 2.1e—03 5.6e—04 0.108 0.012 0.394 0.145
2,184 1.2e—03 3.5e—04 0.073 0.007 0.348 0.096
2,696 1.0e—03 2.7e—04 0.056 0.002 0.300 0.058

The case with local fine-scale snapshots
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Table 6 Relative errors between DG-MSFEM solution and the fine-scale DG-FEM solution

Dimension 1/A4 er2 eyl

Without With Without With Without With
oversampling oversampling oversampling oversampling oversampling oversampling

728 2.9e—01 1.6e—01 0.285 0.149 0.557 0.528
1,184 1.6e—01 6.5e—02 0.193 0.076 0.515 0.366
1,728 1.0e—01 5.4e—02 0.114 0.009 0.432 0.155
2,184 7.1e—02 3.9e—02 0.081 0.004 0.326 0.078
2,696 6.3e—02 2.8e—02 0.043 0.002 0.231 0.060

The case with harmonic snapshots

decrease from 14.1, 52.5 to 0.2 and 5.8 % respectively, while the degrees of free-
dom of the coarse system increase from 728 to 2,696, where the latter is only 13.2 %
of the reference solution. The local eigenvalue problem used for oversampling is
Eq. (23).

Table 6 shows the corresponding results when harmonic functions are used to
construct the snapshot space. We observe similar errors decay trend as local fine-scale
snapshots are used. Oversampling can help improve the results significantly. Although
the error is very large when the dimension of coarse system is 728 (4 multiscale basis
is used), the error becomes very small when the dimension reaches 1,728 (9 multiscale
basis is used). The local eigenvalue problem used for oversampling here is Eq. (24).
We remark that oversampling can not only help decrease the error, but also decrease
the dimension of the snapshot space greatly in periodic case.

4.3 Numerical results for Model 2

The purpose of this example is to test a method for an earth model that is used in Gao
et al. (2014). The domain for the second model is D = (0, 6,000) (in meters) which
is divided into 900 = 30 x 30 square coarse grid blocks, inside each coarse block we
generate 20 x 20 fine scale square blocks. The reference solution is computed through
standard CG-FEM on the resulting 600 x 600 fine grid. We note that the dimension
of the reference solution is 722,402. The numerical results for CG-MsFEM and DG-
MSFEM are presented in Tables 7 and 8 respectively. We observe the relatively low
errors compared to the high contrast case and the error decrease with the dimension
increase of the offline space. Both coupling methods (CG and DG) show very good
approximation ability.

5 Error estimate for CG coupling
In this section, we present error analysis for both no oversampling and oversampling

cases. In the discussions below, a < b means a < Cb, where C is a constant indepen-
dent of the mesh size and the contrast of the coefficient.
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Table 7 Relative errors between CG-MSsFEM solution and the fine-scale CG-FEM solution, piecewise
bi-linear partition of unity functions are used

1

Dimension A er2 eyl

6,968 4.9e+00 3.1e-03 5.4e—02
8,650 4.5e+00 2.7e—03 5.2e—02
10,332 3.9e+00 2.5e—03 4.9e—-02
12,014 3.6e+00 2.2e—-03 4.7e-02

The case with local fine-scale snapshots

Table 8 Relative errors 1

between DG-MsFEM solution ~ Dimension Ay €2 ep

and the fine-scale CG-FEM

solution 7,200 6.3e—06 4.1e—03 7.1e—02
9,000 6.0e—06 4.0e—03 6.6e—02
10,800 4.6e—06 3.8e—03 6.3e—02

The case with local fine-scale 12,600 4.5¢—06 3.1e—03 5.9e—02

snapshots

5.1 No oversampling case

Lemma 1 Let w, coarse neighborhood. For any v € H l(a),,), we define r =
—div(o (¥)). Then we have

[ 2uxiew e+ [ g as

/ x,%r - dx
Wp

where x, is a scalar partition of unity subordinated to the coarse neighborhood w,.

