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Abstract

With the Regional  Ocean Modeling System (ROMS),  this  paper  investigates  the sensitive  areas  in  targeted
observation for  predicting the Kuroshio large meander (LM) path using the conditional  nonlinear optimal
perturbation approach. To identify the sensitive areas, the optimal initial errors (OIEs) featuring the largest
nonlinear evolution in the LM prediction are first calculated; the resulting OIEs are localized mainly in the upper
2 500 m over the LM upstream region, and their spatial structure has certain similarities with that of the optimal
triggering perturbation. Based on this spatial structure, the sensitive areas are successfully identified, located
southeast of Kyushu in the region (29°–32°N, 131°–134°E). A series of sensitivity experiments indicate that both the
positions and the spatial structure of initial errors have important effects on the LM prediction, verifying the
validity of the sensitive areas. Then, the effect of targeted observation in the sensitive areas is evaluated through
observing system simulation experiments. When targeted observation is implemented in the identified sensitive
areas,  the  prediction  errors  are  effectively  reduced,  and  the  prediction  skill  of  the  LM  event  is  improved
significantly. This provides scientific guidance for ocean observations related to enhancing the prediction skill of
the LM event.
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1  Introduction
The Kuroshio, the well-known western boundary current of

the North Pacific Ocean, exhibits remarkable bimodal states
when it flows through the southern region of Japan; these two
states are known as the large meander (LM) path and the non-
large meander (NLM) path (Taft, 1972; Kawabe, 1995). The Kur-
oshio path variations between these two states have important
impacts on the local climate, fishery distribution, and maritime
safety (Shao et al., 2005; Xu et al., 2010; Nakamura et al., 2012;
Hayasaki et al., 2013). Hence, it is vital to accurately predict the
path state of the Kuroshio. However, many factors, such as limit-
ations in numerical models and a lack of observation data and
the dynamic mechanism of Kuroshio path variations (Ma et al.,
2016), may lead to uncertainties in the LM prediction results. To
reduce the prediction uncertainties, it is important to investigate
the predictability of Kuroshio path variations.

Studies have pointed out that uncertainties in initial condi-
tions are an important cause of LM prediction uncertainties
(Ishikawa et al., 2004; Miyazawa et al., 2005; Fujii et al., 2008;

Wang et al., 2012). Recent research on the effects of initial condi-
tions on LM prediction has focused on two main aspects: one in-
volves investigation of the initial perturbation that is most likely
to result in the LM path, also called the optimal triggering per-
turbation (OTP) of the LM event in this study; the other involves
exploration of the initial errors causing the largest prediction un-
certainties under the given initial constraint condition, also
called the optimal initial errors (OIEs) in LM prediction. Some
progress has been made regarding both of these aspects. For ex-
ample, Wang et al. (2013a, b) investigated the OTP of the LM
event and the OIEs in a 1.5-layer shallow-water model using the
conditional nonlinear optimal perturbation (CNOP) approach,
and revealed similarities between the OIEs and OTP. However,
their model is too simple to consider the effects of baroclinic pro-
cesses and topography. To overcome this limitation, Liu et al.
(2018a) adopted the Regional Ocean Modeling System (ROMS)
and the CNOP approach to explore the OTP of the LM event and
its evolution mechanism, thereby confirming the importance of
nonlinear physical processes in the LM formation process. De-  
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termining the triggering signal of the LM event can help us to bet-
ter understand the physical mechanism responsible for the LM
path and thereby contribute to predicting the LM path. However,
the OIEs existing in the LM prediction will contaminate the pre-
diction results and greatly suppress the LM prediction skill.
Therefore, exploring OIEs will deepen our understanding of pre-
diction uncertainties. Liu et al. (2018b) used the simulated LM
formation process as the background state to explore the OIEs
and their growth mechanism, but the parameter setting and cal-
culation conditions were different from Liu et al. (2018a). To
eliminate the effect of these factors, this paper adopts the LM
formation process triggered by the OTP as a new background
state to search for the OIEs in the LM prediction. In this way, this
study can not only exclude the influence of model parameters
and model errors, but also provide conditions for investigating
the links between the OIEs and the OTP. The comparison
between OIEs and OTP will contribute to identifying the sensit-
ive areas in targeted observation for predicting the Kuroshio
LM path.

