
Int J Geomath
DOI 10.1007/s13137-012-0041-6

ORIGINAL PAPER

The geomagnetic field gradient tensor
Properties and parametrization in terms of spherical harmonics

Stavros Kotsiaros · Nils Olsen

Received: 3 April 2012 / Accepted: 25 June 2012
© Springer-Verlag 2012

Abstract We develop the general mathematical basis for space magnetic gradiom-
etry in spherical coordinates. The magnetic gradient tensor is a second rank tensor
consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B
is always solenoidal (∇ · B = 0) there are only eight independent tensor elements.
Furthermore, in current free regions the magnetic gradient tensor becomes symmet-
ric, further reducing the number of independent elements to five. In that case B is a
Laplacian potential field and the gradient tensor can be expressed in series of spher-
ical harmonics. We present properties of the magnetic gradient tensor and provide
explicit expressions of its elements in terms of spherical harmonics. Finally we dis-
cuss the benefit of using gradient measurements for exploring the Earth’s magnetic
field from space, in particular the advantage of the various tensor elements for a better
determination of the small-scale structure of the Earth’s lithospheric field.

Keywords Geomagnetic field · Gradient tensor · Space magnetic gradiometry

Mathematics Subject Classification Primary 86A25; Secondary 33C55

1 Introduction

Although an initial global mapping of the Earth’s magnetic field intensity has already
been performed in the 1960s by the POGO satellite series (Cain 2007), the first global
vector mapping of the Earth’s magnetic field from space was achieved by the Mag-
sat satellite that flew for 6 months in 1979 and 1980. More recently, the satellites

S. Kotsiaros (B) · N. Olsen
DTU Space, Technical University of Denmark, Kgs. Lyngby, Denmark
e-mail: skotsiaros@space.dtu.dk

N. Olsen
e-mail: nio@space.dtu.dk

123



Int J Geomath

Ørsted (launched in 1999), CHAMP (2000–2010) and SAC-C (2000–2004) provide a
continuous mapping and monitoring of the geomagnetic field. In the near future, the
Swarm satellite mission that is presently under construction by the European Space
Agency (ESA) for a scheduled launch in 2012, will provide measurements not only
of the magnetic field vector B but also an estimate of its East–West gradient. This
additional parameter contains information especially about North–South oriented fea-
tures of crustal magnetization, see e.g. Olsen et al. (2004, Fig. 3.5). It is therefore
expected that Swarm will provide major advances in exploring the geomagnetic field
from space.

The derivatives of the magnetic field vector B in each of the three directions of
three-dimensional space define the gradient tensor, consisting of 3 × 3 = 9 spatial
derivatives and forming a second rank tensor. Each element of the gradient tensor rep-
resents a directional filter and thereby emphasizes certain structures of the magnetic
field (Schmidt and Clark 2006). The magnetic gradient tensor is therefore a powerful
tool for detecting hidden geomagnetic structures by enhancing certain features of the
field and suppressing specific undesirable contributions. Due to the similarity of the
magnetic and gravity field (under certain conditions) the gravity gradient tensor has
similar properties.

Satellite gradiometry and especially its application to gravity field determination
has been investigated since the early 1970s. Reed (1973) studied the use of satellite-
borne gravity gradient devices for determining the Earth’s gravity field. Rummel and
Colombo (1985) discuss ways of investigating the gravity field with an orbiting gradi-
ometer measuring the gravity gradient tensor. In 1988 ESA started a series of studies
with the goal of preparing the geodetic user community for a dedicated gravity field
satellite mission. In the meantime, Rummel et al. (1993) established a comprehensive
mathematical basis for satellite gravity gradiometry. In 1999 ESA decided to build
and launch the GOCE satellite mission which measures the full gravity gradient ten-
sor. GOCE was successfully launched in March 2009 and has contributed the most
detailed models of Earth’s gravity field to date. In the context of inverse problems of
mathematical geodesy, Freeden and Nutz (2011) studied the calculation of the gravi-
tational potential at the Earth’s surface from the gravity gradient tensor at the height
of a low Earth orbiting satellite.

Magnetic gradiometry did not follow the same trend as gravity gradiometry, partly
due to the more complicated nature of the geomagnetic field B which is always sole-
noidal (∇ · B = 0), whereas the gravity field g is always solenoidal and additionally
irrotational (∇ × g = 0), see Olsen and Kotsiaros (2011). However, magnetic gradi-
ometry has been used for regional studies based on near surface data for decades, see
e.g. Pedersen and Rasmussen (1990); Christensen and Rajagopalan (2000); Schmidt
and Clark (2000). Some advantages of measuring magnetic field gradients from sat-
ellites have been discussed by Harrison and Southam (1991). Purucker et al. (2007)
studied the lithospheric field using gradient information constructed from magnetic
field measurements collected by the ST-5 mission that consists of three micro sat-
ellites flying in a “string of pearls” constellation. A major step toward magnetic
space gradiometry will be undertaken by the Swarm satellite mission which provides
estimates of the East–West gradient of the vector magnetic field. However, a satel-
lite mission providing global measurements of the full geomagnetic gradient tensor
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(i.e. a magnetic mission that is equivalent to what GOCE is for the gravity field) has
not yet been attempted. Magnetic space gradiometry is a scientifically complicated
and technically challenging task, for instance due to the existence of electric currents
at satellite altitude.

