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Abstract 

The Oligocene Zhuhai sandstones are significant reservoirs for hydrocarbons in the Baiyun Sag, South China Sea. 
For effective appraisal, exploration and exploitation of such a deep-water hydrocarbon sandstone, samples of five 
wells from depths of 850 m to 3 000 m were studied. A series of comprehensive petrographic and geochemical 
analyses were performed to unravel the diagenetic features and their impact on the reservoir quality. 
Petrographically, the sandstones are dominated by feldspathic litharenites and lithic arenites with fine to medium 
grain sizes and moderate to good sorting. The reservoir quality varies greatly with a range of porosity from 0.2% to 
36.1% and permeability from 0.016 ×10–3 μm2 to 4 301 ×10–3 μm2, which is attributed to complex diagenetic 
evolution related to sedimentary facies; these include compaction, cementation of calcite, dolomite, siderite and 
framboidal pyrite in eogenetic stage; further compaction, feldspar dissolution, precipitation of ferrocalcite and 
ankerite, quartz cements, formation of kaolinite and its illitization, precipitation of albite and nodular pyrite, as 
well as hydrocarbon charge in mesogenetic stage. The dissolution of feldspar and illitization of kaolinite provide 
internal sources for the precipitation of quartz cement, while carbonate cements are derived from external 
sources related to interbedded mudstones and deep fluid. Compaction is the predominant factor in reducing the 
total porosity, followed by carbonate cementation that leads to strong heterogeneity. Feldspar dissolution and 
concomitant quartz and clay cementation barely changes the porosity but significantly reduces the permeability. 
The high-quality reservoirs can be concluded as medium-grained sandstones lying in the central parts of thick 
underwater distributary channel sandbodies (>2 m) with a high content of detrital quartz but low cement. 
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1 Introduction 
Reservoir quality is one of the major uncertainties in hydro-

carbon exploration and production (Bjørlykke, 2014; Pang et al., 
2015; Muther et al., 2022). Porosity and permeability, the crucial 
petrophysical properties used for reservoir quality representa-
tion, are hardly predictable because they are dependent on both 
the original depositional environment and secondary diagenetic 
alterations (Bjørlykke and Jahren, 2012; Kassem et al., 2022). The 
depositional environment exerts profound influences on reser-
voir quality via determining lithology, geometry, and original 
porosity of the sediments, and further affects pore-fluid composi-
tion and diagenetic evolution during subsequent burial (Kassem 
et al., 2021; Shehata et al., 2021). Diagenesis consists of a range of 
complex physical and chemical reactions, such as compaction, 
cementation, and dissolution, which distinctly reshape the reser-
voir quality (Bjørlykke, 2014). 
The Baiyun Sag is an important petroleum- and natural gas-

bearing sag in the offshore area of China (Zhu et al., 2008; Mi 
et al., 2016). Breakthroughs have been made in deep-water hy-
drocarbons in the Oligocene Zhuhai Formation. The reservoir 

quality and heterogeneity of the Zhuhai sandstones have be-
come a serious obstacle to finding additional reserves. To date, 
several studies have investigated the diagenetic events and reser-
voir features of the target reservoir (Lei et al., 2018; Li et al., 2021; 
Liao et al., 2022; Wen et al., 2022; Xie et al., 2022). In previous 
studies on the effects of diagenesis on the quality of the sand-
stone reservoirs, it has been argued that: (1) the dissolution of 
feldspar and igneous rock debris to enhance porosity during the 
burial process (Liao et al., 2022; Wen et al., 2022; Xie et al., 2022) and 
(2) carbonate cementation in the sandstone with materials sup-
plied from dissolution of feldspar, transformation of clay miner-
als and deep fluids (Wang et al., 2010; Wang et al., 2017; Du et al., 
2019). The present study provides some fresh insights on this issue. 
The principal objectives of this study are to (1) clarify distinct 

processes and establish the evolution history of diagenesis; 
(2) identify sources and sinks of the complex diagenetic pore-flu-
ids; and (3) assess controls of various diagenetic reactions on 
reservoir quality of the Zhuhai sandstones. A better understand-
ing of these processes will facilitate further hydrocarbon explora-
tions of the sandstone reservoirs in the study area and provide 
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some theoretical basis for predictive models of multiple-layer 
sandstone reservoirs. 

2 Geological setting 

2.1 Tectonics 
The Pearl River Mouth Basin is located in the northern slope 

of the South China Sea (SCS) (Fig. 1). The basin covers an area of 
17.5 × 104 km2 and has water depths of 200 m to 2 000 m (Li et al., 
2021). Five first-order tectonic zones can be further identified 
(Fig. 1a). Tectonic evolution of the basin can be categorised into 
three major tectonic stages since the Cenozoic, which include ex-
tensional rifting (before about 30 Ma), transition (recording mid-
ocean ridge spreading and developing of a breakup unconform-
ity) (30–23.8 Ma), and thermal subsidence (23.8 Ma–present). 
The basin was in an extension environment, with multiperiod 
structural movements including the Shenhu movement, the 
Zhuqiong movement, Nanhai movement, Baiyun movement, 
and Dongsha movement (Fig. 2) (Zhou et al., 2015; Morley, 2016). 
The study area, which is one of the most deep-water hydrocar-
bon-rich areas in the basin, lies in the southeast of Baiyun Sag 
(Fig. 1b). 

2.2 Stratigraphic framework 
In an ascending order, Cenozoic sedimentary sequences in 

the Baiyun Sag consist of a syn-rift continental sequence com-
prising the Paleogene Shenhu, Wenchang and Enping forma-
tions, and a post-rift marine sequence including the Oligocene 
Zhuhai Formation, the Neogene, and the Quaternary groups 
(Fig. 2) (Pang et al., 2008). The studied section, i.e., the Zhuhai 
Formation, is composed of multi-stage, shelf-margin delta of me-
dium- to-fine sandstones close to the shelf break interbedded 
with dark marine mudstones, calcareous mudstones and subor-
dinate carbonates (Fig. 2). 

