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Abstract

Comprehensive data understanding is a key success driver for data analytics pro-
jects. Knowing the characteristics of the data helps a lot in selecting the appropri-
ate data analysis techniques. Especially in data-driven product planning, knowledge
about the data is a necessary prerequisite because data of the use phase is very het-
erogeneous. However, companies often do not have the necessary know-how or time
to build up solid data understanding in connection with data analysis. In this paper,
we develop a methodology to organize and categorize and thus understand use phase
data in a way that makes it accessible to general data analytics workflows, following
a design science research approach. We first present a knowledge base that lists typi-
cal use phase data from a product planning view. Second, we develop a taxonomy
based on standard literature and real data objects, which covers the diversity of the
data considered. The taxonomy provides 8 dimensions that support classification
of use phase data and allows to capture data characteristics from a data analytics
view. Finally, we combine both views by clustering the objects of the knowledge
base according to the taxonomy. Each of the resulting clusters covers a typical com-
bination of analytics relevant characteristics occurring in practice. By abstracting
from the diversity of use phase data into artifacts with manageable complexity, our
approach provides guidance to choose appropriate data analysis and Al techniques.
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Introduction

Recent technical developments enable the collection and analysis of huge
amounts of data from cyber-physical systems (CPS) in their use phase. These
data can be fed back into product planning and development, where data analytics
reveals valuable insights about product performance and usage patterns. This is
already a common procedure in the software domain (software usage analytics)
(Menzies & Zimmermann, 2013). However, it seems not to be common for CPS.

Data analytics is a field that is highly interdisciplinary in nature that has
adopted aspects from disciplines such as statistics, machine learning (ML), pat-
tern recognition, system theory, operations research, and artificial intelligence
(Runkler, 2020). By integrating analytical insights into decision-making pro-
cesses, existing and future products can be optimized. These concepts form the
research area of data-driven product planning (Meyer et al., 2021).

However, the integration of data analytics into the decision-making processes of
product planning and product development poses major challenges for companies (Hou
& Jiao, 2020; Wilberg et al., 2017). When implementing data analytics, small- and
medium-sized enterprises (SMEs), in particular, face problems and challenges, such as a
lack of know-how, a shortage of qualified employees, the dominance of domain special-
ists, and a lower awareness of topics such as data analytics and Al (Coleman et al., 2016).

This also complicates effective use of machine learning in product planning and
development. In the data analytics process (e.g., CRISP-DM), it requires compre-
hensive knowledge and understanding at several points. After understanding the
problem, an essential step is to identify and understand the data and analyze the data
sources to evaluate the relevant data for the defined analysis problem (Reinhart et al.,
2017). One challenge arises during data discovery and collection: Often, companies
or data analysts do not have an overview of the existing data. There is a lack of
knowledge about where to start and where to get the right information from, as it
is scattered throughout the company (Kayser et al., 2019; Menon et al., 2005). This
quickly becomes a first hurdle in the application of data analytics.

In order to identify the data that is relevant to the defined use case or to bet-
ter understand and use the existing data, those involved must also have knowledge
and understanding of the data. “The most important knowledge a data mining engi-
neer uses to judge workflows and models’ usefulness: understanding the meaning
of the data” (Kietz et al., 2010). A certain level of data competence is, therefore,
required, although this is often lacking, as well as a systematic recording of meta-
data (Sternkopf & Mueller, 2018). These are challenges that must be overcome,
especially in data-driven product planning, since numerous, heterogeneous data and
an often complex system landscape must be taken into account in the use phase.
Examples of data in the use phase of the product life cycle are maintenance data,
fault messages, service data, and log and measurement data (Li et al., 2015).

After understanding the data, preprocessing and modeling can start. Here, differ-
ent components or methods are used, e.g., cleaning data sets, preprocessing data fur-
ther, extracting domain-specific features from the data, modeling them appropriately,
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and post-processing the model output (Reinhart et al., 2017; Shabestari et al., 2019).
Together, these components form a specific data analytics workflow.

In order to determine and select the appropriate workflows, characteristics of the
data and the analytical methods must be always taken into account in addition to the
objectives of the use cases (Nalchigar & Yu, 2018).

