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Abstract

An investigation of equatorial near-inertial wave dynamics under complete Coriolis parameters is performed in
this paper. Starting from the basic model equations of oceanic motions, a Korteweg de Vries equation is derived to
simulate the evolution of equatorial nonlinear near-inertial waves by using methods of scaling analysis and
perturbation expansions under the equatorial beta plane approximation. Theoretical dynamic analysis is finished
based on the obtained Korteweg de Vries equation, and the results show that the horizontal  component of
Coriolis parameters is of great importance to the propagation of equatorial nonlinear near-inertial solitary waves
by modifying its dispersion relation and by interacting with the basic background flow.
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1  Introduction
The influence of the atmosphere and ocean on human be-

ings has always been a topic of interest for scientists (Nezlin and
Snezhkin, 1993) because it is useful to understand the physical
mechanisms of atmospheric or oceanic motions to further pre-
dict extreme weather or climate phenomena. Theoretically, a
series of primitive partial differential equations, including the
mass, momentum, state and so on, are used to characterize the
motions of the atmosphere and ocean (Pedlosky, 1987). The mo-
tions of the atmosphere and ocean are affected by multiple phys-
ical factors, such as gravitation, Coriolis force, and friction. This
leads to multiscale motions from turbulent microclusters and
planetary waves for geophysical fluids. Existing theories have
shown that it is appropriate to classify the motions of geophysics
into three categories, i.e., large-scale, mesoscale and small-scale
motions (Holton and Hakim, 2013). Large-scale motions, such as
planetary waves, show that the rotation of the earth is extremely
important; it is mainly used to disclose the physical mechanisms
of the slowly varying phenomena for the atmosphere or ocean,
and more details can be found in other studies (Long, 1964; Ben-
ney, 1966; Ono, 1981; Caillol and Grimshaw, 2008; Guo et al.,
2019; Fu et al., 2019; Fu and Yang, 2019; Ren et al., 2019; Zhang et
al., 2019a, 2019b; Zhang and Yang, 2019). Mesoscale atmospher-
ic and oceanic motions characterize wave phenomena, such as
the internal waves, under the combined actions of gravity, pres-
sure, Coriolis force (Khater et al., 2006b; Helal and Seadawy,
2012; Seadawy, 2017a, 2018; Seadawy and Alamri, 2018; Yang et
al., 2019). Mesoscale motions have received increased attention
from investigators because they can help us understand the ex-

citation, evolution, and propagation of a class of weather events,
such as thunderstorms and rainstorms. Small-scale oceanic mo-
tions generally describe the fluctuations with vertical length scale
from 100 m to the atomic dissipation, including the fine-struc-
ture process and micro-structure process (Caldwell, 1983).

Simplified and approximate models have always been im-
portant ways to understand various wave phenomena in the at-
mosphere and ocean because of the complexity of the original
primitive model equations. For example, the Boussinesq approx-
imation and shallow water approximation are usually used to
model large-scale motions (Pedlosky, 1987). The shallow water
approximation neglects the terms related to the horizontal com-
ponent of Coriolis parameters in the momentum equations,
which is often called the “traditional approximation” (Phillips,
1966). The “traditional approximation” is suitable for large-scale
longwave theory, which ensures the conservation of angular mo-
mentum, vorticity and energy concerning horizontal movements
without considering vertical directional motions. However, with
the development of higher precision science and technology and
with the requirements for more accurate weather predictions, it
has been suggested that the full Coriolis force should be con-
sidered, which is called “nontraditional approximation” (White
and Bromley, 1995). When the complete Coriolis parameters are
considered (Gerkema et al., 2008; Leibovich and Lele, 1985), the
results show that the deviation is small compared to the geo-
strophic wind for large-scale quasi-geostrophic motion, but it re-
flects the imbalance of motion, and the inclusion of complete
Coriolis parameters is an important factor causing the develop-
ment of weather systems. In particular, the “nontraditional ap-  
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proximation” is more important for near-equatorial atmosphere
and ocean than that in mid-latitude, and it is noted as potential
contributing to equatorial Madden-Julian Oscillation (MJO) phe-
nomena and oceanic circulation phenomena (Hayashi and Itoh,
2012).