2.3 Depositional setting 
The Nanhai movement (ca. 32 Ma) marked the end of the rift-

ing stage and the start of the seafloor spreading of the northern 

SCS. The basin was featured by broad continental shelf and nar-
row continental slope in this fault-depression transition stage 
(Morley, 2016). At the onset of Zhuhai interval deposition, large 
scale of transgression occurred in Baiyun Sag, and consequently, 
extensive littoral-neritic facies developed. During much of the 
Zhuhai deposition, the Paleo-Pearl (Zhujiang) River transported 
abundant terrigenous clasts into the sea, and a large river-delta 
system was widely distributed on the broad continental shelf of 
the northern SCS (Mansurbeg et al., 2008; Morley, 2016). The 
study area is located downstream of the river-delta system of the 
Paleo-Pearl River. Due to the abundant supply, siliciclastic sedi-
ments prograded to and passed across the shelf break and 
formed thick clinoforms in the shelf margin area, giving rise to a 
typical shelf-margin delta system. 

3 Datasets and methods 
The study interval, the Zhuhai Formation, has been a num-

ber of offshore oil and gas fields drilling target layer in the south-
eastern Baiyun Sag. Therefore, plenty of core material and other 
data can be obtained for this research. Petrographic data of 90 
thin sections, 145 reservoir porosity and permeability testing res-
ults, 116 grain-size analysis data, and 56 bulk rock X-ray diffrac-
tion (XRD) data of five wells (LW1-1, LW1-2, LW2-1, LW3-1, LW4-
1 in Fig. 1b) were collected from CNOOC Research Institute Co., 
Ltd. 
According to the study objectives and data accessibility, 65 

samples of core and cuttings were selected from the five wells 
mentioned above and from various depositional facies and span 
a wide degree of diagenesis. The sedimentary and stratigraphic 
characteristics of the Zhuhai sandstones were interpreted from 
core data. 
Routine rock properties (porosity and permeability) were 

tested on all samples using a 3 020-62 helium porosity analyzer 
and GDS-9F gas permeability analyzer at common temperature 
and humidity. 
Sixty-five impregnated thin sections were prepared for miner-

alogical composition, textural framework, and visual porosity 
characterization. Moreover, 26 thin sections of them were stained 
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Fig. 2. Cenozoic-Quaternary tectonic, stratigraphic and sedimentary evolution of the Baiyun Sag (modified from Lei et al., 2018). 

with Alizarin Red S for carbonate cement characterization. Point-
count was performed on all samples to estimate the modal com-
position. Three hundred points were counted per thin section 
(Stroker et al., 2013). The values and types of pore spaces were 
also counted during point counting in the thin-section analyses. 
Petrographic analysis and visual porosity were found out through 
Zeiss microscope and AxioVision software Rel. 
To confirm the petrographic characterization, all samples 

were prepared using an Ultima IV X-ray diffractometer. XRD ana-
lysis was based on the procedure used by Moore and Reynolds 
(1997) and Mangi et al. (2022) within an error range of 10%. In 
addition, for the spatial morphology of authigenic minerals iden-
tification, 22 gold-coated samples were observed under a ZEISS 
EVO LS15 scanning electron microscope (SEM). 
After detailed petrographic desscription of thin-sections, sev-

en core samples were prepared as doubly polished fluid-inclu-
sion wafers for microthermometric measurement. Microthermo-
metry was conducted using a calibrated LINKAM THMSG600 

stage. The homogenization temperature (Th) was obtained by 
cycling. The Th value measured precision was ±1℃. 
For carbon and oxygen isotope measurements, 30 organic 

matter-free samples were prepared. The carbon and oxygen 
stable isotope values were obtained from CO2 liberated from car-
bonate cement samples using Thermo-Finnigan MAT 253 IRMS. 
The measurement precision was ±0.014‰ for oxygen and ±0.020‰ 
for carbon. The stable isotope data were reported in δ notation 
relative to PEE Dee belemnite (V-PDB). δ18OVPDB values were 
converted to δ18OVSMOW (Vienna standard mean ocean water) val-
ues using the equation of Coplen et al. (1983). All the analyses 
mentioned above were done in the Key Laboratory of Petroleum 
Resources Research, Chinese Academy of Sciences (Lanzhou). 

4 Results 

4.1 Sedimentary micro-facies 
Of the various shelf-margin delta facies recognized in the core 
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descriptions, the most common are the subaqueous distributary 
channel micro-facies (Tian et al., 2022). These sandstones are 
composed of fine to medium-grained, fining upwards, and sever-
al meters in thickness with massive bedding and wedge cross 
bedding (Fig. 3a). In the vertical profile, they often change into 
siltstones and pinch-out into mudstones. 
The most striking feature of mouth bar sandstones is the 

higher quartz content, lower matrix content and better sorting. 
This can be attributed to the frequent water washing and relat-
ively high sedimentation rate of this micro-facies (Tian et al., 
2022). Due to the decrease in water energy, the mouth bar sand-
stones are finer in particle size than those of the subaqueous dis-

a

0 1 2 cm

0 1 2 cm

0 1 2 cm

b c

Fig. 3. Core photos showing the lithofacies characteristics of the 
Zhuhai sandstones. a. LW1-1, 2 037.5 m, grey medium-grained 
sandstones with massive bedding;  b.  LW1-1,  2 027.25 m, grey 
fine-grained sandstones with parallel bedding; c. LW1-1, 2 563.5 m, 
grey-black mudstones and siltstones with horizontal bedding. 
The black arrow shows the upward direction of the formation. 

tributary channel. Coarser upwards in the profile, parallel bed-
ding and sediment deformation are typically observed in mouth 
bar sandbodies (Fig. 3b), which are significantly different from 
the subaqueous distributary channel sandbodies. 
The distributary bay and marine micro-facies are character-

ized by a typically low-energy sedimentary environment, and 
dominated by the finest sediments, mainly mudstones and silt-
stones (Fig. 3c) (Tian et al., 2022). 