+ [ 2wV Py dx, (25)

Wn

=

Proof Multiplying both sides of —div(o (¥)) = r by X,%w, we have

/X,fr.wdx=/ 2Me(¢):e(xjw)dx+/ AV YV - (x2) dx

Wp

dXn AxXn
_ / dule(h) s (P dx + / 2smes; (1) (w,-a +; )dx
wp [on Xj axi
+/ xx5<V~w>2dx+/ WY Y xu s - Vg dx

_ / 2px2e(y) s (P dx + / 2( 27 e (1)

%, 9
x (,/M/z (1/,1.71 dx + v X")) dx
ox;j ax;

+/ ij(v.w)de+/ 2(Vaxn V) (VA - Vi) dx. (26)
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Therefore,

/ 2px2e(y) : €W dx + / MRV P dx

wp
/ X,%r - dx
wWp

<

+

3 xXn 3 Xn
/w 2(V21xneij (V) (\/;T/Z (w"% Vi 3);1' )) a

+ / 2oV )R - Vp) dx

/ x,%r - dx
W

/ X,fr - dx
W

In the last step, we have used 2ab < ca’+ %bz, and (ab+cd)? < (@2 4+ (b2 +d?).
O

+ [ QA4 P dx

Wn

+ / OA2) |V 30?92 dix. Q27)

<

<

Next, we will show the convergence of the CG-GMsFEM solution defined in (7)
without oversampling. We take 1“7 u, to be the first L,, terms of spectral expansion of
u in terms of eigenfunctions of the problem —div(o (¢,,)) = £k ¢, solved in Vi (wp).
Applying Cea’s lemma, Lemma 1 and using the fact that x,, < 1, we can get

/D <2Me(uh —up) €(up —up) + AV - (up — uH))z) dx

Nj
<3 [ (et = 1) Gt = 1703
n=1"%n
FAY - G (up — 19up)))?) dx

Ny
< Z/ 2“)(36(14/1 —I%up) : e(up — I uyp) dx
n=1"%n
N,
+20 [ AT w= 1mun) d
n=1"7®n

Ny
+ O A2Vl — 1°up)* dx

n=1"®n
Ny Ny

52/ (A+2m|m|2<uh—Iwnuh)zdx+z/ Xng - (up — 1”up)| dx
n=1"%n n=1"7®n
Ny Ny

=< / 42V xu =T up)* dx+ > [ (A+2)[Vxal*) ™' g dx.
n=1"%n n=1"%®n

(28)
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where g = fj, + div(c (I“7uy)), fy is the L? projection of f in V", f is the right
hand side of (2).
Using the properties of the eigenfunctions, we obtain

N
/ (200 D IV s P — 17up)? dx
Wn

s=1
/ (Zue(uh —Iup) : €(up — Iup) + A(V - (u, — I‘”"u;,))z) dx
Wn

(29)

Then, the first term in the right hand side of (28) can be estimated as follows

N,
Z/ O+ 2|V x| up = 1" up)* dx
n= n
N, N,
< Z/ o2 S 19 Pl — 19)? dx
n=1 s=1

n=1 sLn+1

AV - (uy — I“’”uh))z) dx

/ 2ue(uh I°"up) e(up — I°up)
wp

wn
TLytt / (2,ux3€(uh —I%up) : e(up — I uy)
sLn"rl @n

FAX2(V - (up — I“’"uh))z) dx

- Ln I
< Z gw,,+ O+ 201V 0 Pt — T up)? dx
L,+1

Wp

S
o
Ly+1
+ Z Ewn
n=1

Ly+1

Ny
1 S
= Ay (Z/ (A + 2|V x> (up — ¥ up)* dx

n=17®n
) ; (30)

/ x2g - (up — I°"up) dx
Wn

x2g - (up — [“7up) dx

where

wp
ELt1
wp ’

Ly+1

Ay = min,,,
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and

— n . — n — n 2
o fwn 2ue(up — 1% up) @ €(up—I1“"up) dx—f—fwn AV - (up—1%up))” dx
XL+l 2 o, . 5 2 5 2 :
fwn 2uxre(up—I®nup) : e(up—I°up) dx—i—fwn Ix2(V - (up—I9nup))? dx

