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Abstract 

We introduced the Coupled Model Intercomparison Project Phase 6 (CMIP6) Ocean Model Intercomparison 
Project CORE2-forced (OMIP-1) experiment by using the First Institute of Oceanography Earth System Model 
version 2.0 (FIO-ESM v2.0), and comprehensively evaluated the simulation results. Unlike other OMIP models, 
FIO-ESM v2.0 includes a coupled ocean surface wave component model that takes into account non-breaking 
surface wave-induced vertical mixing in the ocean and effect of surface wave Stokes drift on air-sea momentum 
and heat fluxes in the climate system. A sub-layer sea surface temperature (SST) diurnal cycle parameterization 
was also employed to take into account effect of SST diurnal cycle on air-sea heat fluxes to improve simulations of 
air-sea interactions. Evaluations show that mean values and long-term trends of significant wave height were 
adequately reproduced in the FIO-ESM v2.0 OMIP-1 simulations, and there is a reasonable fit between the SST 
diurnal cycle obtained from in situ observations and that parameterized by FIO-ESM v2.0. Evaluations of model 
drift, temperature, salinity, mixed layer depth, and the Atlantic Meridional Overturning Circulation show that the 
model performs well in the FIO-ESM v2.0 OMIP-1 simulation. However, the summer sea ice extent of the Arctic 
and Antarctic is underestimated. 
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1 Introduction 
The Ocean Model Intercomparison Project (OMIP) is an en-

dorsed project in the Coupled Model Intercomparison Project 
Phase 6 (CMIP6) (Eyring et al., 2016). It addresses CMIP6 science 
questions, investigating origins and consequences of systematic 
model biases (Griffies et al., 2016). It also provides an important 
framework for evaluating (including assessment of systematic bi-
ases), understanding, and improving ocean, sea-ice, tracer, and 
biogeochemical components of climate and earth system mod-
els contributing to CMIP6 (Griffies et al., 2016). The OMIP experi-
ments have two components: the physical component and the 
biogeochemical component. We only focus on the physical com-
ponent in this study. It follows the Coordinated Ocean-ice Refer-
ence Experiments (CORE-I and CORE-II) (Griffies et al., 2009; 
Danabasoglu et al., 2014), which are the standard methods to 
evaluate global ocean/sea ice simulations and to examine mech-
anisms for forced ocean climate variability. More than 60 models 
have registered for the CMIP6 OMIP. 
The First Institute of Oceanography Earth System Model ver-

sion 2.0 (FIO-ESM v2.0) is one of the contributors to the OMIP. 

The main difference between FIO-ESM v2.0 and other OMIP 

models is that FIO-ESM v2.0 couples an ocean surface wave 

model. The FIO-ESM v2.0 (Bao et al., 2020) is the successor to 

FIO-ESM v1.0 (Qiao et al., 2013); both versions have been de-

veloped by the First Institute of Oceanography, Ministry of Natur-

al Resources, China, and coupled ocean surface wave compon-

ent model. Its fully coupled CMIP6 historical simulations demon-

strate good model performance in terms of simulations of sur-

face air temperature, precipitation, sea surface temperature 

(SST), Atlantic Meridional Overturning Circulation (AMOC), and 

El Niño-Southern Oscillation (Bao et al., 2020). 

The aim of this study is to introduce the FIO-ESM v2.0 

CORE2-forced (OMIP-1) experiment, and evaluate its perform-

ance. The paper is structured as follows. The model and numer-

ical experiment are described in Section 2, results are presented 

and evaluated in Section 3, summary and discussion are 

provided in Section 4. 
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2 Model and experiment description 

