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Abstract

We analyzed the biogenic silica (BSi) content and produced a diatom-based summer sea-surface temperature
(SST) reconstruction for  sediment core GC4 from the Holsteinsborg Dyb,  West  Greenland.  Our aim was to
reconstruct marine productivity and climatic fluctuations during the last millennium. Increased BSi content and
diatom  abundance  suggest  relatively  high  marine  productively  during  the  interval  of  AD  1000–
1400, corresponding in time to the Medieval Warm Period (MWP). The summer SST reconstruction indicates
relatively warm conditions during AD 900–1100, followed by cooling after AD 1100. An extended cooling period
during AD 1400–1900 is characterized by prolonged low in reconstructed SST and high sea-ice concentration. The
BSi values fluctuated during this period, suggesting varying marine productivity during the Little Ice Age (LIA).
There is no significant correlation between the BSi content and SST during the last millennium, suggesting that
the summer SST has little influence on marine productively in the Holsteinsborg Dyb. A good correspondence
between the BSi content and the element Ti counts in core GC4 suggests that silicate-rich meltwater from the
Greenland ice sheet was likely responsible for changes in marine productively in the Holsteinsborg Dyb.
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1  Introduction
Since 1978, Arctic sea ice concentration has decreased by

~9% every decade, accompanied by a decrease in its thickness
and duration (Comiso, 2012; Maslanik et al., 2011; Perovich and
Richter-Menge, 2009). The thinning and recession of Arctic sea
ice is one of the most significant consequences of recent climate
change, and sea ice has a very important impact on the function-
ing of the Arctic ecosystem (Wassmann et al., 2011). In the Arctic
Ocean, net primary production has increased by ~30% over the
past two decades (Ribeiro et al., 2017), largely due to the retreat
of sea ice. 74% and 77% of the variance in annual net primary

production can be explained by the increase in the open water
area (May–September) and the length of the open water season,
respectively (Arrigo and van Dijken, 2015). However, this model
is not consistent in the Arctic, as primary production is reported
to have declined by ~15% (45°W to 15°E) in Greenland (Arrigo
and van Dijken, 2015). Studies of the latitudinal gradient of sea
ice cover around Greenland show that sea ice has a significant
impact on the productivity of both primary (Krause-Jensen et al.,
2012) and secondary producers (Sejr et al., 2009), suggesting that
any future changes in sea ice cover will significantly affect mar-
ine ecosystems.  
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Siliceous phytoplankton makes an important contribution to
the primary production of the world’s oceans. Van Cappellen et
al. (2002) estimated that, as a major primary producer, diatoms
account for up to 40% of global primary production, and 75% of
coastal and nutrient-rich waters (Liu et al., 2008; Nelson et al.,
1995). Biological silicon (BSi), known as biogenic opal, is pro-
duced by siliceous organisms (mainly diatoms) in the ocean.
Consequently, diatoms preserved in sediments provide a record
of diatom productivity and therefore of total phytoplankton pro-
ductivity. However, the relationship is rather complex (Colman
and Bratton, 2003). The dissolution of BSi begins after the death
of these organisms and continues within deep water and after the
deposition of BSi in surface sediments (van der Weijden and van
der Weijden, 2002). The dissolution and preservation of BSi plays
a key role in the biogeochemical silicon cycle in the ocean, which
is related to the carbon cycle (DeMaster, 2002; Liu et al., 2005;
Ragueneau et al., 2000; Schlüter and Sauter, 2000).

BSi has previously been used to track climate-related changes
in aquatic production on millennial and orbital time scales (Col-
man and Bratton, 2003; Hu et al., 2003). Romero and Hebbeln
(2003) observed a good correlation between BSi in sediments and
primary production in the overlying water column in the region
of the Peru-Chile upwelling, with a higher BSi content indicating
higher primary production.

Diatoms are good indicators of past climate and environ-
mental changes in the North Atlantic because of their near ubi-
quity in the marine environment and their high sensitivity to en-
vironmental and ecological conditions (Jiang et al., 2001, 2015;
Koc Karpuz and Schrader, 1990). Diatom-based transfer func-
tion for paleo sea-surface temperature reconstructions have been
widely applied in the North Atlantic (Jiang et al., 2005, 2015; Just-
wan et al., 2008; Krawczyk et al., 2017; Li et al., 2017; Miettinen et
al., 2015).

Up to now, little research has been done on the relationship
between variations in summer sea surface temperature (SST) and
sea ice cover and primary productivity in the Labrador Sea dur-
ing the last millennium. In order to place changes in a longer-
term context and to better constrain future scenarios for this re-
gion, it is necessary to reconstruct these key parameters in order
to determine their inter-relationships on a multi-decadal-to-mil-
lennial time scale.