More importantly, the vertical velocities of mesoscale sys-
tems are larger than those of large-scale motions by one or sever-
al orders. Thus, the divergence and vorticity of mesoscale mo-
tions have larger magnitudes than those of large-scale motions.
The effects of the horizontal component of Coriolis parameters
on mesoscale atmospheric or oceanic motions, such as the Ek-
man spiral (Marshall and Schott, 1999), near-inertial waves
(Zhang, 1991), deep convection (Kasahara, 2010), and internal
waves (Satsuma et al., 1979; Liu et al., 2015), have received in-
creased attention. Grimshaw (1975) studied the effect of the hori-
zontal component of Coriolis parameters on internal gravity
waves in the early stage. Fruman (2009) discussed various wave
forms under the action of complete Coriolis force, such as the
Kelvin wave, Rossby wave, inertial gravity wave and mixed wave.
In particular, when the internal or near-inertial waves in the
ocean have weak stratification, the effect of “nontraditional ap-
proximation” is more obvious compared to the case under tradi-
tional approximation. The results showed that the complete Cori-
olis force in the mesoscale range of motion represents a nonstat-
ic effect, which has an important impact on the dispersion and
instability of near-inertial waves (Gerkema and Shrira, 2005a, b).
Yasuda and Sato (2013) discussed the effect of the horizontal
component of Coriolis parameters on linear near-inertial waves.
Kasahara (2003) considered the nonstatic model of mid-latitude
under beta-plane approximation and illustrated the importance
of the complete Coriolis force in inducing linear inertial waves
(BII waves) at the boundary. White and Bromley (1995) pointed
out that cumulus convection could be accompanied by adiabatic
heating as hot air rises in the equatorial region through scale ana-
lysis. They noted that the horizontal component of the Coriolis
parameter in the latitudinal momentum equation cannot be ig-
nored, which is one of the reasons for the generation of near-in-
ertial waves at the equator. Furthermore, the “nontraditional ap-
proximation” would increase inertial instability (Itano and Kasa-
hara, 2011). Kloosterziel et al. (2007) studied the zonal symmet-
ric inertial instability of ocean motion in the near-equatorial re-
gion through high-resolution numerical simulation. Recently,
Yano (2017) considered the inertial gravity wave under the ac-
tion of the complete Coriolis force. It was said that the complete
Coriolis force is essentially important for the high-order problem
of the degenerated system under the limit of the horizontal wave-
let number. In conclusion, buoyancy and rotation are two basic
factors determining mesoscale circulation, so the influences of
density stratification and the horizontal component of the Coriol-
is parameter on mesoscale waves are quite important, especially
for near-inertial waves. Thus, there are many difficulties in the
study of related problems because of the density stratification of
fluids and the introduction of the complete Coriolis force.

However, most existing studies neglect the nonlinear effect
and vertical acceleration, which is the essence of the nonlinear
wave. This paper intends to conduct a thorough study on nonlin-
ear near-inertial waves under complete Coriolis parameters us-
ing mathematical mechanics, providing an important theoretical
basis for the research and application of numerical weather fore-
casting and weather event phenomena in the atmosphere and
ocean. The paper is organized as follows. In Section 2, a mathem-
atical description of the atmospheric or oceanic motions is given.
In Section 3, the simplified model is derived according to the

scale analysis. In Section 4, a Korteweg de Vries (KdV) model
equation is obtained to simulate the evolution of equatorial near-
inertial waves by using the multiple scale method and perturba-
tion expansions. The exact solutions, including the periodic and
solitary solutions, for the obtained KdV equation are given. In
Section 5, the dynamic effect of the horizontal component of
Coriolis parameters on the equatorial near-inertial waves is as-
sessed by numerical simulation. Conclusions are offered at the
end of the paper.

2  Mathematical model
In this article, we consider the mesoscale oceanic model un-

der the complete Coriolis parameters, but without the effects of
topography, dissipation, adiabatic heating or any other factors. It
is written as follows in the local Cartesian coordinate system:
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f = f + βy f = 

where x, y and z are the zonal, meridional and vertical coordin-
ates, and u, v, w are the velocities, accordingly.  are the
density and potential temperature in the ambient flow field, re-
spectively, they are expressed as functions of , and the temperat-

ure stratification is defined as .  is the perturbation of

temperature. The vertical component of the equatorial Coriolis
parameters is  with , thus,

f = βy. (2)

β = Ω/a

Ω a

f ′=Ω p
g

The beta parameter in the equatorial region is ,
where  is the angular velocity of the earth’s rotation and  is
the radius of the earth. At the same time, the horizontal compon-
ent of the Coriolis parameters is , and it is constant.  is
the pressure, and  is the gravitational acceleration.