2.1 Model 
The FIO-ESM v2.0 is a fully coupled earth system model (Bao 

et al., 2020). Its three component models, i.e., the ocean general 
circulation model (OGCM), sea ice model, and ocean surface 
wave model, are employed in the OMIP simulation. The OGCM 
used in FIO-ESM is the Parallel Ocean Program (POP2) (Smith 
et al., 2010). It has 61 vertical layers (z) in FIO-ESM v2.0, with the 
first layer at 0 m with SST diagnosed by the SST diurnal cycle 
parameterization (Yang et al., 2017). Horizontal resolution is ap-
proximately 1.1° in longitude and 0.27°–0.54° in latitude. The sea 
ice model is the Los Alamos sea ice model version 4 (CICE4) 
(Bailey et al., 2011). It has one snow layer, four vertical ice layers, 
and five ice thickness categories in FIO-ESM v2.0. The ocean sur-
face wave model is the Marine Science and Numerical Modeling 
(MASNUM) surface wave model (Qiao et al., 2016). It has 12 wave 
directions and 25 wave numbers in FIO-ESM v2.0. All three com-
ponent models have the same horizontal resolution. The coupler 
used in FIO-ESM v2.0 is CPL7 (Craig et al., 2012). POP2 and MAS-
NUM wave model exchange data with the coupler every 3 h, and 
CICE4 exchanges data with the coupler every 30 min. 
Ocean surface waves can be simulated directly in FIO-ESM 

v2.0 by the coupled MASNUM wave model, allowing FIO-ESM 
v2.0 to take into account the wave related processes on the cli-
mate system. Non-breaking surface wave-induced mixing and ef-
fect of surface wave Stokes drift on air-sea momentum and heat 
fluxes are two important ocean surface wave related processes 
that are taken into account in the FIO-ESM v2.0 OMIP-1 simula-
tion, and represent the main differences between FIO-ESM v2.0 
and all other OMIP models. 
Previous studies show that non-breaking surface wave-in-

duced mixing is a key process to improve upper ocean temperat-
ure and mixed layer depth (MLD) simulations both in summer 
(Qiao et al., 2010; Wang et al., 2010, 2019; Shu et al., 2011) and in 
winter (Chen et al., 2018). Overestimates of summer SST and un-
derestimates of summer mixed layer depth in OGCMs can be ad-
dressed by including the non-breaking surface wave-induced 
vertical mixing. Following Qiao et al. (2004), non-breaking sur-
face wave-induced mixing is calculated in FIO-ESM v2.0 using 
wave-number spectrum from the MASNUM wave model, and 
then added to the vertical viscosity and diffusivity coefficients 
parameterized by the K-Profile Parameterization (KPP) vertical 
mixing scheme (Large et al., 1994) in POP2. 
In the bulk formula, the turbulent fluxes (wind stress, evapor-

ation, latent heat flux, and sensible heat flux) are parameterized 
using the difference between near surface wind velocity and 
ocean surface current (Large and Yeager, 2009). In the real 
ocean, surface current also includes Stokes drift velocity, which is 
induced by ocean surface waves. Although velocity decays rap-
idly with depth, surface velocity is comparable with surface Ek-
man current (Rascle et al., 2008). Effects of surface wave Stokes 
drift on air-sea momentum and heat fluxes are considered in 
FIO-ESM v2.0 by adding surface Stokes drift velocity to the first 
layer ocean current during turbulent flux parameterization (Bao 
et al., 2020). Using wave-number spectrum in the MASNUM 
wave model, Stokes drift velocity is calculated following the for-
mula of Huang (1971). 
Effect of wave-induced sea spray on air-sea heat and water 

fluxes is another important ocean surface wave related process 
included in FIO-ESM v2.0 (Bao et al., 2020). However, it is deac-
tivated during the OMIP simulation, because it is absent from the 
bulk formulae (Large and Yeager, 2009) for air-sea turbulent heat 

flux calculation prescribed for CMIP6 OMIP experiments. 
Previous studies suggest that the SST diurnal cycle can affect 

the climatology, intra-seasonal, and inter-annual variability of 
the climate system by modulating air-sea interactions (Dana-
basoglu et al., 2006; Bernie et al., 2008; Ham et al., 2010; Masson 
et al., 2012). However, vertical resolution in the upper ocean of 
most climate models and OGCMs is too low to resolve the SST di-
urnal cycle. In FIO-ESM v2.0, diurnal signals of SST at 0 m are 
diagnosed using a sub-layer parameterization of the SST diurnal 
cycle (Yang et al., 2017; Bao et al., 2020), and are used to calcu-
late air-sea heat fluxes to simulate the effect of the SST diurnal 
cycle and improve simulations of air-sea interactions. 
In the FIO-ESM v2.0 OMIP-1 experiment, three processes in-