For numerical predictions in recent years, data assimilation
has been commonly used to obtain better initial conditions
(Tang et al., 2004; Farrara et al., 2013). However, ocean observa-
tions are expensive and cannot fully cover the vast area associ-
ated with the target event. Therefore, targeted observation (also
called adaptive observation) developed after the 1990s has be-
come a popular new observation strategy. As shown in Fig. 1, tar-
geted observation aims to improve the prediction results in a val-
idation area at the verification time when additional observa-
tions are performed in some key areas (namely, sensitive areas)
at the target time, thereby providing a more accurate initial field
for the model (Langland, 2005; Mu et al., 2009). In this way, the
prediction errors are reduced by reducing the uncertainties in
the initial conditions of sensitive areas, and the numerical pre-
diction results are improved (Mu, 2013). Thus, identifying the
sensitive areas is a key step of targeted observation.

Recently, Fujii et al. (2008) applied singular vector analysis to
reveal that the anticyclonic eddy approaching southeastern Ky-
ushu plays an important role in the LM formation process. This
conclusion can contribute to the design of an effective observa-
tion system. However, singular vector analysis is a linear method
and consequently ignores the effect of nonlinearity on the forma-
tion of the LM path. Subsequently, Zou et al. (2016) used a shal-
low-water model and concluded that the CNOP approach is
more suitable than the singular vector method for determining
the sensitive areas in targeted observation. Therefore, to over-
come the limitations in the above methods and models in LM
prediction, this paper adopted the ROMS and CNOP approach to
investigate the sensitive areas in targeted observation. The ob-
jectives of the work were as follows: (1) to calculate the OIEs in
the LM prediction, (2) to determine the sensitive areas in tar-
geted observation for predicting the LM event, and (3) to evalu-
ate the effect of targeted observation.

The outline of this paper is as follows. Section 2 describes the
model simulation and the nonlinear optimization problem re-
lated to OIEs. In Section 3, the calculated OIEs are presented;
then, based on the OIEs, the sensitive areas are identified, and
the targeted observation effect is evaluated. Finally, a conclusion
is presented in Section 4.

2  Model and method

2.1   Model simulation
Numerical experiments are performed using the ROMS mod-

el, a 3-D primitive equation ocean model that not only employs a
vertical terrain-following coordinate system and horizontal gen-
eralized orthogonal curvilinear coordinate system, (Song and
Haidvogel, 1994) but is also equipped with various options for
advection schemes, parameterizations, and boundary condi-
tions (Shchepetkin and McWilliams, 2003, 2005). In particular,
the adjoint component of ROMS provides convenient conditions
for obtaining the CNOP. In this study, considering the numerous
computationally calculations, a one-way nested simulation with
a 3:2 grid ratio is adopted to reproduce the Kuroshio path vari-
ations. The detailed parameter settings are presented in Table 1.
With this model configuration, ROMS successfully captures the
essential characteristics of the Kuroshio path variations at south
of Japan presented in Liu et al. (2018b).

2.2   Nonlinear optimization problem related to OIEs
To consider the effect of nonlinearity, the CNOP approach

proposed by Mu et al. (2003) is used to seek the OIEs under cer-
tain physical constraints. In this study, the nonlinear constraint
optimization problem is defined as

J (xδ) = max
∥x∥A⩽δ

J (x) = max
∥x∥A⩽δ

∥Mt (X + x)−Mt (X)∥B , (1)

J(x) = ∥Mt (X + x)−Mt (X)∥B

x ∥x∥A ⩽ δ X

Mt xδ

t

where  represents the objective
function that measures the nonlinear evolution of the initial per-
turbation ,  is the constraint condition,  is the ini-
tial state,  denotes the nonlinear propagator, and  is the
solution to the optimization problem, which is also called the
CNOP. For the nonlinear optimization problem, when the NLM
path is taken as the background state, the calculated CNOP is
called OTP, which is most likely to result in the LM path at the
prediction time. When the transition from the NLM path to the
LM path is taken as the background state, the CNOPs are called
OIEs, which have the largest nonlinear evolution at time . This
paper focuses on the OIEs existing with the OTP.