3  Scale analysis
We introduce the nondimensional quantities as follows:



(u, v) = U(u′, v′),

w =
U
L
D(w′),

ρ =
P
gH

(ρs),

(x, y) = L(x′, y′),

z = D(z′),

t = (βL)−(t′),

θ = δθ(θ′),

δpx,y =
βPLU
gH

(p′),

δpz =
P
θ
δθ(p′),

(3)
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L U
D H

D=H
P

δpx,y

δpz ρs g

where  and are the horizontal characteristic length and char-
acteristic velocity,  is the vertical characteristic length, is the
homogeneous atmospheric height, and it is assumed that .

 is the characteristic pressure, and the changes of pressures in
the horizontal and vertical directions are presented by  and

.  is the nondimensional density, and  is the gravitational
acceleration. The quantities with apostrophes represent dimen-
sionless ones. The nondimensional equations are obtained by
substitutions of Eqs (2) and (3) into Eq. (1)
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where  is the equatorial Rossby number, and  rep-

resents the ratio of the horizontal component to the vertical com-

ponent of the equatorial Coriolis parameters;  is expressed

as the aspect ratio of the motion.  and  represent the

combined influences of the horizontal component of Coriolis
parameters and the aspect ratio on the equatorial near-inertia
fluctuations. This shows that the three-dimensional fluctuation is
a necessary condition for studying the complete Coriolis force,
which means that it is not sufficient to add the horizontal com-
ponent of the Coriolis parameters into the shallow water model
in the traditional sense. Furthermore, the quantitative comparis-
on between  and  reveals a relatively greater influence of 
than  on the motion.

U=Cg

Cg

In fact, the condition  is almost satisfied for the equat-
orial atmospheres, where  is the characteristic velocity of the
gravity wave. The time scale is

T = (βL)− =
L
U
, (5)

T =
L
Cg

=(βCg)
− 



Cg≈ m/s, β≈.×
− (m · s)−

, L≈× m,T≈ h,U≈ m/s

Ro≈
Ro Ro≈

and then . In the lower tropical area, the follow-

i n g  a s s u m p t i o n s  a r e  s a t i s f i e d  w i t h  
. Thus, it is ac-

ceptable that Ro≈1 in the tropics, and ignoring Ro is not appro-
priate for our further study. We take  in the tropics, and ig-
noring  is not appropriate for our further study. We take 
in what follows according to the above discussions. The second
term of the fourth equation in Eq. (4) is generally small by the
scale balance principle; it is known that

δθ =
σUD
βL

, (6)

gδθ
βUDθ

=
N

βCg
N=gσ/θthus , where  is the Brunt-Väisälä fre-

quency. Denote

βCg

N
= ε, (7)

ε<<then . When the dimensionless apostrophes are omitted,
Eq. (4) becomes
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4  Derivation of the evolution equation

4.1  Multiple scales and perturbation method
Many kinds of PDEs have been derived to simulate the evolu-

tion of waves (Khater et al., 2006a; Seadawy, 2011; 2015; 2016;
2017b; Seadawy et al., 2017; Tian et al., 2019). Here, we use the
KdV model equation. To balance the dispersion and nonlinearity,
we introduce 

∂
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T, ξ u, v, w, p, θwhere  are slowly varying.  are expanded:



u = ū(y, z) + ε(u + εu + εu + · · · ),
v = ε


 (v + εv + εv + · · · ),

w = ε
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θ = θ(y, z) + ε(θ + εθ + εθ + · · · ),
p = p̄(y, z) + ε(p + εp + εp + · · · ).

(10)

Substitutions of Eqs (9) and (10) into Eq. (8) yield an order
equation. The lowest-order problem is
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Equation (11) indicates that the basic flow satisfies the equat-
orial semigeostrophic equilibrium and static equilibrium. When

, the thermal wind is

∂θ̄

∂y
= −y

∂ū

∂z
. (12)
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Thus, the lowest order equation reveals information of the back-
ground flow, but without any information about the perturbation
flow. We further consider the higher orders with representations
of 
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4.2  Derivation of the KdV equation
To address Eqs (13) and (14), we introduce

ρsui = Ui,
ρsvi = Vi,
ρswi = Wi,
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pi = Pi,
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where i=0, 1. Substituting Eq. (15) into Eqs (13) and (14) converts
them into the following forms:
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y(ūy − y)Vi + y(ūz + α)Wi + y
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y[(ūy − y)− θy(ūz + α)]
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y[(ūy − y)− θy(ūz + α)]
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where the operators are
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∂

∂ξ
(·)

]
+

∂

∂y

[
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(ūy − y)− θy(ūz + α)
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∂n

∂ξ
ṽ,

Aw = λnũ,

Aθ = −

[
∂n

∂T
θ̃ +


ρs

n
∂n

∂ξ

(
ũθ̃ + ṽ

∂θ̃

∂y

)]
.