cluding the non-breaking surface wave-induced mixing in the 
upper ocean, the effects of surface wave Stokes drift on the air-
sea momentum and heat fluxes, and the effects of the SST diurn-
al cycle on air-sea interactions are introduced for the first time in 
the world, which are the main differences between FIO-ESM v2.0 
OMIP-1 experiment and all other OMIP-1 experiments using 
ocean component model of POP. 

2.2 The experiment 
The OMIP has two versions in the framework of CMIP6, and 

they are CORE2-forced version (OMIP-1) and JRA55-do-forced 
version (OMIP-2), respectively. The CORE2 forcing contains the 
inter-annually varying atmospheric forcing and river runoff of 
Large and Yeager (2009), which have been developed from 
NCEP/NCAR (National Centers for Environmental Prediction/ 
National Center for Atmospheric Research) reanalysis, Dai and 
Trenberth (2002) and Dai et al. (2009). This forcing covers 1948 to 
2009, but has not been updated since 2009. The JRA55-do forcing 
(Tsujino et al., 2018) is based on the Japanese Reanalysis (JRA-
55) product from Kobayashi et al. (2015). This forcing covers 1958 
to 2018, and is updated regularly. 
FIO-ESM v2.0 CORE2-forced experiment is a standard OMIP-

1 experiment. CORE2 forcing includes surface wind, surface air 
temperature and specific humidity at 10 m height, sea level pres-
sure, downward shortwave radiation, downward longwave radi-
ation, and precipitation (rain and snow), mostly at 6-hourly in-
tervals. Surface turbulent fluxes were calculated from oceanic 
state, prescribed atmospheric state, and bulk formulae of Large 
and Yeager (2009). SST was not restored, and sea surface salinity 
was restored to monthly observational-based climatology with a 
piston velocity of 50 m over 4 years. Initial temperature and salin-
ity for the ocean model were taken from the climatology of World 
Ocean Atlas 2013 version 2 (WOA13v2) (Locarnini et al., 2013; 
Zweng et al., 2013). For the upper 1 500 m, January climatology 
was used. Below a depth of 1 500 m, the average of January, Feb-
ruary, and March was used. Initial ocean velocity and ocean sur-
face wave started from a state of rest. The simulation was run for 
five cycles over the period covered by CORE2 forcing (1948−2009 
with 62 years for each cycle) to remove dependence on initial 
conditions and to reach quasi-equilibrium in the upper ocean. 

3 Results 
In this section, results from FIO-ESM v2.0 OMIP-1 simula-

tions are evaluated. We use results from all five cycles to evaluate 
model drift, and results from the last cycle to assess model bias 
and performance. 

3.1 Long-term drift 
Griffies et al. (2009) and Tsujino et al. (2020) showed that 

long-term drifts always exist in OGCMs after initialization. Long-
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term temperature and salinity drifts in the FIO-ESM v2.0 OMIP-1 
simulation are shown in Fig. 1. Drifts in global mean vertically av-
eraged potential temperature and salinity in the FIO-ESM v2.0 
OMIP-1 simulation are small with mean rates of −0.02°C/(100 a) 
and −0.000 1/(100 a), respectively. However, similar to other 
OMIP models (Tsujino et al., 2020), drifts are relatively large both 
in the upper ocean, and from the deep ocean of 4 000 m to the 
ocean bottom (Fig. 1a). After initialization, simulated temperat-
ure increases in the upper ocean, and decreases in the deep 
ocean down to the ocean bottom. Salinity drifts mainly in the 
subsurface ocean between depths of 400 and 1 000 m. Figure 1 
also shows that model drift is quite small for the upper 2 000 m in 
the last (fifth) cycle, indicating quasi-equilibrium in the upper 
ocean. 
The AMOC index and Global Meridional Overturning Circu-