As described by Liu et al. (2018a), two cases (denoted Case 1
and Case 2) are selected herein to investigate the OTP of the LM
event. By comparing the triggered LM path with the observed LM
path, it is found that its formation process shares similar charac-
teristics with the observed path (Figs 2a and b), including the
strengthened recirculation gyre in the Shikoku Basin and the

Table 1.   Important parameters in the simulation
Nest 1 Nest 2

Domain 20°S–60°N, 100°E–70°W 23°–46°N, 122°–162°E

Resolution (1/8)° (~14 km) (1/12)° (~8 km)

Boundary (open) WOA2009
model years 31–50

in Nest 1
Atmospheric forcing COADS COADS

Time step 300 s 200 s

Spin-up 50 years 20 years

imposed additional

observations

sensitive area

now target time verification time

validation area

improved

prediction result

 

Fig. 1.   Schematic of targeted observation.
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trigger meander that keeps moving downstream, although the
LM path induced by the OTP extends slightly to the southeast.
Therefore, it is appropriate to take the LM path triggered by the
OTP as a new background state to search for the OIEs in the LM
prediction.

∥·∥A

The parameter settings related to the calculation of the OIEs
are as follows. Observation data show that the LM formation pro-
cess lasts for 2˗4 months and based on the model simulation (Liu
et al., 2018b), the transition from the NLM path to the LM path
also takes approximately 3 months. The optimization time is set
to 70 days, whose dates are the same as those used to calculate
the OTPs in Liu et al. (2018a). The initial time in Case 1 is
September 1 in model Year 9 while Case 2 starts on November 1
in model Year 16. Similar to Li et al. (2014), the constraint norm

 is selected as the sum of the quadratic errors normalized by
the standard deviation. Thus, the initial error constraint not only
contains the kinetic energy of the error but is also related to its
potential energy and is expressed as

∥x∥A=

√(
u′

ūstd

)

+

(
v′

v̄std

)

+

(
t′

t̄std

)

+

(
s′

s̄std

)

+

(
h′

h̄std

)

⩽ δ,

(2)

(u′, v′, t′, s′,h′) (ūstd, v̄std, t̄std,

s̄std, h̄std)

δ

where  represent the initial errors, and 
 denote the standard deviations in the upper 5 000 m

within the domain (23°–46°N, 122°–162°E). They are calculated
based on the monthly outputs in nest 2.  denotes the dimen-
sionless constraint radius. Considering the accuracy of the obser-

×7 ∥·∥B
vational instruments and the stability of the numerical simula-
tion, this parameter is set to  in this study. The norm  of
the objective function is defined as the kinetic energy of the pre-
diction errors in the upper 1 000 m over the area (25°–35°N,
135°–140°E):

∥Mt (X + x)−Mt (X)∥B

=
ρref


z= ∫
z=

x=◦E∫
x=◦E

y=◦N∫
y=◦N

[
(u′

t)

+ (v′t)


]
dxdydz. (3)

When the amplitude of the deviation from the simulated LM
path in the background state is large, the objective function value
is large. Moreover, the procedure of seeking the OIEs is similar to
the OTP calculation although the selected background states and
constraint radius are different. Readers are referred to Liu et al.
(2018a) for more details.

3  Result

3.1   OIEs in the LM prediction
Based on the above calculation procedure, two types of OIEs

for each case are obtained, labeled CNOP1 and CNOP2. Figure 3
presents their spatial patterns, which are integrated vertically
from the surface to the maximum depth according to the initial
constraint form in Eq. (2). According to Fig. 3, CNOP1 and
CNOP2 in the two cases are both located mainly to the southeast
of Kyushu (29°32°N, 131°134°E). Examining the components of
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Fig. 2.   LM formation process: induced by the OTP in Case 1 (a); induced by the OTP in Case 2 (b); observed by AVISO (c). Shading
represents the sea surface height (SSH) field.
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S = ⟨e, e⟩/(∥e∥ ∥e∥)
e e

the OIEs (figure not shown) demonstrates that the OIEs are con-
centrated mostly in the upper 2 500 m, and the spatial structures
of CNOP1 and CNOP2 are slightly similar but with the opposite
sign. Quantitatively, the similarity coefficients between two types
of OIEs are calculated, which are defined as ,
in which  and  represent CNOP1 and CNOP2 with large amp-
litudes in the region (29°–32°N, 131°–134°E). They are –0.68 for
Case 1 and –0.80 for Case 2. Consequently, two questions arise:
why is there such a relationship between these two types of OIEs?
How do they affect the LM prediction?