4.2 Sandstone petrology: detrital mineralogy 
Based on point-count data, the studied Zhuhai sandstones are 

mainly feldspathic litharenites followed by lithic arkoses accord-
ing to terminology of Folk (1968) (Fig. 4a). Detrital quartz grains 
account for 34%–85% (average 56.5%). The detrital feldspar con-
tent ranges from 3% to 38.5% (average 20.3%), and the content of 
K-feldspar (14.9%) is higher than plagioclase (5.4%). The rock 
fragments account for 4%–38.2% (average 23.2%), and are com-
posed of volcanic rock fragments (average 13.8%), sedimentary 
rock fragments (average 2.78%), and metamorphic rock frag-
ments (average 6.62%). Only small quantities of micas and heavy 
minerals can be found. The mud content is 0.3%–45% (average 
4.68%), and the cement content is 0.2%–32.3% (average 7.24%). 
The compositional maturity is 1.55 (ranges from 0.52 to 5.67). 
The sandstones are mostly fine-grained to medium-grained 

(Fig. 4b). The detrital grains are moderate to well sorted (Fig. 4c), 
with subangular to sub-rounded grain shape. Point to line con-
tacts is most common between detrital grains, followed by few 
concavo-convex contacts. 

4.3 Sandstone petrology: diagenetic mineralogy 
The diagenetic alterations recognized in the Zhuhai sand-

stones are compaction, cementation (carbonates, quartz, and 
clay minerals), and dissolution of feldspar grains. Carbonates, 
authigenic quartz, clays (authigenic and detrital), pyrites and 
albite are the major pore-filling constituents. 
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4.3.1 Carbonate cements 
Carbonate cement is the dominant type of diagenetic mineral 

and volumetrically ranges from 0.2% to 28%. Five types of car-
bonate cements are recognized in the studied sandstones, which 
are calcite, dolomite, ferrocalcite, ankerite, and siderite (Figs 5a− 
f). Calcite (0.1%−20.3%, average 2.54%) mainly presents as pore-
filling poikilotopic blocky crystals varying from 5 μm to 300 μm in 
size, which infill primary pores or replace detrital grains. 
Calcite cemented tight sandstone (12.5%−20.3%) typically oc-

curs at the edge of the sandstone bed (Fig. 5a). Calcite was ob-
served to be engulfed by ferroan calcite (Fig. 5b). 
Dolomite (0.2%−8.7%, average 1.07%) commonly composed 

of microsparry or micritic aggregates (5−250 μm) generally ap-
pears as rhombohedral crystals (Figs 5c−d). Dolomite cements 
were also observed to fill primary pores between uncompacted 
framework grains as poikilotopic and pore-filling cement. Dolo-
mite is less abundant than calcite. 
Ferroan calcite (0.2%−7.6%, average 1.69%) commonly oc-

curs as scattered euhedral or isolated crystals (15−200 μm; 
Fig. 5b), ankerite (0.3%−24.3%, average 4.62%) mostly occurs as 
mosaic clusters (10−250 μm; Fig. 5d) and euhedral rhombs 
(10−150 μm; Fig. 5e). These cements mainly occur as pore fillings 
and partly occupy pores caused by fracture and feldspar dissolu-
tion (Figs 5e−f), and replace early cements or framework grains 
(Figs 5b−d). The color of siderite ranges from light to dark brown. 
It appears in the form of irregular ankerite rhombs and typically 
fills primary pores (Fig. 5f). There are extensive carbonate ce-

ments (9%−28.8% in content, average 16.85%) in sandstones 
within 1.0 m of the sandstone-mudstone contact, and they de-
crease sharply to the central part of sandstone beds (1.5%− 
14.8% in content, average 7.54%). This indicates that the further 
the distance to the contact, the less the carbonate cement in 
sandstone (Fig. 6a). 

4.3.2 Feldspar dissolution 
Partial to complete feldspar grain dissolving is widespread in 

the Zhuhai interval. The dissolution process can be demon-
strated by the common irregular dissolution edge and feldspar 
residue (Figs 5g−i). Feldspar grains dissolved preferentially along 
the cleavages (Fig. 5g), and some of them were almost totally dis-
solved, forming moldic pores (Figs 5h−i). Noting that feldspar 
dissolution pores always bring with the pore-filling authigenic 
clay and quartz cements (Figs 5h−i). The mean abundance of 
feldspar dissolution porosity is 1.26% (range 0.1% to 3.1%). The 
closer the distance to the contact, the less feldspar dissolution 
pores in sandstone (Fig. 6b). 

4.3.3 Quartz cements 
Quartz cements make up less than 1% (Fig. 6c) and com-

monly appear as syntaxial overgrowths (Figs 7a−b) and some 
small prismatic euhedral crystals (Fig. 7a). The presence of a dust 
clay ring makes it easy to distinguish quartz overgrowths from 
detrital grains (Figs 5d−e). Locally, there are two phases of quartz 
overgrowth (Fig. 7b) with thicknesses varying from 2 μm to 60 
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μm. The first stage of quartz overgrowth (Qa1) is enclosed or en- ating that ankerite and ferroan calcite cementation occurred after 
gulfed by ankerite and ferroan calcite cements (Figs 5d−e), indic- Qa1. As in the case of the feldspar secondary pores, the marginal 
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sandstones usually contain fewer quartz cements (0−0.7%) than 
the central sandstones in thick beds (0.5%−1.13%) (Fig. 6c). 

4.3.4 Clay minerals 
The authigenic clay minerals are kaolinite and illite in the 

studied interval, follow by illite/smectite mixed layer (I/S) and 
chlorite. The honeycomb-textured I/S occurs as schistose crys-
tals, usually present with a curly margin of length 5−10 μm 
(Fig. 7c). Kaolinite occurs as euhedral booklets and vermicular 
pseudohexagonal aggregates, and is usually observed in feldspar 
secondary pores (Figs 5h−i). Significant intercrystalline micro-
porosity can be identified from kaolinite aggregates (Fig. 7d). Ka-
olinite aggregates consist primarily of thin, closely associated 
platelets (Figs 7d−e). Some kaolinite crystals appear as fibrous 
edges due to illitization (Fig. 7e). Fibrous and flaky illite can also 
be observed in primary pores and feldspar secondary pores, with 
some located on grain surfaces (Fig. 7f). The total content of au-
thigenic clay in the marginal part (0.2%−1.8%) is usually fewer 
than that in the central part of sandstone beds (1.3%−3.6%) 
(Fig. 6d). 
XRD data of the clay fraction (<2 μm) of sandstones show that 

kaolinite is the major clay mineral and dominates when the 
depth is less than 2 000 m, and had a sharp fall below this depth, 
particularly, below about 2 500 m (Fig. 8a). Illite dominates with 
depth more than 2 000 m (Fig. 8b), which can also be verified by 
the photomicrograph (Figs 7c−f). The contents of I/S and chlor-
ite exhibit an increasing trend within the depths of 1 900−2 100 m 
and 2 250−2 350 m, respectively (Figs 8c−d). The content of 
smectite in I/S obviously reduces below about 1 500 m (Fig. 8e). 