lation (GMOC) index can be used as circulation metrics to 
quantify model drift (Tsujino et al., 2020). The AMOC index is 

defined as the vertical maximum of the Atlantic streamfunction 

at 26.5°N, and represents the strength of the AMOC associated 

with the formation of North Atlantic Deep Water (NADW). The 

GMOC index is defined as the minimum of the global stream-

function between 2 000 m depth and the ocean bottom at 30°S, 

and represents the strength of deep GMOC associated with the 

formation of Antarctic Bottom Water (AABW) and Lower Circum-

polar Deep Water. Figure 2 shows that AMOC decreases in the 

first cycle after initialization, and recovers gradually thereafter. 

Model spin-up takes about three cycles. So we suggest that the 

fourth and fifth cycles of FIO-ESM v2.0 OMIP-1 results are suit-

able for further scientific analysis. For the last cycle, mean value 

for the AMOC index is 16.5×106 m3/s and mean value for the 

GMOC index is −9.9×106 m3/s, and are similar to the multi-mod-

el mean values from 11 OMIP-1 models reported by Tsujino et al. 

(2020). 

Horizontal mean temperature anomaly/℃ Horizontal mean salinity anomaly

0 50 100 150 200 250 300

0

1

2

3

4

5

D
ep

th
/k

m

−1.0−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1.0

0 50 100 150 200 250 300

0

1

2

3

4

5

D
ep

th
/k

m

−0.10 −0.06 −0.02 0.02 0.06 0.10

0 50 100 150 200 250 300

Model year

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

G
lo

b
al

 m
ea

n
 t

em
p
er

at
u
re

 a
n
o
m

al
y
/℃

G
lo

b
al

 m
ea

n
 s

al
in

it
y
 a

n
o
m

al
y

0 50 100 150 200 250 300

Model year

Model year Model year

−0.02

−0.01

0

0.01

0.02

a b

dc

Fig. 1.  Drifts of horizontal and global mean potential temperature and salinity. Drift is defined as deviation from the value obtained 
from the first model year. Dashed lines indicate the 62-year forcing cycle, corresponding to calendar years 1948−2009, which was 
repeated for 5 times. 
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Fig. 2.  Time series of annual mean Atlantic Meridional Overturning Circulation (AMOC) index maximum at 26.5°N (a) and Global 
Meridional Overturning Circulation (GMOC) index minimum between 2 000 m depth and ocean bottom at 30°S (b). Dashed lines 
indicate the 62-year forcing cycle, corresponding to calendar years 1948−2009, which was repeated. 
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3.2 Evaluation of OGCM 
Model biases of zonally averaged temperature, salinity, and 

biases of SST and sea surface salinity (SSS) in Figs 3 and 4 show 
that simulation errors of temperature and salinity are small in 
most oceans except for the Arctic Ocean. For potential temperat-
ure, model biases are below 0.5°C in most regions, and are relat-
ively high (>0.5°C) in the intermediate layer of (400−2 000 m) the 
Arctic Ocean and subsurface (100−400 m) tropical oceans. The 
large temperature biases in the intermediate layer of the Arctic 
Ocean also appear in CORE-II and CMIP5 models (Ilıcak et al., 
2016; Shu et al., 2019), possibly because of large temperature an-
omalies in the Atlantic Water entering the Arctic Ocean through 
the Fram Strait (Ilıcak et al., 2016). For salinity, model biases are 
less than 0.1 psu in most oceans, but simulated salinity in the 
Arctic Ocean subsurface (50−400 m) is lower than the observed 
climatology from WOA13v2 (Fig. 3b). The negative salinity biases 
in the subsurface Arctic Ocean can also be found in almost all the 
CORE-II models (Fig. 7 in Ilıcak et al., 2016), possibly because of 
problems in the parameterization of brine formation and des-
cent of high-salinity water masses into the interior of the Arctic 
Ocean (Ilıcak et al., 2016). 
Mixed layer depth in the upper ocean is one of the most im-