To explore these questions, the OIEs are superimposed onto
the background states and integrate the nonlinear model for-
ward to the prediction time. Figure 4 presents the Kuroshio axis
(referring to the 16 cm isoline of the sea surface height (SSH)) at
the prediction time for both Case 1 and Case 2.  CNOP1
strengthens the predicted LM path, while CNOP2 weakens the
LM path, and they cause the largest departure from the LM path

in opposite directions at the prediction time. Additionally, Fig. 5
shows the growth of the SSH anomaly caused by the OIEs (Case
1), with the black line representing the Kuroshio axis. The non-
linear evolution behavior of CNOP1 is almost opposite to that of
CNOP2. Furthermore, the negative SSH anomaly of CNOP1 (Fig. 5a)
gradually moves downstream along the Kuroshio axis to the re-
gion where Kuroshio path variations occur. During this process,
the amplitude and intensity of the negative SSH anomaly contin-
ue to increase. Finally, its further development causes the LM
path to stretch southwestward. For CNOP2 (Fig. 5b), the move-
ment of the positive SSH anomaly downstream along the Kurosh-
io axis reduces the intensity of the negative anomaly, causing the
LM path to be underestimated. For Case 2, a similar conclusion is
obtained, but it should be noted that the OIEs are calculated with
the kinetic energy of the prediction errors as the objective func-
tion. Therefore, there may be a deviation from the position of the
Kuroshio axis. Moreover, it is obvious that the LM path as the
background state (the black line in Fig. 4) in Case 2 is stronger
than that in Case 1, which will affect the evaluation of CNOP2.
Nevertheless, CNOP2 also causes the LM path to move northw-
est and weakens the strength of the LM path.

Through comparison with the calculated OTP of the LM path
(Liu et al., 2018a), it is found that the OIEs and the OTP are both
located upstream of the Kuroshio path variations, and the non-
linear evolution of CNOP1 seems to be similar to that of the OTP.
To further explore the links between the two, the SSH anomaly
component of the OTP and OIEs in the two cases is shown in Fig. 6.
Obviously, the spatial structure of CNOP1 is similar to that of the
OTP, while the spatial structure of CNOP2 is exactly the opposite,
which is consistent with the negative correlation between CNOP1
and CNOP2. Furthermore, the similarity coefficients between the
OIEs and the OTP are calculated, which are 0.55 (−0.45) in Case 1
and 0.62 (−0.69) in Case 2. Although this calculation is affected by
high-frequency signals, it shows that there exist certain similarit-
ies between the OIEs and the OTP obtained in an eddy-resolu-
tion ocean model. Therefore, it is concluded that the OIEs and
the OTP in the LM prediction are localized in a relatively uniform
position and that their spatial structures have similarities. The
links indicate that if targeted observation is implemented, not
only the initial errors are reduced, the triggering signals can also
be captured, thereby improving the LM prediction skill.

3.2   Identification of sensitive areas and application to targeted
observation

3.2.1   Identification of sensitive areas

(u′, v′, t′, s′,h′)

In this subsection, the sensitive areas are determined based
on the spatial structures of the calculated CNOPs. Zhang et al.
(2017) pointed out that the total energy is the most effective way
to identify the sensitive areas in targeted observation for predict-
ing the upstream Kuroshio transport variation. As stated in Eq. (2),
the constraint scheme contains both the kinetic energy and the
potential energy of the perturbation and fully considers all pos-
sible factors affecting the LM. Therefore, the scheme in Eq. (2) is
utilized to identify the sensitive areas in this study, but here

 in Eq. (2) refer to the CNOP-type errors.
Similar to the method used in previous studies (Mu et al.,