The versatility of data and the additional variety of machine learning methods
used in data-driven product planning make the setup of a workflow an extensive
task, which requires expert knowledge. Therefore, a simplification for companies
is required to be able to implement solutions more resource efficiently or with
fewer specialists. Our aim is to facilitate an easy entry to data analysis and work-
flow design for data-driven product planning by providing a pre-selection of rel-
evant methods via sample workflows. The prerequisite for this is comprehensive
knowledge of relevant data sources in an aggregated way.

The fundamental research question in this context is as follows: Are there com-
monalities in data from data generated in the use phase or in product planning prac-
tice that suggest similar analytics processing and thus can be grouped together?

To answer this question and to build such data classifications, which can be
mapped to specific analytics workflows, we use a design science research meth-
odology approach. We first build upon an existing classification of use phase data
from a product planning view to build a knowledge base of typical usage data.
We then present a classification of usage data from the data analytics view, which
delivers relevant data characteristics that can be used to describe the knowledge
base data. Building on these artifacts, we propose a joint classification of data
for data-driven product planning, whose artifacts can be assigned to appropriate
workflows. Figure 1 summarizes these contributions and their connections.

The application in the context of data analytics in product planning is shown
for one exemplary use case by means of a sample workflow.

Contributions |

) ) data from da:a analytics view ’ |_t_‘
| |
OO | == ’l

Towards data-driven product planning

Fig. 1 Contributions
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Foundations and State of the Art

In the following, we present the foundations for the data classifications and existing
approaches.

Data from Product Planning View
Definitions

Various definitions for data exist (Awad & Ghaziri 2007; Bourdreau & Couillard,
1999; International Organization for Standardization, 1993; International Dama,
2017; Koohang et al., 2008; Morgenstern, 1997). In the following, we understand
data as recorded interpretable signs and signals, which potentially provide informa-
tion in a given context or for a specific purpose. In an industrial context, we speak of
industrial data. It can be classified according to various properties.

Classifications of Industrial Data

Data in a production-oriented company can be divided into organizational and tech-
nical operational data (Kurbel, 2005). The organizational operational data includes
order data and personnel data. Technical operational data are machine data, tool
data, and material data. Machine data is differentiated into product and process
data. The latter includes all data that is generated during the operation of a machine.
Product data describes the condition of the manufactured part. In combination with
process data, they encompass information about the production process as a whole.

According to Schéfer et al. data sources can be roughly divided into three groups
according to the origin of the data: machine-generated and human-generated content
and business data (Schifer et al., 2012). Raffeiner proposes a classification, which
distinguishes between created, received, paid, and public data (Raffeiner, 2019).

An additional subdivision of data, which is made in computer science as well as
in management science, is a distinction regarding the time reference. With regard to
this data constancy, a distinction can be made between “master data” and “transac-
tion data.” The term master data refers to data that remains constant over a long
period of time. This includes, for example, company data such as building or plants.
In contrast to master data, transaction data is time related and changes according
to known or unknown processes. Transaction data and movement data are usually
related to master data (Spitta & Bick, 2008).

Another classification is offered by the automation pyramid, which represents the
different levels of automation in a factory and allows the structuring of technologies
into different functional layers of industrial manufacturing (Dumitrescu et al., 2015).
Along these layers, data sources as IT-systems, such as sensory, PLC, SCADA,
MES, and ERP, are categorized.

In addition, industrial data can be classified in terms of their occurrence in the
functional areas service, marketing, work preparation, development, purchasing,
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production, quality assurance, and IT (Gausemeier et al., 2009). A comprehen-
sive product perspective is provided by categorizing data based on the product
lifecycle phases product planning, design and development, production planning,
production, use and support, and reuse and recycling (Kassner et al., 2015). Li
et al. arrange data into the three main phases of product lifecycle management
(PLM) BOL, MOL, and EOL (Li et al., 2015). Tao et al. propose another classi-
fication into management data, equipment data, user data, product data, and pub-
lic data (Tao et al., 2018b). Table 1 summarizes the presented data classification
approaches.

In data-driven product planning, the focus is often on the usage phase of the
product life cycle and its data, often called usage data or field data (Kammerl
et al., 2016; Kreutzer, 2019). Kreutzer refers to field data generated during the
product or system usage phase after the point of sale (PoS) (Kreutzer, 2019).
Edler defines field data as “[...] data that is generated in connection with the use
of a product in the field or the use of a service by the customer. This include, in
addition to errors, malfunctions, defects or failures, usage information such as
machine running times, consumption of operating materials [...], and the require-
ments expressed by the user for the next product generation.” (Edler, 2001). With
regard to the sources of field data, Kreutzer proposes the following classifica-
tion for cyber physical systems: sensors and actuators, user data, and system data.
Sensors are divided into shape and material measures, functional and process
variables, and environmental interaction variables. For use in product planning,
this classification is not sufficient, since data related to the CPS or the product is
missing, such as service and customer data.