(27)
Thus, Eq. (25) is simplified as

Ly,z(p̃) = , (28)

where

Ly,z(·) =− 
y

∂

∂y
(·) + ∂

∂y

[
(ū− c)(ūz + α)

(ūy − y)− θy(ūz + α)
∂

∂z
(·)

]
−

∂

∂y

[


(ūy − y)− θy(ūz + α)
(·)

]
+

∂

∂y

[
(ū− c)(ūz + α)

(ūy − y)− θy(ūz + α)
∂

∂y
(·)

]
+

∂

∂z

[
(ū− c)

∂

∂z
(·)
]
−

∂

∂z

[
θy

(ū− c)(ūz + α)
(ūy − y)− θy(ūz + α)

∂

∂z
(·)

]
+

∂

∂z

[
θy



(ūy − y)− θy(ūz + α)
(·)

]
+

∂

∂z

[
θy(ū− c)

y((ūy − y)− θy(ūz + α))
∂

∂y
(·)

]
. (29)

Equation (24) has the same homogeneous term for the cases
i=0 and i=1. To satisfy the nonsingularity of the solution, the fol-
lowing is required:

∫∫
y,z

p̃*


ū− c

(
L

(
∂Av

∂ξ

)
+L

(
∂Aw

∂ξ

)
+L(Aθ)+

L(Au)

)
dydz = , (30)

p̃*
where  is the solution for the conjugate equation of Eq. (28).

Then, Eq. (30) becomes the following form:

I
∂n

∂T
+ I

∂n

∂ξ
+ In

∂n

∂ξ
+ I

∂n

∂ξ
= , (31)

I, I, I, Iwhere the coefficients  are

I = −
∫∫
y,z

p̃*


ū− c

(
L(θ̃) + L(ũ)

)
dydz,

I = λ

∫∫
y,z

p̃*


ū− c
L(ũ)dydz,
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I =−
∫∫
y,z

p̃*


ū− c

{
L

[

ρs

(
ũθ̃ + ṽ

∂θ̃

∂y

)]
+

L

[

ρs

(
ũ
 + ṽ

∂ũ

∂y
+ w̃

∂ũ

∂z

)]}
dydz,

I = −
∫∫
y,z

p̃*


ū− c
L[(ū− c)ṽ]dydz.

ūz

Eqation (31) is the well-known KdV equation. Special atten-
tion is paid to the coefficient I1, which shows that the horizontal
component of Coriolis parameters is also an important factor af-
fecting near-inertial waves in the equatorial atmosphere by
modifying the velocity characteristic of the waves. This is consist-
ent with the result of Rossby waves accompanying topography
under the complete Coriolis force by Yang et al. (2016). However,
the topography is not a necessary factor in our present study. On
the other hand, the effect of α on the wave is mainly reflected in a
combined way with the vertical shear of the basic flow, i.e., , it
is a result that cannot be obtained under the traditional approx-
imation. When the horizontal component of the Coriolis para-
meters is not considered, the equations become the shallow wa-
ter model, and then Eq. (31) is reduced to the traditional case.

4.3  The periodic and solitary solutions of the KdV equation
Equation (31) is simplified into

∂A

∂T
+ aA

∂A

∂ξ
+ a

∂A

∂ξ
+ a

∂A

∂ξ
= , (32)

a =
I
I
, a =

I
I
, a =

I
I

where .

X = k(ξ− cT) k
c

Many kinds of exact analytical methods have been proposed
in recent years to solve nonlinear evolution equations, such as
solitary waves. In what follows, we mainly adopt the method of
Jacobian elliptic function expansions to solve Eq. (32). Introduce
an appropriate ansatz , where  is the wavenum-
ber and  is the wave velocity. Thus, Eq. (32) is

(a − c)
dA
dX

+ aA
dA
dX

+ ak
d

A
dX

= . (33)

A(X) sn X
According to the method of Jacobian elliptic function expan-
sions,  has the formal solution as a finite summation of :

A(X) =
n∑

j=

bjsn
jX, (34)

n=where  is a necessary condition for the balance between the
nonlinearity and dispersion; then, we obtain

A(X) = b + bsn X+ b2sn
X. (35)

By using the properties of elliptic functions, the solution is

A(ξ,T) =
ak(+m) + c − a

a
− akm

a
snk(ξ− cT).