Applying inequality (30) m times, we have

Ny
D 2wVt P — 19up)* dx

n=1"%n
1\"™ Ny
< (_) 2 / O 2401V P — 19 uy)? dx
A* _ wp
n=1
m 1 | Ns
+Z (_) Z / Xng - (wp — 1wy dx
=\ S e,
m NS

1
< (A—) D A 201V P — 197 up)* dx
* —1 Wn

Ny

1—A" _
+a0" () X [ G o a6
A1) =),
Taking into account that
Ny
D A2Vt — 19up)* dx
n=17®n
Ny Ny
<3 [ 0t 20 3 9Pl - 1) dx, (32)
n=1"7®n s=1
and
Ny
Z/ (Zﬂe(uh —I1"up) : €(up — 1" up) dx + A(V - (uj, — Iw"uh))z) dx
n=1"®n
< / (2u1€un) = eCun) + 2V -up)?) d. 33)
D

inequality (28) becomes

| (2netun = s et —um) + 9 - iy = u)?) dx

1 m+1 Ns
< (A_) Z/ (2pe(up — 1" up) = €(up — 1"up)
* wp

n=1
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(Y - (up — I“’"uh))z) dx
N;
/ (O + 200V 10 P) ' 2 dx

ar (20 ) S

e (mE) )z
(" : AV -up)?) d
<(5) ] Cretn s ew +a9 - w2) ax

n ((A*)’" (%) T 1) R, (34)

where R = M Ji, (O + 2V x> g2dx. I |g| < 1, then [, (b +
20|V xa?) "1 g2 dx < H?, from which we obtain

/D (ZMG(uh —upg) €y —ug) +Ar(V-(u, — uH))z) dx

< Ly 2 : MV 2) d
_(A—*) /D(ue<uh).e(u)+ (V -u)?) dx

(o (7))

Combining results above, we have

Theorem 1 Let uj, € Vé’G be the fine-scale CG-FEM solution defined in (4) and uy
be the CG-GMsFEM solution defined in (7) without oversampling. If Ay > 1 and

I +2u) g% dx <1, letn = —ll‘:)i(i), then

/D (Z;Le(uh —up): €(un —up) + AV - Gy — uH))2) dx

(2 2 : MV 2) dx +1
_(A—*)(/L)(ue(uh)-E(uh)+ ( ~uh)) x+ )

5.2 Oversampling case

In this subsection, we will analyze the convergence of CG-GMSsFEM solution defined

in (7) with oversampling. We define / @iy, as an interpolation of uj, in ;" using

the first L, modes for the eigenvalue problem (21). Let x, be a partition of unity
subordinated to the coarse neighborhood w;". We require x,~ to be zero on dw, and

IVal? < VX2

Using the same argument as Lemma 1, it is easy to deduce
+ + +
/+ (20 Petun = 19 i) < €un = 1) + 2 PV - oy = 1 up))?) dx
Wy
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<

[P s = 1wy dx|+ [ G 2019 P — 19 ) .
w,, Wp

(36)

where g = f + div(e (1" up)), [“rup = I‘”;truh in wy,.
Applying eigenvalue problem (21), we obtain

O+ 2|V Pl — 197 up)? dx

wn

/ (Z/Le(uh —I%up) s G — 12up) + AV - (g, — I“’"uh))z) dx

(37)

B éL 41
Using the definition of interpolation / o uj, and inequality (37), we have

Ny
2 A2Vl wn = 17 un)? dx

n=1"®n

N
fZ/ (+ 201V, Pun — 19 up)? dx
n=1"@n

Ny
- — [ et = 1) et~ o)
éLn-{-l Wn

+/\(v (up — I”"up))?) dx
Ny

/ (2,u|VXn [e(uy — I“)'Tuh) se(up — I‘”’Tuh) dx
sk A

+ MYV - = 1 un))?) dx

< Z Sw,, e+ 2V Pl — 197 uy)? dx
L,+1 wn
Ny
+D / D Pg - un — 19 uy) dx
n=1 %_L,FH of
N
1 +2 2
=< re: (k+2M)IVx,, |“(up — I up)” dx
* = a),,
N;
1 w.
+— / X 128 - (un — 197 up) dx
A* n=1 oy
1
< FZE / 2peup — 1" up) : €(up — 1 up)
* = L,,+1 wn
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+M(V - (u,, — I“"up))?) dx

xF1Pg - (p — 197 ) dx|, (38)

where A} = min,, £, .
Applying the last inequality m times with (37), we get

N,

Z/ G+ 2001V x5 1P — 19 up)? dx

=1 wn

Ny

1\" 1
= (A+) Z/ QCue(up — ]wnuh) ce(up — Icu,,uh)