Data from the Data Analytics View
From a data analytics perspective, it is important to understand the (intrinsic)

characteristics of the data in order to infer necessary or appropriate processing
methods.

Table 1 Classification approaches for industrial data

preless service marketin oIk erslopment urchasin, roduction gwality IT
function 9 preparation | /construction p 9 P! assurance
ressource/ sensor/actuator (field PLC (control level) SCADA/HMI (process MES (plant ERP/CRM (corporate
system level) control level) management level) management level)
constance master data transaction data
access created received public ‘ paid
origin machine generated human generated business data
PLM beginning of live (BOL) middle of life (MOL) end of life (EOL)
product concept & product design & production 0 reuse and
lifecycle planning development planning Rrocicticn U e SR recycling
content management data equipment data user data ‘ product data public data
others organizational ‘ technical
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Definitions

“Data characterization describes the data in ways useful to the miner and begins
the process of understanding what is in the data—that is, is it reliable and suitable
for the purpose?” (Pyle, 1999). To describe the nature of data, characteristics are
needed (Kitchin & McArdle, 2016). In this context, there is also often a reference to
meta data. Metadata (“data about data”) refer to structured data that can be used to
describe and specify facts about an information object (Dippold et al., 2005). Meta-
data are used to define data characteristics. This idea is common to the field of meta
learning, where attributes relevant to the problem are of particular interest.

Classifications

In general, the following types of data characteristics can be distinguished: general
measures (general information to the dataset at hand, such as number of instances and
dimensionality) as well as statistical and information-theoretic measures (attribute sta-
tistics and class distributions, such as mean and standard deviation) (Bilalli et al., 2016).

Another approach of characterization is the characteristics of Big Data, such as
quantity, variety, and speed (Zhang, 2016). According to Hildebrand et al. data can be
described based on their characteristics based on six criteria. These criteria are divided
into format, structure, content, stability, processing and the business object (Hildebrand
et al., 2015). An important criterion in data analysis is the structure of the data, which is
also hidden behind the term data variety in big data terminology. The degree of structur-
ing determines the further processing. Quality differences and problems form another
dimension (Corrales et al., 2015). In order to successfully prepare data for analysis, a
large number of criteria must be taken into account. These include completeness (often a
problem especially with textual data), consistency, and accuracy.

Existing classifications are usually not or only partially aligned with the data ana-
lytics requirements. Ziegenbein et al. provide a list of data set characteristics, which
are related to machine learning procedures (Ziegenbein et al., 2018). Since this is
not an exact fit for the requirements in data-driven product planning, a new classifi-
cation is needed.

Research Methodology

In the last section, we motivated the need for structuring and concretization of data
sources of the use phase, which we call usage data in the following, as well as suit-
able characteristics to describe them with the goal of data analysis. This is also the
first activity in the design science research methodology (DSRM) presented by Peffers
et al. that we followed to develop the classifications (Peffers et al., 2007). The research
process is summarized in Table 2. In the following, we describe design and develop-
ment of the research process for conceptualization of the classification from the product
planning view, from the data analytics view, and the joint classification for data-driven
product planning in more detail (see Fig. 2).
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Table2 The DSRM process

DSRM activity

Realization

Identify the problem and motivate

Define objectives of a solution

Design and development

Demonstration and evaluation

Communication

Data analysis implementations in data-driven product planning,
especially the selection of suitable analysis workflows, require a
deep understanding of the heterogeneous usage data. There is a
lack of approaches that support data description and assignment
to suitable analysis methods

The development of a complexity-reducing classification of usage
data that combines the two views product planning and data
analytics to select appropriate techniques more easily

A mixed method approach was used to develop the classifications
(artifacts) in an iterative way

Finally, the resulting usage data classes were successfully applied
in a scenario of data-driven product planning (see the “Toward
Data-Driven Product Planning” section). Further evaluations are
planned

Publication of research in academic papers

Data from a Product Planning View

In the context of the “Data from Product Planning View” section, different ways
of classifying industrial and field data sources were introduced. For the usage data
knowledge base, we used the classification according to Meyer et al. (2022), which
introduces five categories of use phase data: 1. usage data (describe how a product
is used by its customers and users), 2. user behavior data (summarize how users
behave when utilizing the product), 3. service data (data dealing with problems and
the quality of the product), 4. product behavior data (show how the product behaves
and performs during operation) and 5. status data (describe the status and “health”

of the product).