(36)

m → When , the solitary wave solution is

A(ξ,T)=
c − a − ak

a
+

ak

a
sechk(ξ− cT), (37)

c−a−ak=especially, when , the solitary solution becomes

A(ξ,T)=
(c − a)

a
sech

√
c − a

a
(ξ− cT). (38)

Obviously, both the periodic and solitary wave solutions show
that the effect of the Coriolis horizontal component on the equat-
orial nonlinear wave is mainly reflected by modifying the wave
velocity but not the wave amplitude or wave energy.

5  Results

α λ

λ

a

a = a =  a

sechξ

In this section, we devote ourselves to the dynamic analysis of
the effect of the horizontal Coriolis parameter on the nonlinear
equatorial near-inertial solitary waves through numerical simu-
lations. According to the previous scale analysis, the effect of
parameter  is much smaller than . Thus, in what follows, we
mainly discuss the dynamic effect of the horizontal component of
Coriolis parameters through , which means that the coefficient
of  represents the main function of the Coriolis horizontal com-
ponent on the evolution of equatorial near-inertial solitary
waves. In addition, it is acceptable to perform some coordinate
transformations so that all the coefficients of Eq. (32) become
one, with the popular Fourier spectral method for Eq. (32) with
fixed  and varied . An initial solitary wave solution
is assumed to be .

sechξ

Figure 1 depicts the whole evolution processes of the solitary
equatorial near-inertial waves under the nontraditional approx-
imation. From the figure, we can see that the initial solitary wave

 evolves to the west and east along with time, the mag-
nitude of the amplitude decreases with time in both directions,
and the solitary wave packets are excited when the solitary waves
are propagating. On the other hand, it is interesting to find that
the asymmetry structures of the wave packets with respect to
zonal spatial coordinates are formulated during its evolutionary
process. It denotes that the solitary wave is propagating to the
west with higher speed and frequencies, it is consistent with
some existed results, such as the work (Gerkema and Shrira,
2005a, 2005b). In order to disclose the effect of the horizontal
component of the Coriolis parameters more clearly, two-dimen-
sional projections of the propagation process are given in Fig. 2.

In Fig. 2, the evolution of the solitary wave amplitude in the
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Fig. 1.     The evolution processes of wave magnitude with time
and space.
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a

a

a

two-dimensional case with different  is characterized, which
means that the horizontal Coriolis parameter varies affects the
evolution of solitary waves. We can find that the initial solitary
wave evolves into wave packets to both west and east with time
goes. It is obvious that  affects the wave velocity. It denotes that
larger magnitude of  increases the westward propagation of
solitary waves. Furthermore, it is to say that the dispersion rela-
tionship is essentially modified by the consideration of complete
Coriolis parameters, it is consistent with the former qualitative
analysis for Eq. (31).

6  Conclusions
Traditional investigations on inertial waves neglect the effect

of complete Coriolis parameters, leading to qualitative inaccur-
acy. This paper is the first to investigate the effect of the horizont-
al Coriolis parameter on nonlinear equatorial near-inertial
waves. Detailed scale analysis is given based on the primitive
mesoscale oceanic model equations, and it denotes that a neces-
sary condition for the inclusion of the complete Coriolis para-
meter is the three-dimensional oceanic motion. The evolution of
the equatorial near-inertial wave was proven to be satisfied with
the classical KdV model equation, and the coefficients related to
the horizontal Coriolis parameter were denoted to affect the evol-
ution of solitary waves by mainly modifying the wave speed and
by interacting with the basic flow. The Fourier spectral method
was used to verify the dynamic mechanisms.

In recent years, more and more investigations were finished
to disclose the potential influences of complete Coriolis paramet-

ers on kinds of oceanic motions. Tort et al. (2016) and Kloost-
erziel et al. (2017) studied the inertial asymmetry and instability
problem with complete Coriolis force by numerical simulations,
the results of the present paper are consistent with those in their
papers. Thus, the theoretical analysis results of this paper may be
potentially contributed to the understanding of oceanic near-in-
ertial waves. More importantly, much more attentions should be
further paid to the observational or experimental results to verify
the consistency of the present theoretical analysis in our further
investigations.
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