In this paper we develop a comprehensive mathematical basis for magnetic space-
based gradiometry. The properties of the gradient tensor are investigated, and various
possible assumptions that simplify its determination are presented. More specifically,
we start from the most general case of a solenoid vector field (∇ · B = 0). This
condition reduces the number of independent elements of the gradient tensor from 9
to 8. According to the Mie representation of vector fields (e.g. Backus 1986), every
solenoid field—for instance the magnetic field B—can be decomposed into poloidal
and toroidal parts. Likewise, the gradient tensor can be constructed separately for the
toroidal and poloidal parts of the magnetic field.

Assuming slow time variations (of periods much longer than 1 s) allows one to
neglect displacement currents in Maxwell’s equations, leading to ∇×B = μ0J where
J is electrical current density and μ0 = 4π10−7 Vs/(Am) is the magnetic permeabil-
ity of free space. In current-free regions (0 = μ0J = ∇ × B) the toroidal part of
the magnetic field vanishes and the remaining poloidal part may be decomposed into
internal and external field parts, an approach termed Gauss’ representation. In that
case, the magnetic field vector B = −∇V can be derived from a scalar potential V
that solves Laplace equation ∇2V = 0. Due to ∇ × B = 0 the magnetic gradient
tensor is symmetric which reduces the number of independent elements to 5. Finally,
the magnetic gradient tensor can be expanded in terms of Spherical Harmonics (SH)
using the same set of Gauss coefficients as for expanding the magnetic scalar potential
V . We investigate the information contained in each tensor element and their benefits
and limitations for the determination of the Gauss coefficients describing the core and
lithospheric parts of the Earth’s magnetic field.

The outline of this paper is as follows: In Sect. 2, we present the mathematical
basis for space-based magnetic gradiometry and the general expression of the mag-
netic gradient tensor in Euclidean Space is derived. In Sect. 3, the properties of the
gradient tensor are investigated, whereas different assumptions that can simplify the
determination of the gradient tensor in space are shown. The gradient tensor is con-
structed separately for the toroidal and poloidal part of the magnetic field B in Sect. 4.
In Sect. 5 we calculate the magnetic gradient tensor when the magnetic field B is a
Laplacian potential field and in Sect. 6 the magnetic field gradient tensor is param-
etrized in terms of Spherical Harmonics. The information contained in each tensor
element, its benefits and limitations in the determination of the Gauss coefficients are
investigated in Sect. 7.

2 The mathematical basis

To derive the magnetic gradient tensor in Euclidean space we define the basis vectors
ep as

ep = ∂r
∂u p

, (2.1)
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with p = 1, 2, 3. r is the position vector in one set of coordinates, e.g. in geo-
centric Cartesian coordinates r = (x, y, z), whereas u = (u1, u2, u3) is a set of
coordinates, e.g. spherical coordinates u = (r, θ, ϕ). In general the basis vectors ep

do not have unit magnitude but they may be normalized in order to obtain the unit
vectors

êp = 1

h p

∂r
∂u p

, (2.2)

where the scale factors h p are given by

h p =
∣
∣
∣
∣

∂r
∂u p

∣
∣
∣
∣
. (2.3)

Following Talpaert (2002) the gradient of a vector like the magnetic field B at each
point is the tensor field ∇B which relates the differential of B to the position vector
elements dr such that

dB = ∇Bdr, (2.4)

where the position vector element dr is given by

dr = h1du1ê1 + h2du2ê2 + h3du3ê3 =
⎛

⎝

h1du1
h2du2
h3du3

⎞

⎠ , (2.5)

(see also Arfken and Weber 2005). Note that the second rank tensor ∇B (where ∇ is not
an operator and denotes a tensor) should be distinguished from ∇ · B, the divergence
of B (where ∇ is the gradient operator).

Expanding the magnetic field vector B using the unit vectors defined in Eq. (2.2)
yields the column vector B = (B1, B2, B3)

T (where the superscript T stands for the
transpose).

Therefore, the differential dB is

dB = ∂ B1

∂u1
du1ê1 + B1

∂ ê1

∂u1
du1 + ∂ B2

∂u1
du1ê2 + B2

∂ ê2

∂u1
du1 + ∂ B3

∂u1
du1ê3

+B3
∂ ê3

∂u1
du1 + ∂ B1

∂u2
du2ê1 + B1

∂ ê1

∂u2
du2 + ∂ B2

∂u2
du2ê2 + B2

∂ ê2

∂u2
du2

+∂ B3

∂u2
du2ê3 + B3

∂ ê3

∂u2
du2 + ∂ B1

∂u3
du3ê1 + B1

∂ ê1

∂u3
du3 + ∂ B2

∂u3
du3ê2

+B2
∂ ê2

∂u3
du3 + ∂ B3

∂u3
du3ê3 + B3

∂ ê3

∂u3
du3. (2.6)

Using the position vector element, Eq. (2.5), then dB = ∇Bdr, Eq. (2.4), can be
expressed with the help of Eq. (2.6) and the magnetic field gradient tensor ∇B can be
therefore expressed as
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∇B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
h1

(

∂ B1
∂u1

+
3∑

p=1
Bp

∂ êp
∂u1

ê1

)