In order to extend the classification with further data objects, an intensive lit-
erature search was carried out, e.g., Li et al. (2015), Menon et al. (2005), Kassner

Usage data
collection

Input: use phase data
classification according to
Meyer et al.

Process: supplementaion
of usage data objects
based on literature and
experts

usage data objects

planning view

Taxonomy
development

Input: 44 data objects of
knowledge base, 10 real
data objects from industry &
20 standard algorithms

Method: Nickerson et al.'s
taxonomy development
method

Knowledge base of 44

Data from product

Clustering

Input: 44 data objects
classified based on the
taxonomy

Method: k-means Clustering

Evaluation: workshop with
companies from industry and
research

Taxonomy of usage
data characteristics

Data from data
analytics view

5 Usage Data
Clusters

Joint Data
Classification

Fig.2 Design and development of classification artifacts
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et al. (2015), Kreutzer (2019), and Tao et al. (2018a). The results were enriched and
validated by experts from industry and research within the research project DizRuPt.

Data from a Data Analytics View

The quality of insights for product planning generated from usage data highly depends
on the correct usage of analytics techniques, which—in turn—is highly dependent on
smart classification of the data characteristics. The type of data determines which tools
and techniques can be used to analyze the data (Tan et al., 2016). So, in the follow-
ing, we will attempt to answer the question “What are the key characteristics/what is
the nature of usage data?”. The characteristics are identified and organized using the
method for taxonomy development suggested by Nickerson et al. (2013). Often used
synonymously with terms such as framework, typology or classification taxonomies
are empirically and/or conceptually derived groupings in terms of dimensions and
characteristics (Puschel et al., 2020). Nickerson et al.’s method includes the following
steps: determination of a meta-characteristic, determination of objective and subjective
ending conditions, and the iterative choice of approach until all ending conditions are
met. For the choice of approach, Nickerson et al. propose empirical-to-conceptual and
conceptual-to-empirical approaches. In the empirical-to-conceptual approach, real-life
objects are selected, characteristics are induced, given conceptual labels, and assigned
to dimensions. In the conceptual-to-empirical approach, researchers first propose
dimensions and characteristics before dimensions and characteristics are examined by
classifying objects. This leads to an initial or revised taxonomy. Figure 3 summarizes
the taxonomy development method suggested by Nickerson et al. (2013).

In line with our research question, out meta-characteristic was analytics relevant
characteristics of usage data. We distinguished between general data set-describing
characteristics, which we assume are similarly pronounced for usage data, and very
individual characteristics, which are company and infrastructure dependent. We used

Fig.3 Taxonomy development

method according to Nickerson
etal. (201 3) FDelermme meta-characteristic ‘
1

Determine ending conditions ‘

Empirical-to-conceptual ‘onceptual-to-empirical

Conceptualize (new) characteristics
and dimensions of objects

F Identify (new) subset of objects

and group objects characteristics and dimensions

Create (revise) taxonomy |

F Identify common characteristics ‘ F Examine objects for these |

Group characteristics into dimensions
to create (revise) taxonomy

no
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the objective ending conditions proposed by Nickerson et al.: every characteristic is
unique in its dimension, every dimension is unique and not repeated, at least one object
is classified under each characteristic of each dimension, and no new dimensions or
characteristics have been added in the last iteration. Subjectively, the method will end
when the taxonomy is determined by all the authors to be concise, robust, comprehen-
sive, extendible, and explanatory. In Table 3, details of all iterations are shown. In the
first iteration, we chose the conceptual-to-empirical approach to conceptualize dimen-
sions and characteristics based on standard literature and expert knowledge by the
authors. As a starting point, we chose the popular big data characteristics, which we
filtered with respect to our meta characteristic. To evaluate the initial taxonomy, we
used the first 22 data objects of the knowledge base (see Fig. 4). In the next iterations,
we applied the empirical-to-conceptual approach. In summary, we used additional 22
data objects from the knowledge base to infer new characteristics or other constella-
tions and 10 real usage data sets from industry to challenge the individual dimensions
and characteristics. To cover the perspective of the analytics side even better, we used
descriptions of 20 algorithms from the literature in the last iteration to find out if the
taxonomy was final.