4.3.5 Accessory minerals 
Pyrite and albite can be identified as accessory diagenetic 

minerals with small content of less than 1%. In the Zhuhai sand-
stones, diagenetic pyrite occurs primarily as spherical aggregates 
of micron-sized pyrite crystals (1−30 μm), namely in the form of 
framboidal pyrite (Fig. 7g). In addition, parts of pyrite forms in ir-
regular pore-filling nodular crystals, with some having replaced 
the ferroan calcite (Fig. 7h). The authigenic albite occurs as 

columnar aggregates of euhedral crystals, and the elongate eu-
hedral crystals have a parallel orientation to the cleavages of dis-
solved K-feldspar (Fig. 7i). 

4.4 Reservoir properties 

4.4.1 Porosity and permeability 
The porosity of the Zhuhai sandstones has a wide range 

between 0.2% and 36.1% and averages 21.74%. The permeability 
ranges from 0.016 ×10−3 μm2 to 4 301 ×10−3 μm2 and has an aver-
age of 721.28 ×10−3 μm2. On the whole, both of them decrease 
with increasing depth (Li et al., 2021). The decrease in the poros-
ity is modest while the permeability falls sharply, and little evid-
ence of anomalously high porosity exists (Figs 9a−b) (Lei et al., 
2018). Similarly, in thin sections, the relative content of total visu-
al porosity also decreases gradually as the burial depth increases 
from 850 m to 3 000 m (Fig. 9c), and the average percentage of 
feldspar dissolution pores shows an increasing trend from about 
1.0% to 1.5% (Fig. 9d). 

4.4.2 Pore types 
Based on petrographic and SEM observations, total visual 

porosity in the Zhuhai Formation varies from 0.5% to 23.6% with 
an average of 10.03%, which can be divided into two main types: 
primary and secondary porosity. 
Primary porosity represents a more significant percentage of 

the total pores (15.4%−98%, average 84.6%), and mainly consists 
of residual intergranular pores that show irregular polygons. 
They are formed when the original pores are filled with calcite, 
quartz, kaolinite, chlorite, etc. during diagenesis (Figs 5a−f). 
Dissolution pores and intercrystal pores are the main second-

ary porosity types that can be commonly observed in the Zhuhai 
Formation. Dissolution pores consist of intergranular dissolution 
pores and intragranular dissolution pores (Figs 5g−i). They are 
mainly formed by dissolution of feldspar and volcanic rock debris 
(Figs 5g−i), ranging from 0.1% to 3.1%, with an average of 1.0%. 
Intercrystalline pores occur as micropores (0.5−6.5 μm in size) 
within authigenic kaolinite, chlorite and illite (Figs 7d−f). 
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Fig. 8. Vertical distribution characteristics of clay cements. I/S = illite/smectite mixed layer; S: smectite. 
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Fig. 9. Vertical distribution of porosity (a), permeability (b), total thin section porosity (c), and feldspar dissolution porosity (d). 

4.5 Mineral chemistry 

4.5.1 Fluid inclusions 
The homogenization temperature (Th) of fluid inclusions is 

useful to represent the precipitation temperature of host miner-
als. Fluid inclusions are primarily present in the microfractures in 
detrital quartz (Fig. 10a), with some in the quartz overgrowths 
(Fig. 10b) and few in carbonate cements. At room temperature, 
they are commonly liquid-vapor two-phase inclusions with a dia-
meter range of largely from 3 μm to 9.5 μm. 
As shown in Table 1 and Fig. 11, the Th of fluid inclusions is 

between 77.5℃ and 125℃ in the quartz overgrowths, and from 
94.3℃ to 146℃ in the microfractures in detrital quartz. Only two 
Th values are measured in ankerite, which are 113.7℃ and 
124.3℃. Specifically, the mean Th value of fluid inclusions is 
89.8℃ in Qa1 (varies from 77.5℃ to 107.9℃), and is 114.3℃ in 
Qa2 (from 104.5℃ to 125℃) (Table 1). 

4.5.2 Stable isotopic composition 
Figure 12 and Table 2 present the C and O isotopic data on 

carbonate cements. In specific, calcite cements have δ13CVPDB 
values between −0.3‰ and +2.51‰ and δ18OVPDB values ranging 
from −11.27‰ to −8.28‰. Similarly, δ13CVPDB values range from 
−0.76 ‰ to +2.12 ‰ and δ18OVPDB values are −11.24‰ to −8.49‰ 
in dolomite cements. δ13CVPDB values show significantly light for 
ferroan calcite cements, which are from −24.42‰ to −4.19‰ 
while δ18OVPDB values are slightly light and range from −16.63‰ 
to −13.67‰. δ13CVPDB values (−7.72‰ to −1.02 ‰) are signific-
antly higher in ankerite cements without big changes in δ18OVPDB 
values (−18.05‰ to −12.06‰) as compared with ferroan calcite. 