2  Study area
Holsteinsborg Dyb is a deep buried valley that passes southw-

est through the western continental shelf of Greenland from the
town of Sisimiut. It appears to be repeatedly eroded and then
filled with Quaternary sediments (Lykke-Andersen and Knudsen,
2007) (Fig. 1). It is a deep west-south-west-oriented trench which
extends for ~60 km into the middle continental shelf and then
shallows, due to the influence of an estuarine fan, at the edge of
the continental shelf (Lykke-Andersen and Knudsen, 2007). Four
large fjords, Amerdloq, Ikertooa, Kangerluarssuk and Itilleq
Fiord, are located in the eastern part of Holsteinsborg Dyb, con-
sistent with one of the main thrust forces of Ikertooq Fjord
(Jensen et al., 2002) (Fig. 1).

The hydrology in West Greenland is controlled by the north-
ward flow of the West Greenland Current, which is composed of
water masses from two different sources. Closest to the shore, the
water mass of the East Greenland Current brings polar water
masses northwards along the West Greenland coast. Along the
way, the water is diluted by runoff from different fjord systems
and then diverted westward to Canada at ~65°–66° N. Below this
water mass and offshore, the West Greenland Current consists of
a water mass from the Irminger Current from the Atlantic Ocean.
This relatively warm, high salinity water mass can be traced along
the west coast of Greenland to the north of Baffin Bay (Andersen,
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Fig. 1.   Location of sediment core GA306-GC4 and other records mentioned in the text. Modern surface circulation in the studied area
is indicated by arrows.
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1981; Tang et al., 2004). Flowing northwards, the Irminger Cur-
rent water is gradually modified by mixing with East Greenland
Current waters and meltwater from the Inland Ice and smaller ice
caps (Buch, 2002; Ribergaard, 2011; Sha et al., 2012). Compared
to the rest of the Arctic Ocean, there has been no significant
change in annual net primary production in the Baffin Bay re-
gion (100° to 45°W) since 1998, perhaps due to a longer growing
season, despite of a reduced sea ice cover (Arrigo and van Dijken,
2015).

3  Materials and methods

3.1  Core material
During the Galathea 3 expedition  from 25 August to 25

September 2006, a 501-cm-long gravity core GA306-GC4 was re-
trieved from the Helsteinsborg Dyb offshore trough located
on the continental shelf of West Greenland at 66°44′41″N,
53°56′25″W (water depth 445 m). Based on the core stratigraphy,
the sedimentation rate of GC4 was quite high (~0.5 cm/a) during
the past 1 ka. A total of 99 samples were taken at every 5 cm from
the core for measurement of BSi content and diatom abundance
analysis.

3.2  BSi measurements
Based on the combination method of Mortlock and Froelich

(1989) and DeMaster (1981), the BSi content in bulk sediments
was measured by the alkaline extraction technique (Liu et al.,
2002, 2008). The coefficients of variation (CV) of five parallel ex-
tractions were 2.00%. The BSi data from the same sediment
samples were compared between the two laboratories in order to
assess the accuracy of the BSi measurements. Under the condi-
tions of high temperature (85°C) and pH (2% Na2CO3), alkali ex-
traction experiments were made with samples pretreated with
hydrogen peroxide (H2O2) and hydrochloric acid (HCl) which
could accelerate the dissolution of bio-silica. Most of the samples
were dissolved in 2 h. The dissolution process lasted for 8 h, and
the weight percentage of extracted silica changed with time (h–1).
As reported by Koning et al. (1997) and Rickert (2000), the dissol-
ution of BSi in an alkaline medium can be described by a first-or-
der kinetic model (Eq. (1)):

[SiO%]t = [BSi%] × (− e−kNaCO t) + bNaCO t, (1)

kNaCO

bNaCO

where [BSi%]0 is the content of BSi (wt%) in the sediment sample;
[SiO2%]t is the content of SiO2 (wt%) at time t; (h−1) is the
dissolution rate constant of BSi in an alkaline solution (constants
represent BSi assemblages, because bulk BSi appears to be a
good substitute for the depth-dependent changes in BSi reactiv-
ity embedded in complex matrices of various clay minerals);

(h−1) is the slope of the linear part of the leaching curve
that is attributed to the dissolution of clay minerals; and t (h) is
the extraction time (Wu et al., 2015).

3.3  Diatom preparation and analysis
About 5–6 mg of freeze-dried material from each sample was

weighed precisely with a precision of 0.1 mg. Based on the im-
proved method established by the Alfred Wegener Institute for
Polar and Marine Research (Gersonde and Zielinski, 2000), a per-
manent slide for chemical treatment and microscopic observa-
tion was prepared. 10% HCl and 30% H2O2 were added to the
sample and heated to remove biogenic carbonate and organic
matter, respectively. After complete digestion, the mixture was

carefully stirred with distilled water and kept for 24 h to settle the
particles. The supernatant was then siphoned off and the wash-
ing process was repeated four times to remove excess HCl and
H2O2 as well as the reaction solution. The remaining sample was
diluted to 20 mL, and then 2 mL of gelatin solution was added to
accelerate the following settling process (Ran et al., 2015). The
mixed sample solution was gently poured into a Petri dish, and
two 22 mm×22 mm cover slides were pre-fixed in the Petri dish.
After settling for 24 h, a strip of absorbent paper was used to re-
move the supernatant from the Petri dish (Ran et al., 2015). When
the material was completely dried, the cover was transferred to
the tagged carrier and sealed with Naphrax (dn=1.73). Diatoms
were counted and identified using a Leica DM2500 phase con-
trast microscope at 1 000× magnification. Diatom flux was then
calculated using the following formula:

A =
N× S

n× a×m
, (2)

where A is the diatom abundance (valves/g), N is the number of
diatoms counted under microscope, S is the area of the petri
dish, n is the number of fields of vision counted for diatoms un-
der the microscope, a is the area of one field of vision, and m is
the dry weight (g) of sample used for diatom analysis (Ran et al.,
2015).