SL-I—ln 1Y %n

AV - (up — 1?up))?) dx
| N

2 () 2

n=1

/Ixnlg (un — 1% up) dx

n

1 m+1 N;
= ( A+) D[ Quetuy — 1 up) x €Cuy — 1 up)
*

n=1"7%n

AV - (up — 1 up))?) dx

1= (AT &
+HAD" (ﬁ) > / (4 21V ) ! (39)

=1 wn

Using Cea’s lemma and inequality (33) , we have
/ (ZMG(Mh —up):e(up —up) + AV - (up — MH))Z) dx
D

=D O+ 20Vl (= 1 up)* dx

n=1"7®n
Ny
+2
n=1
1 m—+1 )
=< (A—:) /D (2M€(uh) c€(up) +A(V - up) ) dx
_ +y—m
+ ((AI)'” (%) + 1) R. (40)

where R = 30| [ (0. + 2|V
Therefore, similar with the no oversamphng case, we have

/ x2g - (up — I”"up) dx
(o)
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Theorem 2 Let u; € Vé‘G be the fine-scale CG-FEM solution defined in (4) and
up be the CG-GMsFEM solution defined in (7) with oversampling. If A} > 1 and

I +2u) " 'g?dx < 1, letn = _loe) 4pop

logA; >

/D (2uetun —um) : ey —up) + (Y - @y = up))?) dx

H
< (A+) (/D (2ue(u,,) L e(up) + A(V - uh)2> dx + 1).

*

6 Error estimate for DG coupling

In this section, we will analyze the DG coupling of the GMSFEM (8). For any u, we
define the DG-norm by

||u||2DG=aH(u,u)+ Z %/E{)\+2,u}[u]2 ds.
Eecky

Let K be a coarse grid block and let nyg be the unit outward normal vector on 0K .
We denote V(9 K) by the restriction of the conforming space V" on 8 K . The normal
flux o (1) nyx is understood as an element in V" (3 K) and is defined by

/ (oc(w)nyg) -vds :/ (Z,ue(u) :€(D) + AV -uV -'17) dx, veV'OK),
aK K
(41

where U is the harmonic extension of v in K. By the Cauchy—Schwarz inequality,
K 1 g o 1
(c)npk) -vds <agu,u)? ay(v,v)2.
dK
By an inverse inequality and the fact that D is the harmonic extension of v
ak (@, < Kchnvh—l/ lv|? dx, (42)
K

where kx = maxg{A + 2u} and Ciyy > 0 is the constant from inverse inequality.
Thus,

1 _1 1
/ (0(u)nag) - vds < kgCinyh™2 vl z25k) aﬁ(u, u)?.
0K
This shows that

/3 lo ) nak > ds < kg C2h ™ ak (u, u). (43)
K
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Our first step in the convergence analysis is to establish the continuity and the
coercivity of the bilinear form (9) with respect to the DG-norm.

Lemma 2 Assume that the penalty parameter y is chosen so that y > 2Ci2nv' The
bilinear form apg defined in (9) is continuous and coercive, that is,

apc(u, v) = llullpG llvipe, (44)
apc(u, u) > aollulbg (45)

1

forall u,v, where ay = 1 — /2Cinyy "2 > 0.

Proof By the definition of apg, we have

apG (. v) = ap(u,v) = Y /E({a(u)nE}~[v]+{a(v>n5}-[u1) ds

EcEH

+ > %/E{,\Jrzp,}[u]-[u] ds.