1
h2

(

∂ B1
∂u2

+
3∑

p=1
Bp

∂ êp
∂u2

ê1

)

1
h1

(

∂ B2
∂u1

+
3∑

p=1
Bp

∂ êp
∂u1

ê2

)

1
h2

(

∂ B2
∂u2

+
3∑

p=1
Bp

∂ êp
∂u2

ê2

)

· · ·

1
h1

(

∂ B3
∂u1

+
3∑

p=1
Bp

∂ êp
∂u1

ê3

)

1
h2

(

∂ B3
∂u2

+
3∑

p=1
Bp

∂ êp
∂u2

ê3

)

1
h3

(

∂ B1
∂u3

+
3∑

p=1
Bp

∂ êp
∂u3

ê1

)

· · · 1
h3

(

∂ B2
∂u3

+
3∑

p=1
Bp

∂ êp
∂u3

ê2

)

1
h3

(

∂ B3
∂u3

+
3∑

p=1
Bp

∂ êp
∂u3

ê3

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.7)

A more compact form for its elements is

[∇B]i j = 1

h j

⎛

⎝
∂ Bi

∂u j
+

3
∑

p=1

Bp
∂ êp

∂u j
êi

⎞

⎠ , (2.8)

with i, j = 1, 2, 3, whereas from Eq. (2.2) we have

∂ êp

∂u j
= − 1

h2
p

∂h p

∂u j

∂r
∂u p

+ 1

h p

∂2r
∂u j∂u p

. (2.9)

In the case of spherical coordinates u = (r, θ, ϕ) the scale factors h p are

h1 = 1, (2.10a)

h2 = r, (2.10b)

h3 = r sin θ, (2.10c)

and the position vector r and the position vector element dr are

r =
⎛

⎝

r sin θ cos ϕ

r sin θ sin ϕ

r cos θ

⎞

⎠ (2.11)

dr =
⎛

⎝

dr
rdθ

r sin θdϕ

⎞

⎠ (2.12)

(Arfken and Weber 2005). Therefore, making use of Eqs. (2.9) and (2.8), the magnetic
gradient tensor ∇B in spherical coordinates is given by
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∇B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ Br

∂r

1

r

∂ Br

∂θ
− 1

r
Bθ

1

r sin θ

∂ Br

∂ϕ
− 1

r
Bϕ

∂ Bθ

∂r

1

r

∂ Bθ

∂θ
+ 1

r
Br

1

r sin θ

∂ Bθ

∂ϕ
− cot θ

r
Bϕ

∂ Bϕ

∂r

1

r

∂ Bϕ

∂θ

1

r sin θ

∂ Bϕ

∂ϕ
+ 1

r
Br + cot θ

r
Bθ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.13)

3 Properties of magnetic field gradient tensor

Full characterization of the magnetic field gradient tensor, Eq. (2.13), requires the
specification of nine independent elements. However, making use of Gauss’ law of
magnetism,

∇ · B = 0, (3.1)

reduces the number of independent elements from 9 to 8. Physically, Eq. (3.1) means
that magnetic monopoles (in analogy to electric charges) do not exist. In spherical
coordinates Eq. (3.1) reads

0 = ∇ · B = 1

r2

∂

∂r
(r2 Br ) + 1

r sin θ

∂

∂θ
(sin θ Bθ ) + 1

r sin θ

∂ Bϕ

∂ϕ
(3.2)

= ∂ Br

∂r
+ 2

r
Br + 1

r

∂ Bθ

∂θ
+ cot θ

r
Bθ + 1

r sin θ

∂ Bϕ

∂ϕ
. (3.3)

Comparison with Eq. (2.13) shows that the divergence of the vector corresponds to
the trace of the gradient tensor, which is always zero because ∇ · B = 0:

∇ · B = tr(∇B) = 0. (3.4)

A powerful aspect of the gradient tensor can be recognized by starting from Ampere’s
law in the quasi-static approximation

∇ × B = μ0J (3.5)

which, as mentioned before, holds for processes with time-scales longer than 1 s, a
condition that is very well satisfied in geomagnetism. In spherical coordinates the curl
of B is

μ0J = ∇ × B =
(

1

r

∂ Bϕ

∂θ
+ cot θ

r
Bϕ − 1

r sin θ

∂ Bθ

∂ϕ

)

êr

+
(

1

r sin θ

∂ Br

∂ϕ
− ∂ Bϕ

∂r
− 1

r
Bϕ

)

êθ

+
(

∂ Bθ

∂r
+ 1

r
Bθ − 1

r

∂ Br

∂θ

)

êϕ. (3.6)
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The difference of the gradient tensor with its transpose yields

∇B−∇BT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1

r

∂ Br

∂θ
− 1

r
Bθ − ∂ Bθ

∂r
∂ Bθ

∂r
− 1

r

∂ Br

∂θ
+ 1

r
Bθ 0 · · ·

∂ Bϕ

∂r
− 1

r sin θ

∂ Br

∂ϕ
+ 1

r
Bϕ

1

r

∂ Bϕ

∂θ
− 1

r sin θ

∂ Bθ

∂ϕ
+ cos θ

r sin θ
Bϕ

1

r sin θ

∂ Br

∂ϕ
− 1

r
Bϕ − ∂ Bϕ

∂r

· · · 1

r sin θ

∂ Bθ

∂ϕ
− cos θ

r sin θ
Bϕ − 1

r

∂ Bϕ

∂θ

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3.7)

and with J = Jr êr + Jθ êθ + Jϕêϕ Eqs. (3.5) and (3.7) can be combined to

∇B − ∇BT = μ0

⎛

⎝

0 −Jϕ +Jθ

+Jϕ 0 −Jr

−Jθ +Jr 0

⎞

⎠ . (3.8)