2009; Wang et al., 2013b), the vertically integrated total energy is
ranked from large to small, and the areas with larger energy are
defined as the sensitive areas for targeted observation. Of course,
larger sensitive areas lead to better prediction results, but the
economic cost of deploying observations over larger sensitive
areas is correspondingly greater. To balance these considera-
tions, 900 model grid points are selected, accounting for approx-
imately 0.55% of all grid points, and almost covering the areas
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Fig.  3.     Spatial  patterns  of  two types  of  optimal  initial  errors
(OIEs), integrated vertically from the surface to the maximum
depth according to the initial constraint in Eq. (2).
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where the greatest energy is located.
Following the above steps, the identified sensitive areas in

Case 1 and Case 2 are shown in Fig. 7. The sensitive areas for the
two cases are similar, and both are located in the upstream re-
gion of the LM path, namely 29°–32°N, 131°–134°E. To verify the
effectiveness of these sensitive areas, two sets of sensitivity exper-
iments are designed: one is to investigate the effect of the spatial

positions of initial errors on the LM prediction, while the other is
to evaluate the effect of the spatial structure of initial errors in the
determined sensitive areas on the LM prediction.

3.2.2  Sensitivity experiments

Studies (Tsujino et al., 2006; Usui et al., 2008; Miyazawa et al.,
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Fig. 5.   Evolution of the sea surface height (SSH) anomaly component in the CNOP-type error field for Case 1: CNOP1 (a) and CNOP2
(b). The thick black line is the Kuroshio axis.

8 Liu Xia et al. Acta Oceanol. Sin., 2022, Vol. 41, No. 2, P. 3–14  



have suggested that the trigger meander southeast of Kyushu, the
eddy interaction in the Shikoku recirculation region and the ini-
tial errors in the upstream region are strongly related to the LM
formation. Therefore, the areas in the black boxes in Fig. 7 (de-
noted R1, R2, R3, R4, R5, and R6) with the same size as the sensit-
ive areas are selected to investigate whether they are sensitive in
ROMS. It should be noted that the areas north of R2 are almost
included in the sensitive areas, and the sensitive areas have been
compared with R1–R6; for convenience, the areas are not selec-
ted as comparison. Then in each area, 20 random errors satisfy-
ing the same constraint as the CNOP-type errors are generated as
follows. All variables at each grid point for each specific area are

N(, σ)
σ

assigned random numbers, while the variables at the grid points
in the other areas are set to zero. The random numbers are selec-
ted from a matrix that satisfies a normal distribution ,
where  is selected randomly from 0 to 1. In addition, consider-
ing the accuracy of the observational instruments, the amplitude
of the random numbers is set to 0.1.

As a measure of the prediction errors caused by the 20 ran-
dom errors, their kinetic energies in the upper 1 000 m over the
area 25°–35°N, 135°–140°E are presented in Figs 8–10. The ran-
dom errors in these sensitive areas lead to the largest prediction
errors. In addition, it is found from Fig. 9 that in Case 1, the pre-
diction errors caused by random errors in R2 and R3 seem to be
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Fig. 6.   SSH anomaly components of the OTP and OIEs for two cases.
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larger than those in R1, R4, R5, and R6. A similar result can be ob-

tained for Case 2 (Fig. 10). This outcome is because R2 and R3

both partly cover sensitive areas (Fig. 7). For further quantitative

analysis, the mean prediction errors caused by the 20 random er-

rors in different areas are listed in Table 2. The prediction errors

caused by the random errors in the sensitive areas are 2–10 times

larger than those caused by the random errors in R1–R6, and the

prediction errors caused by the random errors in R2 and R3 are
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Fig. 8.   Prediction errors caused by random errors in the sensitive areas: Case 1 (a); Case 2 (b).
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Fig. 9.   Prediction errors caused by random errors in R1–R6 for Case 1.
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Fig. 10.   Prediction errors caused by random errors in R1–R6 for Case 2.
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approximately 2–4 times larger than those caused by the random
errors in R1, R4, R5 and R6. These results indicate that the initial
errors in the sensitive areas can develop faster than those at ran-
dom locations, and that the spatial positions of the initial errors
are important in LM prediction.