portant ocean variables in the global climate system. It can dir-
ectly affect air-sea fluxes of heat, freshwater, greenhouse gases, 
and can be defined as the depth where ocean potential density 
deviates from its value at the surface by 0.03 kg/m3. We used the 

gridded monthly climatological MLD dataset from the observa-
tions of de Boyer Montégut et al. (2004) to evaluate the perform-
ance of the FIO-ESM v2.0 OMIP-1 simulation. Since MLD has a 
marked seasonal cycle, we selected January, February, and 
March as the typical months of boreal winter (austral summer), 
and July, August, and September as the typical months of boreal 
summer (austral winter). 
Including the non-breaking surface wave-induced mixing in 

the vertical mixing scheme of POP can reduce simulated sea sur-
face temperature and increase subsurface temperature of the up-
per ocean in summer, which can deepen MLD and improve 
mixed layer simulations (Huang et al., 2012). Figure 5 suggests 
that the FIO-ESM v2.0 OMIP-1 simulation can reasonably repro-
duce the spatial patterns and seasonal cycles of observed MLD. 
There is a good fit between observations and the simulation in 
the oceans at low and middle latitudes. However, MLD in the 
Southern Ocean in the FIO-ESM v2.0 OMIP-1 simulation is still 
shallower than that from observations, which is a discrepancy 
that has also been noted in CORE-II and CMIP5 models (Huang 
et al., 2014; Downes et al., 2015). In winter, increase of MLD 
depth in the Northern Atlantic and Southern Ocean is repro-
duced in the FIO-ESM v2.0 OMIP-1 simulation. However, simu-
lated MLD in the Northern Atlantic is larger and simulated MLD 
in the Southern Ocean is smaller relative to observations. 
The AMOC simulations from the FIO-ESM v2.0 OMIP-1 ex-

periment are shown in Fig. 6. The AMOC consists of two primary 
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Fig. 5.  Simulated and observed mixed layer depth (MLD) in summer and winter. Mixed layer depth is defined as the depth where 
ocean potential density deviates from its value at the surface by 0.03 kg/m3. The average of January, February, and March is selected as 
the typical months for boreal winter (austral summer), and the average of July, August, and September is selected as the typical 
months for boreal summer (austral winter). Observations are from de Boyer Montégut et al. (2004). 
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Fig. 7.  Diurnal amplitude of sea surface temperature (SST) in January (a) and July (b) in the last cycle of the FIO-ESM v2.0 OMIP-1 
simulation. Diurnal amplitude of SST is defined as the difference between maximum and minimum of SST in the same day. 

overturning cells (Lumpkin and Speer, 2007). The upper cell 
transports warm water northward in the upper layers to com-
pensate for NADW formation and returns southward. In the deep 
cell, AABW flows northward and rises into the lower part of the 
southward-flowing NADW. Figure 6a shows that these two cells 
are adequately reproduced in the FIO-ESM v2.0 OMIP-1 simula-
tion. Figure 6b shows a good fit between the AMOC streamfunc-
tion profile at 26.5°N from the FIO-ESM v2.0 OMIP-1 simulation 
and that from Rapid Climate Change (RAPID) observations (Fra-
jka-Williams et al., 2021). The fit between simulation and obser-
vations is superior to that obtained from most CORE-II models 
(Fig. 5 in Danabasoglu et al., 2014). The time series of the AMOC 
index shown in Fig. 6c indicates that AMOC strength varies inter-
annually and decadally, which is consistent with results from 
other CORE-II and OMIP-1 simulations (Danabasoglu et al., 
2016; Tsujino et al., 2020), although validation with observations 
is impossible because of lack of long-term observations. 
The SST diurnal cycle can be reproduced in FIO-ESM v2.0 be-