5 Discussion 

5.1 Paragenetic sequence of diagenesis 
According to Morad et al. (1990), diagenetic events can be 

a

Q

microfractures

Qa1

Q

50 μm 50 μm

106.8℃

104.5℃

110.4℃

104.7℃

b

Fig. 10. Photomicrographs illustrating fluid inclusions in the Zhuhai sandstones. a. LW1-1, 1 663.54 m, fluid inclusions along healed 
microfractures in quartz grain, b. LW1-1, 2 045 m, fluid inclusions in quartz overgrowths. 
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Table 1. The homogenization temperature (Th) of fluid inclusions. Qa1 and Qa2 = two phases of quartz overgrowths; MF = microfrac-
tures; An = ankerite 

Well Depth/ m 
Inclusion 
location 

Size/μm Th/℃

LW1-1 1 663.54 Qa1 5.2 83.2 

LW1-1 1 663.54 Qa1 6.2 77.5 

LW1-1 1 663.54 Qa1 7.0 95.3 

LW1-1 1 663.54 MF 6.7 95.7 

LW1-1 1 663.54 MF 8.0 97.9 

LW1-1 1 663.54 MF 4.5 104.7 

LW1-1 1 663.54 MF 5.7 106.8 

LW1-1 1 708.25 Qa1 4.7 84.5 

LW1-1 1 708.25 Qa1 8.5 90.4 

LW1-1 1 708.25 MF 8 94.3 

LW1-1 1 708.25 MF 3.5 97.5 

LW1-1 1 708.25 MF 7.0 106.7 

LW1-1 1 708.25 MF 7.5 114.8 

LW1-1 1 708.25 MF 5.0 111.3 

LW1-1 1 708.25 MF 5.5 108.2 

LW1-1 2 045.0 Qa1 5.9 89.5 

LW1-1 2 045.0 Qa2 5.4 104.5 

LW1-1 2 045.0 Qa2 7.0 110.4 

LW1-1 2 045.0 MF 3.3 119.3 

LW1-1 2 045.0 MF 7.1 124.2 

Well Depth/m 
Inclusion 
location 

Size/μm Th/℃

LW1-1 2 045.0 MF 5.5 127.0 

LW1-1 2 045.0 MF 4.8 130.4 

LW1-2 2 609.1 Qa1 7.5 107.9 

LW1-2 2 609.1 MF 4.0 126.5 

LW1-2 2 609.1 MF 3.8 137.3 

LW1-2 2 609.1 MF 3.0 145.2 

LW1-2 2 702.5 Qa2 3.6 125.0 

LW1-2 2 702.5 Qa2 6.0 117.3 

LW1-2 2 702.5 MF 5.5 141.0 

LW1-2 2 702.5 MF 4.7 146.0 

LW1-2 2 702.5 MF 8.8 129.0 

Lw3-1 1 861.5 MF 4.8 112.3 

Lw3-1 1 861.5 MF 3.3 113.8 

Lw3-1 1 861.5 MF 9.5 117.1 

Lw3-1 1 861.5 MF 5.9 115.3 

Lw3-1 1 861.5 MF 7.1 120.1 

Lw3-1 1 861.5 MF 6.2 124.6 

LW1-2 2 702.5 An 5.5 113.7 

LW1-2 2 702.5 An 8.0 124.3 
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Fig. 11. Histograms of Th for fluid inclusions. Al = fluid inclu-
sions. 

classified into two regimes: eogenesis (typically occurs at temper-
atures < 70℃ and at burial depth < 2 km during which pore-wa-
ter is dominanted by depositional and/or meteoric waters) and 
mesogenesis (occurs at > 70℃ and at > 2 km, which is mediated 
by evolved formation waters) (Morad et al., 1990). 
Based on the paragenetic relationships and the forming tem-

peratures of the diagenetic minerals in sandstones as discussed 
above, and burial history curves, the relative diagenetic se-
quence of the Zhuhai sandstones is established and illustrated in 
Fig. 13. 
The compaction and precipitation of calcite and dolomite are 

the dominant eogenetic processes in the Zhuhai sandstones. 
Moreover, framboidal pyrite and siderite are also demonstrated 
as the eogenetic, precompactional products in view of the filling 
relationships of these cements and primary pores between un-
compacted framework grains (Figs 5f, 7g). Compaction extends 
throughout subsequent mesogenetic phases. Feldspar dissolu-
tion is one of the major mesogenetic processes experienced by 
the Zhuhai sandstones, and is closely accompanied by diagenet-
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Fig. 12. Crossplot of Carbon and Oxygen isotopic compositions 
of carbonate cements. Cc = calcite; Do = dolomite; Fc = ferroan 
calcite; An = ankerite. 

ic by-products such as clay and quartz cements (Figs 7c, d; Giles 
and de Boer, 1990). The relative sequence in mesogenesis is con-
cluded to be (1) feldspar dissolution, (2) kaolinite precipitation, 
(3) Qa1, (4) ferroan calcite, (5) feldspar dissolution, (6) illitiza-
tion, (7) Qa2, and (8) ankerite, albite, and nodular pyrite precipit-
ation (Figs 5, 7). 
The hydrocarbon inclusions are pervasively developed and 

are closely associated with the coeval aqueous inclusions in 
quartz microfractures of the Zhuhai sandstones (Fig. 10a). The 
Th of the coeval aqueous inclusion is regarded as the closest 
equivalent to the trapping temperature of the coexisting hydro-
carbon inclusions, as previously stated, which ranges from 94.3℃
to 146℃. This result accords with the previous detailed work of 
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Table 2. Isotopic composition and precipitation temperature of carbonate cements. Cc = calcite; Do = dolomite; Fc = ferroan calcite; 
An = ankerite 