On the other hand, to investigate the effect of the spatial
structure of initial errors in the sensitive areas on the LM predic-
tion, it is started with the following questions: does the spatial
structure of initial errors affect the LM prediction? If so, what spa-
tial structure of initial errors can develop rapidly in sensitive
areas?

To answer the above questions, 20 random errors are super-
imposed in the sensitive areas at the initial time; the constraint
radius is the same as that of the CNOP-type errors reserved in the
sensitive areas. Note that the sensitive areas are the regions with
large CNOP amplitudes, that is to say, the errors reserved in the
sensitive areas are just part of the CNOP-type errors. Therefore, it
is necessary to examine the effect of the spatial structure of initial
errors in the sensitive areas on the LM prediction. Then, the non-
linear model is integrated forward to the prediction time. The
mean prediction errors caused by the 20 random errors in Case 1
and Case 2 are shown in Table 3. For Case 1, the prediction er-
rors caused by the reserved CNOP-type errors is approximately
24 times larger than the prediction errors caused by random er-
rors without specific spatial structure. For Case 2, the prediction
errors caused by the reserved CNOP-type errors is approximately
15 times larger than the prediction errors caused by random er-
rors. This demonstrates that the CNOP-type errors reserved in
the sensitive areas develop faster than the random errors, imply-
ing that the spatial structure of initial errors has an important im-
pact on the LM prediction.

Moreover, five errors are randomly selected from the above-

mentioned random errors. By gradually increasing the similarity
coefficient with the reserved CNOP-type errors from 0 to 1, five
sets of errors with a specific spatial structure are obtained. Their
relationship to the CNOP-type errors varies as follows:

Error i = αErrorCNOP+(−α)Errorrandom, α = ., ., · · · , , (4)

where the five sets of errors are denoted Error 1, Error 2, Error 3,
Error 4, and Error 5. Each set includes 10 errors with different
spatial structures, and their constraint radius is consistent with
the CNOP-type error reserved in the sensitive areas. Then, each
of these initial errors is superimposed in the sensitive areas onto
the initial field to examine their influence on the prediction res-
ults. In Fig. 11, the vertical axis denotes the prediction errors
caused by the initial errors at the prediction time, and the hori-
zontal axis represents the similarity coefficient between the ini-
tial errors and the reserved CNOP-type errors. As the similarity
coefficient increases, the prediction errors also increase with an
approximately linear relationship. In other words, the initial er-
rors that are more similar to the reserved CNOP-type errors have
greater effects on the LM prediction. However, it should be noted
that in Case 2, the prediction errors are less sensitive to the initial
errors when the similarity coefficients are larger than 0.8, which
may be related to the background state (the black line in Fig. 4).
The LM path in the background state in Case 2 is toward the
southwest, stronger than that in Case 1, which easily leads to the
underestimation of the prediction errors. Moreover, five errors
are randomly selected, and their evolution in the ocean model is
also affected by nonlinearity. Therefore, the deviations in Case 2
are acceptable, and then it is speculated that prediction errors
are caused mainly by the error component with the CNOP-type
structure in the sensitive areas. This indicates that if the initial er-
rors with the CNOP-type structure are reduced, the LM predic-
tion result will be greatly improved.

In general, sensitivity experiments examine the effects of the
spatial positions and spatial structure of initial errors on LM pre-
diction and verify the validity of the sensitive areas defined based
on the spatial structure of the OIEs. However, to better apply this
conclusion to field-deployed observations, it is necessary to eval-
uate the effect of targeted observation in the sensitive areas.