The gradient tensor therefore provides information on the in-situ electrical current den-
sity J = (Jr , Jθ , Jϕ)T . An important aspect of Eq. (3.8) is that ∇B = ∇BT in current
free regions (J = 0), which results in a symmetric gradient tensor. This reduces the
number of independent elements to 5 which significantly simplifies the determination
of the gradient tensor.

The general expression of the gradient tensor in spherical coordinates, Eq. (2.13),
indicates that all tensor elements except those in the first column contain, in addition
to the field derivatives along the direction θ or ϕ, contributions from the field compo-
nents Br , Bθ , Bϕ. Thus, they represent a mixture of contributions from the field and
its spatial derivatives. However, when studying small-scale variations, e.g. the litho-
spheric field, it is possible to simplify the gradient tensor. Since the geomagnetic field
is dominated by the large-scale main field (i.e. contributions described by spherical
harmonic degrees up to, say, n = 13) the terms of the gradient tensor that include the
field (rather than its spatial derivative) can be neglected, as shown e.g. by Olsen and
Kotsiaros (2011). In that case Eq. (2.13) reduces to

∇B ≈

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ Br

∂r

1

r

∂ Br

∂θ

1

r sin θ

∂ Br

∂ϕ

∂ Bθ

∂r

1

r

∂ Bθ

∂θ

1

r sin θ

∂ Bθ

∂ϕ

∂ Bϕ

∂r

1

r

∂ Bϕ

∂θ

1

r sin θ

∂ Bϕ

∂ϕ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.9)

and the tensor elements contain only contributions from the field derivatives along
each direction but not from the vector field B itself.
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4 Toroidal–poloidal decomposition

According to the Mie representation, a solenoid vector like the magnetic vector B can
be written uniquely as the sum of a toroidal and a poloidal part (cf. Mie 1908; Backus
1986; Backus et al. 1996; Sabaka et al. 2010). Each part is derived via curl operations:

B = Btor + Bpol (4.1)

B = ∇ × r� + ∇ × ∇ × r� (4.2)

where � and � are the toroidal and poloidal scalar potentials, respectively. In spherical
coordinates this decomposition is given by

B =

⎛

⎜
⎜
⎜
⎝

0
1

sin θ
∂
∂ϕ

�

− ∂

∂θ
�

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

toroidal part

+

⎛

⎜
⎜
⎜
⎝

−�s(r�)
1

r
∂
∂θ

(r�)′
1

r sin θ
∂
∂ϕ

(r�)′

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

poloidal part

(4.3)

with (r�)′ = d(r�)
dr and �s = 1

r2 sin θ
∂
∂θ

(

sin θ ∂
∂θ

)+ 1
r2 sin2 θ

∂2

∂ϕ2 is the horizontal part
of the Laplacian. An expansion of the scalar potentials � and � in a series of spherical
harmonics is given in Olsen (1997).

The gradient tensor of the toroidal, resp. poloidal, part follows as

∇Btor =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 − 1

r sin θ

∂�

∂ϕ

1

r

∂�

∂θ

1

sin θ

∂2�

∂r∂ϕ

∂

r∂θ

(
1

sin θ

∂�

∂ϕ

)
cos θ

r sin θ

∂�

∂θ
+ 1

r sin2 θ

∂2�

∂ϕ2

− ∂2�

∂r∂θ
−1

r

∂2�

∂θ2 − ∂

r∂θ

(
1

sin θ

∂�

∂ϕ

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.4)

∇Bpol =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− ∂

∂r
�s(r�) −1

r

∂

∂θ

(

�s(r�) + 1

r
(r�)′

)

∂

∂r

(
∂(r�)′

r∂θ

)

−1

r
�s(r�) + 1

r2

∂2

∂θ2 (r�)′ · · ·
1

sin θ

∂

∂r

(
∂(r�)′

r∂ϕ

)
∂

∂θ

(
1

r2 sin θ

∂(r�)′

∂ϕ

)

− 1

r sin θ

∂

∂ϕ

(

�s(r�) + 1

r
(r�)′

)

· · · ∂

∂θ

(
1

r2 sin θ

∂(r�)′

∂ϕ

)

−1

r
�s(r�) + 1

r2 sin θ

(
1

sin θ

∂2

∂ϕ2 + cos θ
∂

∂θ

)

(r�)′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.5)

The general condition that the trace of the gradient tensor is zero, Eq. (3.4), holds also
for the gradient tensor of the toroidal and poloidal parts separately.
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5 Laplacian potential approximation

In case of vanishing currents (J = 0) in a shell where the magnetic measurements are
taken, i.e. a source-free region, the toroidal field Btor vanishes and the poloidal field
Bpol can be decomposed into a part Bi caused by currents inside the shell and another
part Be caused by currents outside the shell (cf. Backus et al. 1996, chap. 5):

B = Bi + Be. (5.1)

Since the magnetic vector B within the shell is curl-free,

μ0J = ∇ × B = 0, (5.2)

it can be written as the (negative) gradient of a scalar potential V,

B = −∇V (5.3)

and because of ∇ · B = 0 the potential V has to obey Laplace’s equation: ∇2V = 0.