Joint Data Classification

The goal of this research step was to identify usage data with similar general charac-
teristics and narrow down possible combinations of characteristics to a fixed set of
artifacts. For this purpose, we combined the product planning and analytics view by
using the classified data objects of the knowledge base according to the taxonomy. The
assignments were again challenged with experts from research and industry who fre-
quently work with usage data and, therefore, know their characteristics well. In the end,
we obtained binary vectors that acted as input for the automated clustering. We chose a
prototype-based algorithm, the well-known and most widely used clustering algorithm
k-means, which determines a prototype for each cluster and forms clusters by assigning
data objects to the closest cluster prototype (Wu, 2012). To determine the optimal num-
ber of clusters k, we used the graphical “elbow” method. That resulted in five clusters.
The interpretation of these revealed each cluster could be reasonably interpreted stan-
dalone and in relation to the other clusters.

In the second step, the generated clusters were combined with possible forms of the
individual characteristics to obtain a comprehensive list of usage data classes.

Approach of Data Classification for Workflow Assignment
Classification for Usage Data from a Product Planning View
Figure 4 presents the knowledge base relying on the classification by Meyer et al.

(see the “Data from a Product Planning View” section). It lists 44 relevant data
sources or data objects of the use phase.
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Status data

Productbehavior data

Usage data

User behaviordata

Service data

*  built-
in physical elements
(complex system, little
variations)

«  built-
in physical elements
(simple system)

+ hardware configuration

+ hardware status (local
protocolvia sensory)

 hardware status
(transmitted protocol)

+ hardware status (local
storage of states)

+ hardware status (via
human/protocol)

+ factory settings

« version numbers

+ current licenses

+ installed updates

+ actuator data for single

actor (selectively
controlled)

+ actuator data for single

actor (continuosly
controlled)

* actuator data for

complex overall system

+ sensordata (e.g.

temperature, humidity,
pressure, proximity,
level, acceleration

+ vibration (sensor) data
+ energy consumption
« disturbance times and

downtimes

+ production quanitity
+ good quantity

+ scrap quantity

+ workload

+ orderand job
+ user activities aggregated

(e.g. usage of functions)

+ user activity protocol/log
* usage process/interaction

path

« activity data via user

interfaces

+ personal employee data
« userlogin

+ service reports (automated)
+ repair protocol

+ maintenance protocol

+ warranty case

+ customercomplaints

+ customerreviews/ ratings

+ customersuggestions

(updateprotocol)

« software status
(condition,
configuration)

* warning message (via
human/protocol)

+ warning message (from
software)

+ error messages

+ standstill message

+ runtime

+ operating mode

« time and location

Fig.4 Usage Data Knowledge Base
Classification for Usage Data from a Data Analytics View

Figure 5a, b show the taxonomy for general and individual usage data characteristics
and possible indicators for easier classification of data objects. In the following, all
dimensions and characteristics are described in more detail.

General Dimensions and Characteristics

— The data set group (variety): This dimension examines data in terms of its vari-
ety, i.e., data set type and degree of structuring. Characteristics on the first layer
are tabular data (structured) and text data. These can be broken down further.
Record data assumes a dataset as a collection of records with a fixed set of
data fields (variables). Table or matrix form is common. Generally, there is no
explicit relationship among records, and every record has the same set of vari-
ables. Graph-based data considers data with relationships among objects or data
with objects that are graphs (if objects contain sub objects that have relation-
ships). For ordered data, the attributes have relationships with a temporal or spa-
tial order. Ordered data can be grouped further into sequential transaction data
(each transaction has a time associated with it), sequence data (the dataset that is
a sequence of individual entities—positions instead of time stamps), time series
data (each record is a series of measurements taken over time) with signals and
no signals, and spatial data (spatial attributes, such as positions or areas). For
text, a distinction can be made between structured and semi-structured text data.
Image-, audio-, and graph-based data are grayed out because the procedure in
the “Data from a Data Analytics View” section showed that they are not relevant
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Dimension Characteristics Indicator (exemplary)

fixed number of data fields, no
record data (e.g. table, data matrix) explicitlink between entries,
itemsets

graph-based data links, objectrelations

itemsets + time specification (no

sequential transaction data particular frequency)

tabular data
(structured)

sequence data ordered without timestamp

ordered data (order in time or space) | i i signals measurable physical parameters