Precipitation temperature/℃
Well Depth/m Carbonte 13CVPDB/‰ 

18OVPDB/‰ 18OSMOW=−5 
18OSMOW=−2 

18OSMOW=0 
/‰ /‰ /‰ 

LW4-1 1 519.8 Cc 0.97 −8.62 31 − − 

LW4-1 1 559.8 Cc 1.58 −9.92 38 − − 

LW1-1 1 657.64 Cc 2.51 −9.73 37 − − 

LW1-1 1 657.64 Cc 1.43 −10.44 41 − − 

LW1-1 1 708.25 Cc 0.11 −9.59 36 − − 

LW1-1 2 027.25 Cc −0.30 −8.28 29 − − 

LW1-2 2 609.1 Cc 1.23 −11.27 45 − − 

LW4-1 1 514.8 Do 1.56 −8.75 61 − − 

LW1-1 1 671.5 Do 0.12 −10.31 72 − − 

LW1-1 1 713.5 Do 0.35 −9.49 66 − − 

LW1-1 2 026.5 Do −0.76 −8.49 59 − − 

LW1-1 2 037.5 Do 2.12 −11.24 80 − − 

LW1-1 2 037.5 Do 1.44 −10.76 76 − − 

LW1-2 2 577.0 Do 1.54 −9.67 68 − − 

LW1-2 2 577.0 Do 0.73 −10.31 72 − − 

LW3-1 1 861.5 Fc −7.48 −13.67 60 79 94 

LW1-1 2 026.5 Fc −11.96 −15.43 71 92 108 

LW1-1 2 563.5 Fc −24.42 −16.63 79 101 118 

LW1-1 2 563.5 Fc −13.87 −15.74 73 94 110 

LW1-2 2 609.1 Fc −10.72 −14.20 63 83 98 

LW1-2 2 824.8 Fc −4.19 −13.92 61 81 95 

LW4-1 1 559.8 An −7.53 −14.58 88 114 137 

LW1-1 1 658.0 An −7.72 −14.13 85 110 132 

LW1-1 2 026.5 An −4.48 −12.06 71 92 109 

LW1-1 2 033.39 An −2.47 −15.27 94 121 142 

LW1-1 2 045.0 An −1.02 −17.22 111 142 167 

LW1-2 2 563.5 An −3.36 −13.55 81 105 123 

LW1-2 2 701.5 An −2.65 −15.46 96 123 136 

LW1-2 2 702.5 An −7.25 −14.26 86 111 131 

LW2-1 2 997.5 An −6.51 −18.05 119 152 179

     Note: “−” indicates no data. 

Mi et al. (2019), which showed that two periods of hydrocarbon 
accumulation occurring respectively at 13.1−7.3 Ma and 5.5− 
0 Ma (Fig. 13) exist in the study area. The first period of hydrocar-
bon charge postdated the dissolution of feldspar, and antedated 
or was synchronous with the precipitation of mesogenetic fer-
roan calcite. The second period postdated the late ankerite ce-
mentation. Parts of reservoirs, it should be noted, especially the 
thin beds or the marginal parts of thick beds (<1 m away from the 
contact), were rich in early calcite and dolomite cements during 
eogenesis, even filled all the intergranular spaces and became 
tight reservoirs, and then hardly any other diagenetic alteration 
occurred. 

5.2 Source of quartz cements 
A much-debated question for quartz cements is whether 

there are external or internal sources of silica within given sand-
stones (Bjørlykke, 2014). External sources include deep fluid mi-
gration, adjacent mudstones and so on, which are revealed as 
sources in open geochemical systems (Thyne, 2001; Day-Stirrat 
et al., 2010). The main limitation with external silica sources, 
however, is the difficulty of long distance and massive transfer 
due to formation fluid with limited flow and low silica solubility 
(Bjørlykke and Jahren, 2012). By contrast, internal silica sources, 
including biogenic silica, feldspar and clay alteration reactions, 

quartz grain dissolution, and unstable volcanic rock fragments, 
are more convincing in most situations (Bjørlykke, 2014). 
It can be inferred from the Th distribution (Table 1) that 

quartz cement (as overgrowth) was almost continuous growth 
(Walderhaug, 2000). The formation temperature range of the 
Qa1(77.5℃ to 107.9℃) is matched with the dominant temperat-
ure zones of organic acid production (Surdam Ronald et al., 
1989). On the other hand, the content of quartz cement is posit-
ively associated with feldspar dissolution (Figs 6a, c). The feld-
spar alteration by organic acid must be a significant silica source 
for Qa1 (Worden and Morad, 2000). As mentioned above, a con-
siderable amount of kaolinite exists above 2 000 m (temperature 
<100℃), and the rapid and mass transformation of kaolinite to il-
lite occurs in sandstones below 2 000 m, especially between the 
depths of 2 200 m and 2 500 m (temperature varying from 100℃
to 120℃). The formation temperature range of the Qa2 (104.5℃
to 125℃) is coinciding with the optimal temperature zones of the 
illitization of kaolinite. It therefore seems that the illitization of 
kaolinite play an important role for Qa2 in the study area (Morad 
et al., 1990). The prismatic euhedral quartz crystals commonly 
precipitate within intergranular pores, but are always accompan-
ied by detrital quartz grains covered by clay minerals. A possible 
reason for this phenomenon is that there is no place for the nuc-
leation on the detrital quartz surface (Worden and Morad, 2000). 
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Fig. 13. Burial, thermal, and diagenetic history of the Zhuhai sandstones. 

In addition, the point and linear contact between detrital miner-
als indicates that minimal pressure dissolution has occurred in 
the Zhuhai sandstones, suggesting the potentially limited signi-
ficance of pressure dissolution for quartz overgrowth. 

5.3 Source of carbonate cements 
Several possible origins have been established for the com-

ponents of carbonate cements, including internal (e.g., biogenic 
fragments or detrital grains), external (from adjacent muds-
tones), or mixed sources (Gier et al., 2008). According to the latit-
udinal gradient of δ18O value, δ18OSMOW value of sedimentary wa-
ter of the Baiyun Sag can be evaluated to –5‰ (range from 0‰ to 
−10‰), for the 20° N paleolatitude of the Sag (Rozanski et al., 
1993). This could represent the δ18OSMOW value of early pore-flu-
ids. According to the fractionation equations of the oxygen iso-
tope for calcite-water and dolomite-water (Kim and O’Neil 1997; 
Schmidt et al., 2005), calculated formation temperatures are 
between 29℃ and 45℃ for calcite and between 59℃ and 80℃ for 
dolomite (Table 2). 
The δ13C value is a useful indicator to investigate the sources 

of carbonate cements (dos Anjos et al., 2000; Woo and Khim, 
2006; El-Khatri et al., 2015). The interbedded shelf mudstones 
contain a considerable amount of organic matter (TOC values 
range from 0.66% to 1.47%, average 1.08%) (Li et al., 2011). The 
bicarbonate species related to microbial methanogenesis of or-
ganic matter (δ13C up to +8‰) might provide important source 
for early formed carbonate. This can be supported by the relative 