3.2.3  Observing system simulation experiment
In this subsection, observing system simulation experiments

(OSSEs) is adopted to evaluate the effect of targeted observation
in the sensitive areas. In OSSEs, the observation data assimilated
into a numerical model refer to the model simulation data (also

Table 2.   Mean prediction errors caused by the 20 random errors
in sensitive areas and R1–R6 (unit: 1012 m2/s2)

Event Sensitive areas R1 R2 R3 R4 R5 R6

Case 1 14.83 3.46 8.31 5.50 2.47 3.02 2.55
Case 2 31.07 7.95 7.67 10.37 3.20 2.22 2.08

Table 3.   Prediction errors caused by the 20 random errors and
CNOP-type  errors  reserved  in  the  sensitive  areas  (unit:  1012

m2/s2)

Events
Prediction errors

(CNOP-type)
Averaged results

(20 random errors)
Case 1 19.51 0.81
Case 2 13.69 0.95

P
re

d
ic

ti
o
n
 e

rr
o
r/

(1
0

1
3
 m

2
·s

−2
)

Similarity coefficient

Error 1

Error 2

Error 3

Error 4

Error 5

2.0

a b

1.5

1.0

0.5

0

P
re

d
ic

ti
o
n
 e

rr
o
r/

(1
0

1
3
 m

2
·s

−2
)

2.0

1.5

1.0

0.5

0

0 0.2 0.4 0.6 0.8 1.0

Similarity coefficient

0 0.2 0.4 0.6 0.8 1.0

Error 1

Error 2

Error 3

Error 4

Error 5

 

Fig. 11.     Relationships between the similarity coefficients (between the initial errors and the CNOP-type errors reserved in the
sensitive areas) and the prediction errors: Case 1 (a); Case 2 (b).
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called the quasi-observation data). More importantly, OSSEs
have been widely used in the atmospheric and ocean sciences,
including for typhoon prediction (Qin and Mu, 2011), gulf stream
prediction (Halliwell et al., 2014), South China Sea circulation
prediction (Li et al., 2014), and upstream Kuroshio transport pre-
diction (Zhang et al., 2017).

OSSEs are known as identical twin experiments and are di-
vided into three steps: (1) initializing the ocean without errors
and then integrating the nonlinear model from the initial time to
the prediction time to generate the “truth” field, which is called
the “nature run”; (2) superimposing errors on the initial field to
obtain the new initial field and then integrating the nonlinear
model forward to the prediction time, which is called the “con-
trol run”; and (3) applying additional observations to the sensit-
ive areas and then assimilating the quasi-observation data into
the initial field of the control run to eliminate the initial errors as
much as possible, which is called the “targeted run”. It should be
noted that the initial errors are superimposed onto the whole ini-
tial field in the control run but not in the targeted run. Then, the
initial errors in sensitive areas are eliminated by targeted obser-
vation. Comparing the results in the control run and targeted run
with those in the nature run, two sets of prediction errors are ob-
tained. Then, the effectiveness of targeted observation is ex-
amined by investigating the prediction errors.

In the control run of the OSSEs, the differences between the
model outputs of two adjacent months are taken as the analysis
errors. For the analysis errors with less influence on the LM pre-
diction, even if a targeted observation is implemented in the
sensitive areas, the prediction improvement may not be great.
Therefore, to more reasonably evaluate the effectiveness of tar-
geted observation, 20 analysis errors that lead to greater predic-
tion errors for Case 1 and Case 2 are selected. Then, in the tar-
geted run, the initial state in the sensitive areas is improved us-
ing the quasi-observation data to examine the prediction im-
provement. In this study, the quasi-observation data refer to the
ROMS simulation outputs. The initial field in the sensitive areas
is directly replaced by quasi-observation data, successfully ex-
cluding the influence of the data assimilation method. However,
it is impossible to completely remove the errors even with the ad-
dition of observations, so a few random errors with a magnitude
of 0.01 are reserved in the sensitive areas. For comparison, simil-
ar treatments were applied to R1, R2, R3, R4, R5, and R6. In addi-
tion, the kinetic energy caused by the errors above 1 000 m in the
verification area (25°–35°N, 135°–140°E) is used to measure the
prediction result, consistent with the objective function in Eq. (3).
Therefore, the smaller the kinetic energy is at the verification
time, the better the prediction result.