Similar to Eq. (5.1), the scalar potential V can be split into an internal part Vi and an
external part Ve

V = Vi + Ve, (5.4)

each of which may be expanded in series of spherical harmonics, as discussed in the
next section. The magnetic field vector B follows as

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−∂Vi

∂r

−1

r

∂Vi

∂θ

− 1

r sin θ

∂Vi

∂ϕ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

Bi

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−∂Ve

∂r

−1

r

∂Ve

∂θ

− 1

r sin θ

∂Ve

∂ϕ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

Be

. (5.5)

According to Eq. (2.13) the gradient tensor is then given by

∇B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−∂2V

∂r2 − ∂

∂r

(
1

r

∂V

∂θ

)

− ∂

∂r

(
1

r

∂V

∂θ

)

−1

r

∂V

∂r
− 1

r2

∂2V

∂θ2 · · ·

− ∂

∂r

(
1

r sin θ

∂V

∂ϕ

)

− ∂

∂θ

(
1

r2 sin θ

∂V

∂ϕ

)

− ∂

∂r

(
1

r sin θ

∂V

∂ϕ

)

· · · − ∂

∂θ

(
1

r2 sin θ

∂V

∂ϕ

)

−1

r

∂V

∂r
− cot θ

r2

∂V

∂θ
− 1

r2 sin2 θ

∂2V

∂ϕ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.6)
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where V = Vi + Ve. Equation (5.6) can be written independently for the internal part
Vi and the external part Ve, respectively. The trace of this tensor is equal to −∇2V
which is zero, as expected. Additionally, the gradient tensor is symmetric, which is
consistent with what was stated in Sect. 3. Hence only five tensor elements have to be
specified in order to fully determine the magnetic gradient tensor.

6 The spherical harmonic representation

The scalar potential V can be expanded in series of spherical harmonics:

V = R

{

a
N
∑

n=1

n
∑

m=0

γ m
n exp (imϕ)

(a

r

)n+1
Pm

n (cos θ)

+ a
Ne∑

n=1

n
∑

m=0

δm
n exp (imϕ)

( r

a

)n
Pm

n (cos θ)

}

, (6.1)

where R{· · · } denotes the real part of the series and i is the imaginary number, a is a
reference radius (typically Earth’s mean radius a = 6,371.2 km is chosen), Pm

n (cos θ)

are the associated Schmidt semi-normalized Legendre functions of degree n and order
m, γ m

n = gm
n − ihm

n and δm
n = qm

n − ism
n are the complex Gauss coefficients describ-

ing sources internal and external to the Earth, respectively. Theoretically, the series
extends up to infinite degree, but since in practice there is only a limited number of
measurements at discrete points, the series are truncated at some largest degree N and
Ne, respectively.

The magnetic field vector follows as

Bi =R

⎧
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n exp (imϕ)
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n exp (imϕ)
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dθ
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m
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, (6.2a)

Be =R
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−
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m
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iδm

n exp (imϕ)
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⎟
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. (6.2b)

Given Eq. (2.13), the gradient tensor elements of the internal part [∇Bi] jk and external
part [∇Be] jk of the magnetic field can be expanded in series of spherical harmonics.
Here the first subscript, j, stands for the vector component for which the deriva-
tive is taken, while the second, k, indicates the direction of the spatial derivative,
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with j, k = r, θ, ϕ. Since we are dealing with the potential case (i.e. absence of elec-
trical currents), the tensor is symmetric and therefore only six out of nine elements
are presented.

[∇Bi] jk = R

{

1

a

N
∑

n=1

n
∑

m=0

γ m
n exp (imϕ)

(a

r

)(n+3)

Pm, i
n, jk(cos θ)

}

(6.3)

with:

Pm, i
n, rr (cos θ) = −(n + 1)(n + 2)Pm

n (cos θ) (6.4a)

Pm, i
n, θθ (cos θ) = (n + 1)Pm

n (cos θ) − d2 Pm
n (cos θ)

dθ2 (6.4b)

Pm, i
n, ϕϕ(cos θ) =

[
m2

sin2 θ
+ (n + 1)

]

Pm
n (cos θ) − cot θ

d Pm
n (cos θ)

dθ
(6.4c)

Pm, i
n, rθ (cos θ) = (n + 2)

d Pm
n (cos θ)

dθ
(6.4d)

Pm, i
n, rϕ(cos θ) = m(n + 2)

sin θ
i Pm

n (cos θ) (6.4e)

Pm, i
n, θϕ(cos θ) = m cos θ

sin2 θ
i Pm

n (cos θ) − m

sin θ
i
d Pm

n (cos θ)

dθ
(6.4f)

and

[∇Be] jk = R

{

1

a

Ne∑

n=1

n
∑

m=0

δm
n exp (imϕ)

( r

a

)(n−2)

Pm, e
n, jk(cos θ)

}

(6.5)

with

Pm, e
n, rr (cos θ) = −n(n − 1)Pm

n (cos θ) (6.6a)