cause of a sub-grid parameterization of the cycle. We used SST 
diurnal amplitude to assess model simulation of the SST diurnal 
cycle. Diurnal amplitude of SST is defined as the difference 
between maximum and minimum SST in the same day. Figure 7 
indicates the presence of a marked seasonal cycle with SST di-
urnal amplitude being larger in summer (January) and smaller in 
winter (July). In many regions, amplitudes are large and exceed 
1°C. Amplitudes are large in tropical and mid-latitude oceans in 
the southern Hemisphere in January, and in the northern Hemi-
sphere in July. Because of strong wind and low shortwave radi-
ation, amplitudes are quite small in winter. The characteristics of 
the spatial distribution and seasonal variation of the SST diurnal 
amplitude shown in Fig. 7 are basically consistent with the res-
ults of previous studies (Kawai and Wada, 2007; Clayson and 
Weitlich, 2007). 
To evaluate model bias in mean SST diurnal amplitude, we 

compared model output with observations made between 2002 
and 2009 by 107 moorings as part of the Tropical Ocean Global 
Atmosphere/Coupled Ocean Atmosphere Response Experiment 
(TOGA/COARE, Webster and Lukas, 1992) (Fig. 8). Mean model 
error in SST diurnal amplitude is 0.08°C, and relative mean error 
is 19%. Correlation coefficient (Spearman’s rho) between model 
output and observations is 0.91. 

3.3 Evaluation of sea ice model 
Sea ice extent is one of the most important variables used to 

evaluate sea ice model performance. It can be calculated as the 
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Fig. 8.  Scatter plot of mean sea surface temperature (SST) diurn-
al  amplitude  between 2002  and 2009  from the  FIO-ESM v2.0 
OMIP-1 simulation and from observations of 107 moorings as 
part of TOGA/COARE. 

sum of the area where sea ice concentration exceeds 15%. Obser-
vations show that Arctic sea ice extent is largest in March and 
smallest in September, while Antarctic sea ice extent is largest in 
September and smallest in February. We compared satellite-de-
rived sea ice extent with simulated Arctic sea ice extent in March 
and September, and Antarctic sea ice extent in February and 
September. The satellite-derived sea ice extent is from National 
Snow and Ice Data Center (Fetterer et al., 2017). Figure 9 shows 
winter sea ice extent from the FIO-ESM v2.0 OMIP-1 simulation 
fits the satellite observations. However, the model underestim-
ates sea ice extent in both hemispheres in summer. Tsujino et al. 
(2020) suggests that the negative biases of summer sea ice con-
centration can be considerably reduced by using the JRA55-do 
atmospheric forcing in both hemispheres. Although simulated 
mean sea ice extent is smaller than observed mean sea ice extent, 
the rapid decline of summer Arctic sea ice extent observed dur-
ing the satellite era is reproduced in the simulation. Linear trends 
of September sea ice extent between 1979 and 2009 from satellite 
observations and the FIO-ESM v2.0 OMIP-1 simulation are 
−0.74×106 km2/decade and −0.90×106 km2/decade, respectively. 
The model underestimates Arctic summer sea ice extent, 
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Fig. 9.  Arctic (a) and Antarctic (b) sea ice extent (SIE) from the last cycle of the FIO-ESM v2.0 OMIP-1 simulations and satellite-
derived observations. Sea ice extent is calculated as the sum of the area where sea ice concentration exceeds 15%. 

which can be a result of underestimation of winter ice thickness 
despite an adequate reproduction of sea ice extent. Simulated ice 
thickness from the FIO-ESM v2.0 OMIP-1 simulation is lower 
than that from the Pan-Arctic Ice-Ocean Modeling and Assimila-
tion System (PIOMAS) dataset (Zhang and Rothrock, 2003) 
(Fig. 10). Sea ice thickness in the Arctic Basin over 1978 and 2009 
exceeds 2 m in March from PIOMAS, and is below 2 m for most 
regions in the FIO-ESM v2.0 OMIP-1 simulation. Therefore, the 
sea ice model in FIO-ESM v2.0 needs further improvement in the 
future. 

3.4 Evaluation of ocean wave model 
Significant wave height (SWH) is the most significant variable 

used to evaluate ocean wave model performance. Waves are rel-
atively strong in the Southern Ocean, and northern Atlantic and 
northern Pacific oceans, while ocean waves are relatively weak in 
oceans in the low latitudes. There is also a marked seasonal cycle 
with SWH being larger in winter and smaller in summer. To eval-
uate ocean wave model performance, we compared model out-
put with ERA5 reanalysis (Hersbach et al., 2019) from 1979−2009. 