EcEH

Notice that

ap(u,v) + E %/{k+2u}[u]-[v] ds < |lullpg llvipG.-
E
EcEH

For an interior coarse edge E € &£ H welet KT, K~ € T be the two coarse grid
blocks having the edge E. By the Cauchy—Schwarz inequality, we have

1 1

/ (o @y n) -l ds < (b / oyne 2 ds) (7 / (2ol ds).
E E h Jg

(46)

Notice that
h/{a(u)nE}z{k+2M}_1 ds
E
<i( / (Y ng)> W + 20y ds + / )N 0 +2u0) " ds).
E E

= u|g+, AT = Alg+ and uF = p|g+. So, we have

where u

h/ {o(u) nE}z{X + Zu,}_1 ds < Ciznv(a§+(u+, u™) +a§7(u_, u_)).
E
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Thus (46) becomes
1
/ (oW ng) - ] ds < Cin(aff " @t wh)+afy @, u7))?
E

1 1
x (E /E{/\ T 2u)[v]? ds) z (47)

When E is a boundary edge, we have

1

[towne)-wids < Cmafi @t (5 [+ 2anras)s @)
E h JE

where K denotes the coarse grid block having the edge E. Summing (47) and (48) for
all edges E € £, we have

=

> /{a(u)ng}-[v] ds < 2Cmanw,w? [ > %/{A+2u}[v]2 ds
E E

EcEH EcEH

Similarly, we have

D=

>, /{a(v)nE}-[u] ds < V2Ciman . v)? | > l/{A+2u}[u]2 ds
E h Jg

EecEH Ec&H

Hence

> /E (oG ng) - ] +{o@ ng) - ) ds < V2Cimy ™~ fulng [vlpg.  (49)

Ec&f

This proves the continuity.
For coercivity, we have

apG (e, u) = ulhg = /E({o(u)nE}-[u]+{a(u>n5}-[u1) ds.

EcEH
By (49), we have
_1
apG(u. u) = (1 = vV2Ciny ™ D) lulpg.

which gives the desired result. O

We will now prove the convergence of the method (8). Let uy, € VSG be the fine
grid solution which satisfies

apc (un, v) = (f,v), Yve Vi (50)
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It is well-known that uj, converges to the exact solution u in the DG-norm as the fine
mesh size h — 0. Next, we define a projection ug € V"% of i, in the snapshot space
by the following construction. For each coarse grid block K, the restriction of ug on
K is defined as the harmonic extension of uy, that is,

—V.o(us) =0, inKk,

51
us =up, onok. S

Now, we prove the following estimate for the projection ug.

Lemma 3 Let uj, € VgG be the fine grid solution defined in (50) and ug € V"% be
the projection of uy, defined in (51). Then we have

lun — uslipg < CH( max k)11 £ll2)-
h KGTHW Sl (Q)

where ng = ming {\ + 2u}.

Proof Let K be a given coarse grid block. Since ug = uj, on 0K, the jump terms in
the DG-norm vanish. Thus, the DG-norm can be written as

2 K
lun — uslipg = D afyun —us. up — us).
KeTH

Since u g satisfies (51) and u;, — ug = 0 on K, we have
af(us, up —us) = 0.
So,

2 K
lun —uslipg = D afy (un, un —us) = apc(un, wy — us) = (f, up — us).
KeTH

By the Poincaré inequality, we have
lun — usli 2y < CH*ngafy(up — us, up — us),
where ng = ming {A 4+ 2u}. Hence, we have
lun = usliog < CH( max nx)11£1l2(0)-
KeTH L@

O

In the following theorem, we will state and prove the convergence of the GMsFEM

(8).

@ Springer



Int J Geomath (2014) 5:225-254 251

Theorem 3 Let uy, € VDhG be the fine grid solution defined in (50) and uy be the
GMsFEM solution defined in (8). Then we have

NEg
H
lup —unlpg < C 1+ / (0 (us) - nyx)* ds
SR (g‘(wzmsw( h$L+1 SR

+H2( max T)K)||f||L2(Q))

where ug is defined in (51).

Proof First, we will define a projection 7is € V° of ug in the offline space. Notice
that, on each K;, us can be represented by

us = ZCIW o,

i,off

where M; = M"$" and we assume that the functions Y, are normalized so that

/ (4 2) (¥ ds = 1.
IK;

Then the function &y is defined by

~ i,off
Us = chlﬂl .