Pm, e
n, θθ (cos θ) = −n Pm

n (cos θ) − d2 Pm
n (cos θ)

dθ2 (6.6b)

Pm, e
n, ϕϕ(cos θ) =

[
m2

sin2 θ
− n

]

Pm
n (cos θ) − cot θ

d Pm
n (cos θ)

dθ
(6.6c)

Pm, e
n, rθ (cos θ) = −(n − 1)

d Pm
n (cos θ)

dθ
(6.6d)

Pm, e
n, rϕ(cos θ) = −m(n − 1)

sin θ
i Pm

n (cos θ) (6.6e)

Pm, e
n, θϕ(cos θ) = m cos θ

sin2 θ
i Pm

n (cos θ) − m

sin θ
i
d Pm

n (cos θ)

dθ
. (6.6f)
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As mentioned earlier, the trace of the magnetic gradient tensor is always zero and
therefore Pm, i

n, rr + Pm, i
n, θθ + Pm, i

n, ϕϕ = 0 and similarly Pm, e
n, rr + Pm, e

n, θθ + Pm, e
n, ϕϕ = 0.

7 The gradient tensor as a tool for magnetic field determination

After having introduced in the previous sections a mathematical representation of the
magnetic gradient tensor, we now discuss the problem of using magnetic gradient
observations to explore the geomagnetic field.

The goal of geomagnetic field modelling is to estimate, from geomagnetic field
observations, the spherical harmonic expansion coefficients (gm

n , hm
n ) and (qm

n , sm
n ) of

Eq. (6.1) describing sources of internal, resp. external, origin. These observations can
be the components of the magnetic vector B, the magnetic field intensity |B| and/or
elements of the gradient tensor. In this section we investigate geomagnetic field mod-
elling using the various elements of the magnetic gradient tensor. For this task we will
only consider a determination of the Gauss coefficients (gm

n , hm
n ) of internal origin. In

addition, we concentrate on a determination of the small-scale lithospheric field.
Determination of Gauss coefficients from observations of the magnetic field vector

or the gradient tensor elements is a linear problem, and therefore the model vector m
containing the unknown Gauss coefficients (the model parameters (gm

n , hm
n )) is related

to the data vector d (containing observations of the vector component or gradient tensor
elements) as

d = Gm (7.1)

where G is the data kernel matrix. An estimate m̂ of the model vector m in the
(weighted) Least-Square sense results in

m̂ = (GT C−1
d G)−1GT C−1

d d (7.2)

= (GT G)−1GT d, (7.3)

where Cd is the data covariance matrix which is assumed to be diagonal with ele-
ments σ 2

d , corresponding to independent observations with common variance σ 2
d . The

diagonal elements of the model covariance matrix

Cm = σ 2
d (GT G)−1 (7.4)

are the variances σ 2
g of the estimated model parameters, i.e. of the Gauss coefficients

(gm
n , hm

n ). Cm is independent of the data vector d, i.e. of the actual magnetic data, but
depends on the satellite positions and on the type of observation, i.e. which vector com-
ponents or gradient tensor elements are considered in the inversion process. Therefore,
given a satellite orbit configuration and a certain type of observations, maps of the
variances σ 2

g give information on the performance of the magnetic field determination
for that given orbit and observation type.

Approximate analytic expressions for the covariance matrix Cm and thereby for the
variances σ 2

g of the estimated model parameters have been derived by Lowes (1966)
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and Langel (1987) for the case that the observations consist of Nd measurements
of all three components (Br , Bθ , Bϕ) of the magnetic vector equally distributed by
area on the sphere (or weighted by sin θ if they are taken by a polar orbiting satellite
and equally spaced in time).1 In that case GT G, and hence also Cm, approach (in
the limiting case of an infinite number of observations) diagonal matrices due to the
orthogonality of spherical harmonics, and the variances of the Gauss coefficients are
given by

σ 2
g ≈ σ 2

d

( r

a

)2n+4 1

Nd(n + 1)
, if d = {Br , Bθ , Bϕ} (7.5)

(cf. Eq. 124 of Langel 1987). Note that these variances do not depend on the order m of
the spherical harmonics, i.e. they are equal for all Gauss coefficients of a given degree
n. If only measurements of the radial vector component Br are used the corresponding
variances of the Gauss coefficients are

σ 2
g ≈ σ 2

d

( r

a

)2n+4 2n + 1

Nd(n + 1)2 , if d = {Br } (7.6)

which is larger than Eq. (7.5) by a factor between 3/2 (for n = 1) and 2 (for n → ∞).
Analytic expressions for σ 2

g do not exist if the data consist of the horizontal field
components Bθ or Bϕ since in those cases GT G is not a diagonal matrix and it is not
possible to analytically derive its inverse. In order to study these cases we therefore
rely on numerical simulations, similar to the ones performed in Olsen et al. (2010).
For those we used synthetic data from a satellite in a polar circular orbit at 400 km
altitude. They span a period of one month with a sampling rate of 30 s, which gives
us Nd = 89,280 magnetic measurements in total. Since the data are equally spaced in
time we applied weights w = sin θ in order to simulate an equal area distribution. The
diagonal elements, σ 2

g , of the numerically computed model covariance matrix Cm are
shown in Fig. 1 in dependence on degree n and order m (where m ≥ 0 belongs to
the coefficients gm

n while m < 0 belongs to hm
n ). The left part of the figure represents

the variances for the case that observations of Br are used; this map corresponds
to the analytic expression for σ 2

g given in Eq. (7.6). The other parts of the figure show
the variances σ 2

g for the cases that observations consist of the magnetic field compo-
nents Bθ (middle) or Bϕ (right). Note that σ 2

g in these cases depend on both degree
n and order m. Overall, the maps show the information contained in each vector
component. White represents low information content, whereas green represents high
information content.