? rd
regular intervals) — measurements n general taken
over time

spatial data positions, areas

missing format (no separations of
- g the information)

semi-structured tags, meta data

image. meta data
video meta data

significantly fewer features than

small dimensional observations

S more features than observations, >
bighhimensional 1000 features

many gapsin the data - e.g., only
sparse changes become visible (infrequent
recording of data points)

Data characteristics (general)

dense continuously recorded values

data points have a high dependence
(Eum i) on their neighbors

data points have no dependence on

BT their neighbors

Real time/ live. delivery of the data promptly afterits
creation

the data is transferred only once per
static (batch) or notive. day the data must be tapped from
the machine via usb stick

small rather hundred data rows
medium rather thousand data rows
big rather a hundred thousand data

rows and more

Characteristics Assesment Indicator (exemplary)

0 be neglected constant systematic errors (vendor
specification or domain knowiedge)
where only relations are of inferest

o consider Systematic errors that can be.
corrected

dominant intolerablesensor faiures

0 be neglected random errors tha are rare enough fo
have an impact

o consider random errors

dominant random errors dominating the data

o be neglected none or isolated (ot relevant) ouers.

g o consider outiers can be clearly identiied

Data quality problems

E dominant faulty values predominate

= 10 be neglected frequencies and unis are uniform

3 o consider Variables have significanty different
value ranges, frequencies vary

dominant information on units and value ranges

s missing

i to be neglected no or only occasionally missing
values

o consider missing values are i the minority

dominant missing values outweigh

yes duplicates can be clearly identified

no o duplcates

o natural order, names

categorical/qualitative

[ oraimal data have natural order

numerical natural order, quantifiable distances

[ oinary two values (110, yes/no)
‘specialhybrid form | dateltime. year, month, day, hour, minute,

second, microsecond

Fig.5 a General data characteristics; b individual data characteristics

as a characteristic for usage data. However, since these formats may well play a
greater role in the future, they are also listed.

— Dimensionality: Dimensionality is another important factor that can play a cru-
cial role for the selection of an adequate analytics technique, e.g., too many
dimensions cause every observation in a dataset to appear equidistant from all
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the others (curse of dimensionality), which is a big problem for clustering algo-
rithms. Hence, the characteristics are small dimensional and high dimensional.

— Distribution: Some general aspects of distributions often have a strong impact,
which can make modeling difficult. Sparsity is such a special case, where most
attributes of an object have values of 0. Some data mining algorithms, such as
the association rule mining algorithms, work well only for sparse data (Tan et al.,
2016). On the other hand, some algorithms such as random forests work best on
dense data.

— Complexity: Complexity in data can be expressed by, e.g., (auto-)correlation,
which is important to know, as e.g., one of the assumptions of regression analysis
is that the data has no autocorrelation. Therefore, other methods may have to be
used. Correlation and multicollinearity in data may have an impact on the perfor-
mance of the model, too. Algorithms, such as logistic regression or linear regres-
sion, are not well suited in that case so that it should be fixed before training.

— Real-time behavior (velocity): In data analytics or machine learning real-time or
online ML (training of a model by running live data through it to continuously
improve the model) can be distinguished from traditional training, where a batch
of historical data is used. The former requires different procedures than the latter.

— Volume: Regarding the volume, a data object or dataset can have small, middle,
or big size. To evaluate this, the amount of data generated per day is certainly
important. The volume affects the analysis to the extent that some methods are
better able to handle few training samples, e.g., support vector machines, or some
algorithms are better suited to process large volumes of data.

Individual Dimensions and Characteristics

These individual characteristics are not only important mainly for the selection of
the right preprocessing techniques but also play a role in the modeling algorithms
(Banimustafa & Hardy, 2012).

— Data quality problems: Data quality has a major impact on data analysis, for
example, some techniques are more tolerant to missing values, outliers, and unu-
sual data distributions. Some data pre-processing procedures (e.g., outlier elimi-
nation, normalization, phasing, data reduction) may be necessary to address the
quality issues and tailor the data for modeling. Characteristics are random noise,
systematic errors, outliers, inconsistency, missing values, and duplicate data.