positive δ13C values (−0.76‰ to +2.51‰) of these cements (Table 2) 
(Whiticar et al., 1986). In addition, the mudstones in the Zhuhai 
Formation are high in detrital carbonate grains (over 15%) (Zhu 
et al., 2008). These minerals have δ13C values that vary from 0‰ 
to +5.9‰ (Zhu et al., 2008). The dissolution of these detrital car-
bonate can thus be another carbon source (Zhu et al., 2009). 
Meanwhile, the Ca2+ and Mg2+ ions dissolved in the mudstone 
were probably transported to sandstone as well. 
It is a widely held view that the δ18O value becomes enhanced 

with the increase in temperature of pore-fluids, due to isotopic-
ally modification by feldspar alteration and a series of diagenetic 
actions (dos Anjos et al., 2000; Fayek et al., 2001). δ18OSMOW val-
ues were assumed to be −5‰, −2‰, and 0 for the pore fluid that 
late carbonate was precipitated in it (dos Anjos et al., 2000). Us-
ing a δ18OSMOW value of −2‰, with the fractionation equation of 
oxygen isotope for calcite-water and dolomite-water (Kim and 
O'Neil, 1997; Horita, 2014), precipitation temperatures of ferroan 
calcite can be calculated as 79−101℃, and 91−152℃ for ankerite 
(Table 2). The measured Th of fluid inclusions in ankerite 
(113.7℃, 124.3℃, Table 1) are both within the calculated results 
of ankerite (Table 1). The assumption of a δ18OSMOW value of -2‰ 
is acceptable. In addition, the illitization of smectite (60 − 
100℃) in the mudstones is slightly prior to the precipitation of 
ferroan calcite (Boles and Franks, 1979), which can release Ca2+, 
Fe3+, Mg2+, and silica for the ferroan calcite in sandstones (Curtis, 
1978; Wang et al., 2016). This inference is also supported by the 
high content of carbonate cements at both sides of the sand-
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stone-mudstone contacts (Fig. 6). 
The relative negative δ13C values (−24‰ to −1‰) of the fer-

roan calcite suggest an organic source from adjacent mudstones 
(δ13CVPDB from −25‰ to −10‰) (Table 2) (Curtis,  1978).  
Moreover, plenty of organic CO2 derived from adjacent mud-
stones can dissolve some early-formed carbonate (Dutton, 2008), 
which could be demonstrated by the non-ferroan carbonate re-
placed and engulfed by ferroan carbonate. Thus, the δ13CVPDB 
values (−24‰ to −1‰) probably suggest there is a mixed carbon 
source of organic CO2 and inorganic carbonate. In addition, 
ankerite cements have higher δ13C values than ferroan calcite 
and they are formed at significantly high temperatures, thus in-
dicating another origin from CO2 contained deep fluid. The δ13C 
values of the hydrothermal fluid from the deep are about −5 ‰ ± 
2 ‰, and its generally positive δ18O values range from +5.0‰ to 
+7.0‰ (Friedman and O'Neil, 1977). The uptrend of δ13C values 
of ankerite and the enrichment of δ18O values of pore waters with 
increasing temperature may be related to the uprising and intru-
sion of hydrothermal fluid from the deep to sandstones. 

5.4 Controls on reservoir quality 
It is well known that present-day reservoir quality is con-

trolled by initial depositional attributes, which profound control 
the textural and mineralogical composition of the sediments, as 
well as pore fluid composition (pH, Eh), and subsequent diagen-
etic modifications, including compaction, location of diagenetic 
cements, and the generation of secondary porosity (Bjørlykke 
and Jahren, 2012; Kassem et al., 2022). 

5.4.1 Depositional controls on reservoir quality 
Texture (grain size and sorting) and composition determine 

the initial intergranular volume (IGV) of the sediments (dos An-
jos et al., 2000; El-Khatri et al., 2015). The porosity and permeab-
ility correlate closely with sorting and the grain size since com-
paction is very sensitive to texture variation (Bjørlykke and 
Jahren, 2012; Bjørlykke, 2014). 
Statistics show that the porosity increases as particle sizes in-

crease, as shown in Fig. 14. The high-quality reservoirs corres-
pond to the sandstone have a grain size larger than 0.3 mm 
(Fig. 14). The porosity tends to be higher in the coarser-grained 
sandstones as the pores between the larger grains could be filled 
with finer grains (Walderhaug et al., 2012), while relatively low 
porosities could be observed in some coarser-grained sand-
stones with strong carbonate cementation (Fig. 14). For Zhuhai 
reservoirs, the more poorly sorted a sediment is, the lower its in-
tergranular volume and porosity. This is due to a much lower ini-
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Fig. 14. Relationship between the porosity and particle size of 
different sedimentary micro-facies. 

tial porosity and/or a more tightly compacted in the poorly sor-
ted samples, which contain more silt and clay (Bjørlykke, 2014). 
Reservoir quality is better as the particle size increases and sort-
ing improves. 
The grain composition can severely impact the reservoir qual-

ity of sandstones by conditioning the diagenesis pathway. Large 
differences in IGV (up to 10%−15%) have little to do with depth 
(Fig. 15a), but are more related to the content of original rock 
grains. Reservoirs with a higher content of quartz grains main-
tain a larger IGV, indicating higher degrees of mechanical stabil-
ity and resistance to compression of the rigid quartz grains 
(Fig. 15b). The negative correlation between the IGV and the 
ductile grains, such as unstable rock fragments and chemically 
deformed feldspar grains, further suggests the significant influ-
ence of original rock grain composition on the IGV (Figs 15c and d). 
These findings suggest that, in general, the reservoir quality is 

sedimentary selective. As can be seen from Fig. 14, the reservoir 
quality is highest in thick, underwater distributary channel facies, 
which are characterized by coarser-grained, better sorting, 
particle-support nature, as well as away from sandstone-mud-
stone contact. Distributary bay facies, which are characterized by 
lower energy, finer-grained, matrix-support nature, have the 
poorest porosity and permeability due to low initial porosity and 
extensive compaction (Fig. 14). The relatively low porosities in 
both underwater distributary channel and mouth bar facies typ-
ically occur at or near sandstone-mudstone contact which are 
characterized by tightly carbonate cementation. This resulted in 
significant porosity reduction during diagenesis (Figs 5a, 6a). 