If the data consist of the radial gradient of the radial vector component, [∇B]rr , a
similar analytic approach as in the case of Br as data can be used to derive the variances

1 There is a typo in the right-hand side of equation 122a and 122c of Langel (1987) which correctly should
read δk, j [n(n + 1)/(2n + 1) − m/2] and δk, j [(n + 1)2/(2n + 1)], respectively.
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Fig. 1 Variance of the estimated internal Gauss coefficients from 89,280 data points of each field compo-
nent, a Br , b Bθ and c Bϕ, obtained by a polar orbiting satellite at 400 km altitude. White represents low
information content, whereas green represents high information content (colour figure online)

of the Gauss coefficients. In that case GT G can be approximated by

GT G ≈ Nd

4πa2

2π∫

0

π∫

0

{

cos(mϕ) cos(m′ϕ)

sin(mϕ) sin(m′ϕ)

}

[(n + 1)(n + 2)][(n′ + 1)(n′ + 2)]

×
(a

r

)(n+3) (a

r

)(n′+3)

Pm
n (cos θ)Pm′

n′ (cos θ) sin θdθdϕ

= 1

a2

(a

r

)(2n+6) Nd [(n + 1)(n + 2)]2

2n + 1
δm,m′δn,n′ (7.7)

due to the orthogonality of the spherical harmonics. The variances of the Gauss coef-
ficients follow as

σ 2
g ≈ (aσd)2

( r

a

)(2n+6) 2n + 1

Nd [(n + 1)(n + 2)]2 , if d = {[∇B]rr }. (7.8)

In this case the relative variance of the estimated Gauss coefficients, σg, is again inde-
pendent of the order m. Note that the variance of the observations, σd , has the units
nT
km , since it refers to gradient observations, in contrast to the variance σd in Eqs. (7.5)
and (7.6) where it has the units nT, since it refers to vector observations.

For large n the variances of the Gauss coefficients obtained from vector data, cf.
Eq. (7.6), is proportional to 1/n while those obtained using gradient data, cf. Eq. (7.8)
behaves like 1/n3. This indicates the advantage of gradient information for determi-
nation of the small-scale (i.e. high-degree) structure of the lithospheric field.

No analytic formula exist for the cases when the data consist of the other tensor
elements since they depend on a more complex combination of Legendre functions,
see Eqs. (6.4b), (6.4c) and (6.4f), and orthogonality cannot be assumed. We therefore
have to rely on numerical simulations similar to the ones presented in Fig. 1.

Maps of the obtained variances σ 2
d are presented in Fig. 2 for the various type

of magnetic gradient observations. Figure 2a corresponds to the element [∇B]rr
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Fig. 2 Variance of the estimated internal Gauss coefficients from 89,280 data points of each tensor ele-
ment, a [∇B]rr , b [∇B]rθ , c [∇B]rϕ, d [∇B]θθ , e [∇B]θϕ, f [∇B]ϕϕ, obtained by a polar orbiting satellite
at 400 km altitude. White represents low information content, whereas green represents high information
content (colour figure online)

(i.e. the Gauss coefficients are estimated by measurements of [∇B]rr only) and shows
the advantage of knowing the radial gradient of the radial magnetic field component
Br ; the analytic expression of these variances is given by Eq. (7.8). Figure 2b corre-
sponds to the element [∇B]rθ and shows the advantage of knowing the North–South
gradient of the radial magnetic field component Br . Figure 2c corresponds to the ele-
ment [∇B]rϕ and shows the benefit of having measurements of the East–West gradient
of the radial field component Br . Figure 2d, e illustrate the benefit of measuring the
North–South, resp. East–West, gradient of the co-latitudinal field component Bθ . At
last, Fig. 2f shows the advantage of having measurements of the East–West gradi-
ent of the longitudinal field component Bϕ. Note that due to the symmetry of the
magnetic gradient tensor in current-free regions the information contained in [∇B]rϕ

is identical to that contained in [∇B]ϕr . Likewise, [∇B]ϕθ and [∇B]θϕ contain the
same information, and also [∇B]θr and [∇B]rθ . The lower left triangle part of Fig. 2
is therefore identical to its upper right part.
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Variances obtained from [∇B]rr , the radial gradient of the radial field component,
cf. Fig. 2a, are independent of the order m and resolve best the higher degrees n. There

is a focus on higher degrees which is imposed by the factor
( r

a

)(2n+6) and therefore
is characteristic of the orbit height. On the other hand, the relative variance σ 2

g /σ 2
d

of the Gauss coefficients estimated by the North–South gradients of Br , cf. Fig. 2b,
depends also on the order m. In particular, there is a degradation toward high-order
coefficients. In case of the East–West gradient of Br , cf. Fig. 2c, there is an improved
estimation of the sectoral (n = m) and near-sectoral (n ≈ m) coefficients. This also
shows that relying on the East–West gradient of the radial field component alone does
not allow the determination of the zonal terms (m = 0). This issue can however be
solved by including other types of data, such as vector components or other tensor
elements, in addition to the East–West gradient.