Figure 11 shows that the FIO-ESM v2.0 OMIP-1 simulation can 
capture the basic spatial pattern and seasonal cycle of SWH in 
the ERA5 reanalysis dataset. The main model bias is found in re-
gions with strong waves where simulated SWH is slightly lower 
than SWH from reanalysis. Mean error of simulated SWH is 
−0.01 m in January and −0.25 m in July. Root mean square error is 
0.31 m and 0.41 m, respectively. In general, the MASNUM wave 
model works quite well in FIO-ESM v2.0. 
Ocean surface waves are also undergoing considerable 

changes as global temperature increases. According to Young et al. 
(2011), satellite altimeter measurements indicate a consistent, 
weak and positive trend in SWH in the South Hemisphere 
between 1985 and 2008, and a weak and negative trend in large 
parts of the north Pacific and north Atlantic (see Fig. 1 in Young 
et al. (2011)). We reproduced Fig. 1 in Young et al. (2011) using 
output from the FIO-ESM v2.0 OMIP-1 simulation to evaluate 
model performance in long-term trend simulation (Fig. 12). 
Ocean wave simulations in FIO-ESM v2.0 OMIP-1 can ad-
equately reproduce the long-term SWH trends reported by Young 
et al. (2011), giving us confidence to use FIO-ESM v2.0 fully-
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Fig. 10.  Simulated Arctic sea ice thickness in March from the last cycle of the FIO-ESM v2.0 OMIP-1 simulation (a) and Pan-Arctic 
Ice-Ocean Modeling and Assimilation System (PIOMAS) (b). 
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Fig. 11.  Average significant wave height (SWH) from 1979−2009 obtained from ERA5 reanalysis (a, c), and the FIO-ESM v2.0 OMIP-1 
simulation (b, d) in January (a, b) and July (c, d). 
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Fig. 12.  Linear trends of OMTP-1 significant wave height (SWH) during 1985 to 2008. Dots indicate locations where linear trend 
exceeds 90% confidence level. 

coupled simulations to project future changes in ocean surface 

waves as part of the CMIP6 Scenario Model Intercomparison 

Project. 

4 Summary and discussion 
In this study, we introduced the FIO-ESM v2.0 OMIP-1 exper-

iment, and evaluated results of the simulation. Unlike other 

OMIP models, FIO-ESM v2.0 includes a coupled ocean surface 

wave component model that takes into account non-breaking 

wave-induced vertical mixing and effect of surface wave Stokes 

drift on air-sea momentum and heat fluxes. A sub-grid SST di-

urnal cycle parameterization was also employed to take into ac-

count the effect of SST diurnal cycle on air-sea heat and gas 
fluxes for improving simulations of air-sea interactions in the 
model. 
Mean values and long-term trends of SWH were adequately 

reproduced in the FIO-ESM v2.0 OMIP-1 simulation. There is a 
reasonable fit between the SST diurnal cycle obtained from in 
situ observations and that parameterized by FIO-ESM v2. Model 
drift, bias in temperature, salinity and ocean mixed layer depth, 
and simulation of AMOC all suggest good model performance in 
the FIO-ESM v2.0 OMIP-1 experiment. However, the underes-
timated summer sea ice in both hemispheres in FIO-ESM v2.0 
should be further improved in the future. 
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The ocean and sea ice outputs of the FIO-ESM v2.0 OMIP-1 
experiment (Song et al., 2020) have been released and are avail-
able on the Earth System Grid Federation (ESGF) CMIP6 website 
(https://esgf-node.llnl.gov/search/cmip6/). Since ocean wave 
variables are not part of the standard CMIP6 variables, ocean 
wave output of the FIO-ESM v2.0 OMIP-1 experiment has not 
been released through the ESGF CMIP6 website. Three-hourly 
snapshot and monthly mean ocean surface wave variables (in-
cluding significant wave height, wave direction, spectrum peak, 
and zero-crossing wave period) are available by contacting the 
corresponding author. 
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