— Variable type: To describe individual data objects, the variable type is suitable.
Basically, categorical (qualitative) and numerical (quantitative) attributes are
distinguished here. Qualitative attributes lack most of the properties of numbers
and should be treated more like symbols. Here, again, nominal and ordinal types
can be distinguished. Quantitative attributes are represented by numbers and
have most of the properties of numbers. Binary and date variables can be both
categorical and numerical and are sub characteristics of special/hybrid form.
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To evaluate or determine the quality characteristics and to better estimate pre-
processing actions, we propose the use of a three-level scale “to be neglected,” “to
consider,” and “dominant.” Quality constraints in the context of measurement qual-
ity may be negligible, for example, if the dataset contains constant systematic errors
but only relations are of interest, or if random errors are present that are rare enough
to have an impact. Systematic errors that can be corrected would be to be considered
in the context of preprocessing. “Dominant” is intolerable sensor failures or random
errors, which dominate the data. The final evaluation of course needs also to con-
sider the use case.

Joint Data Classification

As mentioned in “Joint Data Classification through clusters”, the data basis for the
clustering is the assignment or classification of the data objects from the knowledge
base to the general feature characteristics according to the taxonomy by experts (see
Fig. 6).We inferred five clusters or categories covering combinations of general
usage data characteristics that typically occur together. The clusters are illustrated in
Table 4 where we highlighted the most frequent characteristics per dimension. The
names of the clusters are shaped by the most distinctive characteristics.

Cluster 1: Sequential Sparse Real-Time Data

This cluster is characterized by the dataset group ordered data, more specifically
time series and sequential transaction data. Data objects in this cluster are, in most
cases, generated in real time; data size is small to middle, and, mostly, there is no
obvious correlation. Furthermore, the cluster is marked by low dimensionality and
sparsity. Sensor data, in some cases also actuator data, hardware, and software states
as well as warning and error messages, can often be classified here.

Cluster 2: Highly Structured Historical Data

This cluster predominantly contains structured data, which can be stored in rela-
tional databases. The data volumes are rather small, also because the data are rather

Variety (data set group) velocity (real time behavior volume

et
Jspatial data real time /lve__[nt ine smal_|medum _|sig

sensor data (e.g pressure)

vibration sensor data (e.g.

[Actuator data for single actor (selectively controlled)

[Actuator data for single actor controlled)

[Actuator data for complex overall system

["6|nardware
7|built-in physical elements (complex system. lttle variations)

uilt-in physical elements (simple system)

ardware status (local protocol via sensory)

status (transmitted protocol)

hardware status (local storage of states)
[T12|hardware status (via
*¢aclory seftings
4[version numbers

5|current licenses
J‘inslalled updates

17|software status (condition.

18\(soﬁware status (condition,

—-llalalelolololo|afa|a|afo

olololo|-||a]alolo]a|s]|lololololo|®
¥
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Fig.6 The data basis for clustering (excerpt)
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sparse. Examples of data objects are hardware configurations, factory settings, warn-
ings, ratings, and login data.

Cluster 3: Mixed-Structured, High-Dimensional Real-Time Data

This cluster includes data from different data set groups. Objects that can be clas-
sified here often have semi structured format, but can just as well be sequential or
structured data. Other characteristics of this data are its real-time behavior and mid-
dle to big data sizes. Often, they are also high dimensional and dense.

Cluster 4: Real-Time Time Series Data

Real-time time series data are characterized by a time series format or even signal
characteristics. They are generated in real time and mostly small data. Signal data
such as vibration, on the other hand, often appear in large datasets. Since the focus
is on time series, they are often characterized by autocorrelation, but tend to be low
dimensional and dense. Vibration data, hardware, and software status, runtime, and
energy consumption can be classified into this cluster.

Cluster 5: Text Data

The last cluster is characterized by an unstructured or structured text format. The
amount of data is rather small. Sparsity is given by the format. Examples are licenses
and various protocols.

The resulting classes can be combined with the respective data quality assessment
and variable type feature (see Fig. 3b). Since this results in more than 12,000 pos-
sible combinations, these must be reduced to a few representative classes. To obtain
classes that are relevant in practice, if possible, we asked six industry and research
institutes in a workshop in which of the five clusters they classify their usage data
and in which quality characteristics their usage data are available. Some key results
are summarized in Table 5 and the resulting final data classes in Table 6.