Knowledge of the North–South gradient of the co-latitudinal field component Bθ

improves the estimation of the low-order coefficients, see Fig. 2d. Information on
the East–West gradient of Bθ , i.e. Fig. 2e, improves the estimation of the tesser-
al coefficients. However, the same issue as in Fig. 2c appears, which is that East–
West gradient data alone do not allow the zonal terms (m = 0) to be determined.
Finally, information on the East–West gradient of the longitudinal field component
Bϕ improves the estimation of the high-order coefficients, see Fig. 2f. Unlike the
other two cases, zonal terms can now also be determined with this particular East–
West gradient tensor element (although the quality is degraded especially for the high
degree values). The reason is that, unlike the other two cases, the East–West gradient
of the longitudinal field component [∇B]ϕϕ does not only depend on terms that are
sensitive to the order m (such as Bϕ, or ∂ Bθ

∂ϕ
), but also on the term 1

r Br , which is
sensitive only to the degree n, see Eq. (2.13). Therefore, the determination of zonal
terms, which was not possible by the other East–West gradients, can be achieved from
[∇B]ϕϕ.

In general, Fig. 2 shows that each tensor element improves the determination of
coefficients of certain degrees n and orders m. The information provided by each
tensor element, and thus the particular benefits in the determination of certain coef-
ficients, can be combined and thereby a more precise determination of the complete
Gauss coefficients set can be achieved. The optimal combination of tensor element
observations depends, however, on several factors, such as orbit configuration, attitude
and instrument errors along certain directions.

At high latitudes the disturbance magnetic field (i.e. due to magnetospheric and
ionospheric currents) is much stronger and more complex compared to low and mid-
dle latitudes, mainly because of the occurrence of field-aligned currents. Therefore,
present estimates of the high-latitude anomaly fields (e.g. lithospheric field) are not
fully reliable since they might be contaminated by external current contributions. Mea-
surements of the individual gradient tensor elements yield information on the in situ
electrical current density, as indicated by Eq. (3.8). Consequently, the impact of the
field-aligned currents on each tensor element can be determined and hence, accord-
ingly combining (or even down-weighting and excluding) these tensor elements in
the determination of the lithospheric field has the potential of obtaining more reliable
estimates of the lithospheric field at high latitudes.
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8 Conclusions

The Swarm satellite mission will provide a new dimension of geomagnetic exploration
from space by measuring, in addition to the magnetic field vector, also an estimate of
the East–West gradient of the geomagnetic field. This contains valuable information
on North–South oriented features of crustal magnetization. However, a similar reso-
lution of East–West oriented structures is not possible with Swarm since this requires
measurement of the North–South magnetic field gradient. Going beyond Swarm’s
limitations, a possible future way for exploring the Earth’s magnetic field from space
would be to move towards a full gradiometry mission.

In this paper we have developed a comprehensive mathematical basis for magnetic
space gradiometry. The magnetic gradient tensor ∇B is a second rank tensor consist-
ing of 3 × 3 = 9 spatial derivatives. Making use of the general constraint that the
magnetic field is always solenoidal (∇ · B = 0) reduces the number of independent
tensor elements from 9 to 8. Furthermore, in a current free region (J = 0) the mag-
netic gradient tensor becomes symmetric, further reducing the number of independent
elements to 5. In that case the magnetic field B is a Laplacian potential field and the
gradient tensor can be used to estimate the spherical harmonic expansion coefficients
(Gauss coefficients) of the magnetic potential.

The possible benefit of using gradient tensor measurements is exploited by look-
ing at the variances of the estimated model parameters (i.e. the Gauss coefficients).
For ideally sampled data, the variances depend only on the satellite orbit and the
type of field observations (e.g. which tensor elements are measured). Maps of the
variances of the estimated Gauss coefficients show the performance of the magnetic
field determination for a given orbit and observation type. Each tensor element pro-
vides particular information and improves the estimation of Gauss coefficients of
specific degree and order. Therefore, the combination of individual tensor elements
for specific ranges of degree and order has the potential for improving the over-
all determination of the Gauss coefficients and hence for obtaining a more accu-
rate description of the geomagnetic field. Present determinations of the high-latitude
lithospheric fields are for example not fully reliable mainly due to the existence of
field aligned currents. However, the magnetic gradient tensor provides information
on the in situ electrical current density. Therefore, the impact of field aligned cur-
rents on each tensor element can be determined, and hence these elements can be
suitably combined to obtain more accurate estimates of the high-latitude lithospheric
field.

In order to investigate the information content (i.e. the variances of the Gauss coef-
ficients) in each vector component as well as in each gradient tensor element, we
perform a simulation based on synthetic data generated on a polar circular orbit using
a basic input model. That input model provides the static magnetic field contribution
from the core and lithosphere. A full end-to-end mission simulation based on a more
sophisticated orbit and on a more realistic input model, which also accounts for the
highly time dependent magnetic field contributions due to currents in the ionosphere
and magnetosphere, is the topic of a forthcoming paper.
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