We will find an estimate of ||us — s ||pG. Let K be a given coarse grid block. Recall
that the spectral problem is

/2ue(u):e(v)dx+/AV-uV-vdx:i/ (A +2u)uv ds.
K K H Jyk

By the definition of the flux (41), the spectral problem can be represented as

/ (o(u) -nyg)vds = i/ (A4 2u)uv ds.
9K H Jyk

By the definition of the DG-norm, the error |lug — us||pg can be computed as
s —uslipg < D (/ 2pue(iis —us)* ds + / MV - (s — ug))* ds
X K K
14 ~ 2
+- {A+2u}(us —us))~ds ).
h Jak
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Note that

1
/ 2ue(is — us)? ds+/ AV - (s — ug))>ds < Z/ (A4 2u) @s—us)* ds
K; K;

K
M; M;
> ke (&)
= ﬁcl _é
I=L,+1 Litl 241
Also,
Mi Mi 2
Z/BK{)»—i-Zu}(uS—uS) ds:z Z i < nel Z Vi .
t I=L;+1 Li+1 I=L;+1
Moreover,
M; (5 M;
) =3 () = o
> = s) - nak)* ds.
et H = )\+2/,L

Consequently, we obtain the following bound

Ng

B ) v
s MSHDGSEM‘FZM)éLiH +h§L+1 (o(us) -nyx)- ds.

Next, we will prove the required error bound. By coercivity,

~ 2 ~ —~
aollus —upllpg = apc(us —upg,us —ugy)
=apg(s —upg, s — us)

+apc (s —up, us —up) + apc(Us — Up, up — UH).

Note that apg (iis —up, up —up) = 0since @ —uy € VO, Using the above results,

NEg H
s — ur g < (1+ )/ (o (us) - nax)* ds
S (; 42w Et \ kL 5K
+H? (K“é% ni) ||f||iz(9)) : (52)

Finally, the desired bound is obtained by the triangle inequality

lun —unlpg < lun —usllpg + lus — uslipc + lus — unlpc.
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Table 9 Largest eigenvalue for snap snap

no oversampling and Ak A K+
oversampling
1/10 3.91e+02 19.3
1/20 7.99e+02 19.2
1/40 1.61e+03 20.4
1/80 3.22e+03 20.4

Remark 1 1t is worthwhile to note that (42) can be replaced by

al @,0) < AYT ()»+2,u)/ [v|? ds,
9K

where Ai?ap is the largest eigenvalue for the spectral problem (19). Therefore, (43)
becomes

/31( lo () ngk 1> ds < A (L +2u) ak (u, u).

Repeating above steps, one can choose y in (52) that satisfies

snap

> Ch max A’
4 KcTH K

where the constant C is defined as

- maxgcyk {A + 2u}
C = max - .
KCTH mingcyg {A + 2}

If we assume every coarse element includes a high contrast region, then Cis 0(1).
Table 9 shows Ai?ap with and without oversampling for different 4. We can see that
Aslgip is much smaller than ASI?ap. Besides, the numerical experiments show A??ip is
a very weak function of %, while A;?ap is proportional to !
We can get similar error analysis for the case of oversampling by just following
steps shown in the above no oversampling case. But we can have better estimate in the
oversampling case. If welety = aCmachTH AK+ ,thentheterm C| = 14+ +— hé in

snap
Cm‘lchTHA

(52) becomes 1 + T

independent of z, which means Cy can be controlled. Therefore, the domlnated error
comes from % We emphasize that this remark is based on our numerical
observations while the analytical studies are complicated and it will be the subject of

our future research.

snp

. We have numerically shown that A ,.\" is almost
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7 Conclusions

In this paper, we design a multiscale model reduction method using GMsSFEM for
elasticity equations in heterogeneous media. We design a snapshot space and an
offline space based on the analysis. We present two approaches that couple multiscale
basis functions of the offline space. These are continuous Galerkin and discontinuous
Galerkin methods. Both approaches are analyzed. We present oversampling studies
where larger domains are used for calculating the snapshot space. Numerical results
are presented.
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