Table 5 Workshop results

Data information Data Quality issues Variable
cluster type
Status data 1 - Negligible data quality problems Binary
Sensor data (acceleration, 4 - To be considered systematic errors and random Numerical
pressure) noise
- Negligible missing values, inconsistency
Log-data (temperature, 3 - Negligible outliers and duplicates Mixed
configuration, error - To be considered missing values, inconsistency
message)
Service reports 5 - Dominant missing values Nominal
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Table 6 Final data classes

Class nr Class description/characteristics

1 Sequential sparse real-time data with random noise and inconsistency

2 Highly structured historical data with duplicates and missing values

3 Mixed-structured, high-dimensional real-time data with missing values and
inconsistency to be considered

4 Real-time time series data with systematic errors and random noise to be considered

5 Text data with partly dominant many missing values

Toward Data-Driven Product Planning

An exemplary use case from data-driven product planning shall illustrate the appli-
cation of the joint data classification for linking to a suitable sample workflow. A
popular application to improve products is failure detection and diagnosis or root
cause analysis. For example, a company wants to detect frequently occurring errors
on its production machine and uncover possible causes. To do this, it can use
machine sensor data, such as pressure, speed, and motor current on the one hand,
and service reports on the other hand, which contain error information and possible
causes for some processes. Machine data can be categorized into data class nr. 4
from Table 6 (real-time time series data with systematic errors and random noise to
be considered). Service reports belong to data class 5 (text data with partly domi-
nant many missing values). A possible data analytics workflow for data with these
characteristics is shown in Fig. 7 and could look as follows:

1. Selection: For detecting failures, all machine information is helpful (pressure can
indicate valve damage, RPM can indicate motor damage or bearing damage, and
motor current can indicate bearing damage or blockage). Since service reports
have very few failure cases documented and causes are usually missing, they are
more suitable for validating failure detection.

use case failure analysis (root cause analysis):
Identify causes of malfunctions such as machine downtimes in order to take them
into account in the next product generation.

data class 4 (real-time time series data with systematic errors and random noise to
be considered)

preprocessing modeling
integration cleaning transform. detection
[selection] down-or calibration FFT LSTM [diagnosis]
upsampling kalman normalization autoencoder,

Fig.7 Sample workflow for exemplary data class
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2. Integration: The three sensor measurement data can be combined for multivari-
ate analysis. For this, it is important that the time stamps and the sampling rates
match. Here, if necessary, down- or upsampling can be used.

3. Cleaning: Due to the data class, the data suffers from measurement inaccuracies
and random noise. These can be resolved by calibration or setting an offset and a
filter such as Kalman.

4. Transformation: For time series, it is often worth transforming to the frequency
domain to get a different perspective on the data. With respect to the detection
method selected in the next step (LSTM autoencoder), the data require normaliza-
tion between 0 and 1 and must be reshaped into a three-dimensional tensor.

5. Detection: Since we want to detect failures, we can frame the problem as an
anomaly detection task. Since numerical time series are involved, statistical
approaches or unsupervised or semi-supervised models, since mainly normal
states are known, come into question. Methods, which are able to monitor several
features or time signals in parallel (multivariate), are, e.g., clustering methods
like DB-SCAN or K-means, ARIMA, or autoencoder. We propose an LSTM
autoencoder due to its suitability for temporal data.

After detection, the diagnosis part would start. Suitable techniques can again be
provided for this task.

Conclusion and Future Research

We have presented three classification schemes for data in data-driven product plan-
ning. The first classification looks at usage data from a product planning view. The
resulting knowledge base lists typical data of the usage phase and offers an overview
about relevant data for data-driven product planning use cases. The second classifi-
cation looks at data from a data analytics view by summarizing characteristics that
are relevant to preprocessing and data analytics algorithm selection. Finally, these
two approaches were combined by assigning the characteristics to the typical data
sources and doing a cluster analysis on it. The resulting data classes can be used in
data-driven product planning to match to sample workflows. This greatly simplifies
the task of understanding data and selecting appropriate analytics techniques. We
illustrated the utilization of the classes and that the data classes are useful to derive
abstracted, generally valid sample analytics workflows for data-driven product plan-
ning, with an application example. The development of such workflows requires
future work. This can only take place for selected data classes. For this purpose, the
important classes and their most frequent quality ratings must be identified. Further-
more, these workflows can only provide initial impetus, since not all factors to be
considered, such as concrete domain knowledge, can be covered.
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