5.4.2 Diagenetic controls on reservoir quality 
The porosity and permeability versus depth show that com-

paction, initiated immediately after deposition and throughout 
the entire burial process, can destroy the primary pore volume 
severely (Stroker et al., 2013). Samples without extensive eogen-
etic cement suggested that the deterioration of porosity was 
mainly due to compaction. A plot of IGV versus total intergranu-
lar cement and pseudomatrix (assuming that the sandstones had 
an initial porosity of 40% using tables from Lundegard (1992) in-
dicates that compaction constituted about 32.25%−74.75% (aver-
age 54.6%) of the total pore volume loss during burial (Fig. 16). 
Cementation is also a major factor which influences reservoir 

property in the studied sandstones, especially at local scales such 
as within a single sand body (Kassem et al., 2022). As demon-
strated above, carbonate mineral, the most abundant pore-oc-
cluding cement type, is mainly formed from external mass 
sources (adjacent muddy source rocks). The relationship 
between carbonate cements and reservoir properties is high-
lighted in Fig. 17. For samples taken from margin sandstones 
within 1.0 m of the sandstone-mudstone contact, the content of 
carbonate cements is generally greater than 15%, and the poros-
ity is lower than 10% (Fig. 17). Consequently, thin sandstone lay-
ers (≤2 m) always show poor reservoir properties due to strong 
carbonate cementation. For thicker sandstone bodies (>2 m), the 
reservoir properties rise steadily along with successive increases 
in the distance to the contact. 
Effective secondary porosity can be loosely defined as the dif-

ference between feldspar dissolution porosity and pore-filling by-
products (mainly authigenic quartz and clay) (Fig. 18; Giles and 
de Boer, 1990). It ranges from −1.9% to 1.6% via quantitative cal-
culation of the studied sandstone (Fig. 18d). The calculated neg-
ative value implies that feldspar dissolution did not cause any 
significant increment of porosity. In view of 25%−50% micro-
porosity of clay minerals, the increment of porosity can be calcu-
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lated by feldspar dissolution porosity minus 62.5% clay minus au-
thigenic quartz (Nadeau and Hurst, 1991; Yuan et al., 2015). And 
then, the absolute increment of porosity ranges from −0.66% to 
1.18% (Fig. 18e), which suggests a relatively closed diagenetic 
system (Taylor et al., 2010). Although the reservoir porosity 
shows little or no net increment, primary macropores were sub-
stituted by micropores occurring between authigenic clay crys-
tals and within dissolved residual feldspars (Nadeau and Hurst, 
1991). The pore connectivity relatively decreases owing to the 
precipitation of clay and quartz cements. As a result, the per-
meability of the reservoirs is degenerative to some degree. Espe-

cially for the deep buried sandstone (>2 000 m) that experienced 
relatively strong compaction, the permeability was significantly 
reduced due to pore-throat plugging by authigenic quartz and 
clay (mostly illite) (Figs 8, 9). 
In summary, the depositional parameters such as grain size 

and sorting had critical controls on diagenetic modifications, 
which in turn determined the reservoir quality of the Zhuhai 
reservoirs. To conclude, good quality reservoirs in Zhuhai sand-
stones are characterized as medium-grained lying in the central 
parts of thick underwater distributary channel sandbodies (>2 m) 
with a high content of detrital quartz but low cements, such as 
carbonates and clay minerals. The findings will improve the pre-
dictive capabilities of high-quality reservoirs in the Baiyun Sag, 
and have wide application for the pre-drill prediction of anomal-
ous high porosity reservoirs with geologically similar conditions. 

6 Conclusions 
This study has provided an insight into the diagenesis and its 

impact on the reservoir quality of the Oligocene Zhuhai sand-
stones in the Baiyun Sag. The findings may provide an analogue 
for the study of reservoir quality evaluation and prediction of 
clastic reservoirs in other basins. On the basis of detailed ana-
lyses of petrology, mineralogy, carbon and oxygen isotope ratios, 
and fluid inclusion homogenization temperatures, this study has 
demonstrated the following: 
(1) The Zhuhai sandstones are mainly feldspathic litharenites 

and lithic arkoses, which are marked by abundant volcanic rock 
fragments, with a fine to medium grain size and moderate to 
good sorting. 
(2) The reservoir properties are of significant heterogeneity, 

with porosity ranging from 0.2% to 36.1% and permeability from 
0.016 ×10−3 μm2 to 4 301.45 ×10−3 μm2. The visual pores are dom-
inated by primary intergranular pores and decrease with the 
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burial depth, while the relative contents of feldspar secondary 
pores show an increasing trend. 
(3) Eogenesis includes compaction, cementation of calcite, 

dolomite, siderite and framboidal pyrite. Mesogenesis includes 
further compaction, feldspar dissolution, precipitation of ferro-
calcite and ankerite, quartz cements, formation of kaolin and its 
illitization, precipitation of albite and nodular pyrite, as well as 
hydrocarbon charge. 
(4) Feldspar dissolution and illitization of kaolinite provide 

significant internal sources of silica for the quartz cementation. 
Carbonate cementation mainly stems from external sources re-
lated to interbedded mudstones and deep fluid. Specifically, they 
are mainly from microbial methanogenesis in eogenesis, from or-
ganic CO2 in mesogenesis, and from hydrothermal fluid for late 
ankerite. 
(5) Compaction is the predominant factor in reducing the 

total porosity, followed by carbonate cementation that leads to 
strong heterogeneity within one sandstone bed. Feldspar dissolu-
tion barely changes the porosity but significantly reduces the per-
meability due to concomitant quartz and clay cementation. 

(6) By linking diagenesis to sedimentary micro-facies, the 
high-quality reservoirs can be concluded as medium-grained 
sandstones lying in the central parts of thick underwater distribu-
tary channel sandbodies (>2 m) with a high content of detrital 
quartz but low cements. 
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