In this paper, the prediction improvement is defined as fol-
lows:

Improvement =
KE1− KE2

KE
× 100% , (5)

KE1
KE2
where  indicates the prediction errors in the control run and

 refers to the prediction errors in the targeted run. For the 20
initial errors mentioned above, the mean prediction improve-
ments after targeted observation in different areas are listed in
Tables 4 and 5. Case 1 is taken as an example for analysis. These
two tables demonstrate that the prediction results are improved
by nearly 27% after assimilating targeted observations in the
sensitive areas; this improvement is far greater than the effects of
targeted observation in R1–R6. Because R2 covers some of the
sensitive areas, eliminating the initial errors in R2 improves the

prediction results by approximately 21%, but the prediction im-
provements in the other five areas are less than 5%. This is con-
sistent with the conclusion obtained in the sensitivity experi-
ment. In addition, it is found that targeted observation in any
random area will not necessarily improve the prediction results.
For example, implementing targeted observations in R4 leads to
worse results, with a 3.14% reduction in the prediction skill. This
implies that although the initial errors are observed and reduced
in other areas, the prediction skill of the LM path is not improved
and may even worsen. For Case 2, a similar conclusion is drawn.

The OSSEs reveal that when targeted observations are imple-
mented in the sensitive areas, the prediction errors are effect-
ively reduced, and the prediction skill is improved significantly.
This not only confirms the validity of the sensitive areas but also
provides scientific guidance for field-deployed observations.

4  Conclusions
In this paper, the ROMS model with realistic bottom topo-

graphy was adopted to reproduce the Kuroshio path variations
south of Japan using a one-way nested simulation. The model
succeeded in capturing the essential characteristics of the LM
event under climatological forcing. The CNOP method was used
to investigate the sensitive areas in targeted observation for pre-
dicting the Kuroshio LM path. To seek the OIEs existing along
with the triggering signal, the LM events caused by the OTP were
selected as a new background state. With the obtained OIEs,
which can lead to the largest prediction errors in the LM predic-
tion, the sensitive areas were determined and evaluated through
OSSEs.

This study indicated that two types of OIEs (CNOP1 and
CNOP2) for Case 1 and Case 2 are concentrated mainly to the
southeast of Kyushu. CNOP1 tended to overestimate the intens-
ity of the predicted LM while CNOP2, featuring a negative correl-
ation with CNOP1, tended to underestimate the LM path.
However, both cases exhibited uniform localization and spatial
structures, and a certain similar relationship existed between the
OIEs in the LM prediction and the OTP of the LM path. This
helped us identify the sensitive areas in targeted observation for
predicting the LM path, which were located in the area of
29°–32°N, 131°–134°E. This findings confirmed that in these sens-
itive areas, the initial errors could develop faster than errors in
random positions. In addition, the initial errors with the CNOP-
type structure in the sensitive areas could evolve faster than those
without a specific spatial structure. Therefore, the identified
sensitive areas based on the spatial structures of OIEs were ef-
fective. After the initial errors in the sensitive areas were reduced,
the prediction skills were effectively improved, thereby affirming
the effect of implementing targeted observation on the LM pre-
diction.

Table 4.   Mean prediction improvements caused by the 20 initial
errors after performing targeted observation for Case 1

Sensitive
areas

R1 R2 R3 R4 R5 R6

Improvement
(mean)

26.92% 4.88% 21.71% 6.28% −3.14% 5.51% 3.77%

Table 5.   Mean prediction improvements caused by the 20 initial
errors after performing targeted observation for Case 2

Sensitive
areas

R1 R2 R3 R4 R5 R6

Improvement
(mean)

17.61% 4.83% 11.85% 3.97% 1.17% −0.61% 2.05%
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This study constitutes the first attempt to identify the sensit-
ive areas for predicting the LM path in a complex regional ocean
model. The findings confirm the importance of the areas south-
east of Kyushu in predicting the LM path, which is consistent
with the conclusions of previous studies regarding LM formation
(Tsujino et al., 2006; Usui et al., 2008; Miyazawa et al., 2008).
However, considering the limitations in observation data and
computing resources, this work on targeted observation is relat-
ively preliminary. To apply the results to real-time observations,
there is still much work to be done. For example, the OIEs are
mostly concentrated in the upper 2 500 m, and how to design the
optimal observation network and determine the optimal loca-
tions of instruments needs to be explored in the future.
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