3.4  Summer sea-surface temperature reconstruction
Summer SST was quantitatively reconstructed using the C2

package. Seven transfer function methods were assessed and the
weighted averaging with partial least squares regression (WA-
PLS) using two components was selected to quantitatively recon-
struct summer SST (Li et al., 2017). This approach has the lowest
maximum bias (2.047), low root-mean squared error of predic-
tion based on the leave-one-out jack-knifing (1.393), and a high
coefficient of determination between observed and predicted
values (0.853). By comparing the observed and predicted values
of the surface samples (using a cross-validation model), a good
linear relationship was found, and the residuals are randomly
distributed (Li et al., 2017).

3.5  Age model
The age model for core GC4 is based on the AMS14C dating of

marine mollusk shells at the AMS 14C Dating Center of Aarhus
University, Denmark (Fig. 2). OxCal 4.1.3 software (Ramsey,
2009) and the Marine09 calibration data set (Reimer et al., 2009)
were used to calibrate all 14C ages. A reservoir age offset (ΔR) of
(140±30) a (Erbs-Hansen et al., 2013) was used to convert the 14C
ages to calendar ages, which was applied given the domination of
Atlantic subsurface water at the water depth of the core site. A
linear sedimentation rate was assumed between the calibrated
14C age control points (Fig. 2).

4  Results

4.1  BSi content
The BSi content of core GC4 ranges from 5.75% to 8.85% (Fig. 3).

Initially, there is a decreasing trend of the BSi content during AD
900–1000. This is interrupted, however, by significantly elevated
values during AD 1000–1350. The BSi content then generally de-
creases during AD 1350–1550, which is followed by an increase
which persists from AD 1550 to AD 1700. The BSi content then
decreases markedly from AD 1700–1940.
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4.2  Diatom abundance
During the last millennium, the diatom abundance of core

GC4 ranges from 1.40×106 to 8.89×106 val./g (valves per gram of
dry sediment) (Fig. 3). The results indicate that the diatom
abundance is low (1.4×106–4.7×106 val./g) between AD 900 and
AD 1080 (Fig. 3). During AD 1080–1350, it increases substantially
(2.1×106–8.9×106 val./g), with the maximum values at ~AD 1160.
Thereafter, there is a relatively long interval (AD 1350–1800)
with lower diatom abundances, but with rather high concentra-
tions during AD 1600–1700 (3.06×106–5.32×106 val./g). An in-
crease occurs after AD 1800, with a second maximum in diatom

abundance at ~AD 1900.

4.3  Diatom-based quantitative summer SST reconstructions
The diatom-based reconstructed summer SSTs range from

2.2°C and 6.1°C, showing a general cooling trend between AD 900
and 1900 (Fig. 3). The interval of AD 900–1100 is characterized by
relatively high summer SSTs. Subsequently, lower summer SSTs
occur during AD 1100–1900, with several relatively high SSTs val-
ues occurring at ~AD 1350, ~1470, ~1740, ~1850 and ~1930 (Fig. 3).

5  Discussion
Previous studies of the BSi from both marine and lacustrine

sediments revealed that the BSi content was not a simple func-
tion of diatom abundance (Newberry and Schelske, 1986; Swann
and Mackay, 2006; Ye et al., 2004). However, most paleolimnolo-
gical studies have found a good correspondence between the
abundance of diatom valves and BSi concentrations, despite the
potential for the dissolution of diatoms (Bradbury and Winter,
1976; Flower, 1980; Schelske et al., 1983; Engstrom et al., 1985). In
core GC4 there is a good correlation between the BSi content and
diatom abundance during the last millennium (r=0.53, p<0.01;
Fig. 4b). Therefore, we used the BSi content and diatom abund-
ance to infer changes in primary productivity in the study area.

5.1  Variations in marine productivity during the MWP
The diatom-based summer SST records show rather warm

conditions during AD 900–1100, corresponding to the Medieval
Warm Period (MWP, Lamb, 1965). This warming may be related
to the strengthened impact of the Irminger Current in the study
area. Records from the continental shelf of West Greenland sug-
gest a decrease of sea ice cover (Jensen et al., 2004; Ribeiro et al.,
2012; Roncaglia and Kuijpers, 2004; Sha et al., 2016) during AD 1000–
1300. The δ18O record from the planktonic foraminifer Turboro-
talita quinqueloba in a sediment core from south of Greenland
(RAPiD-35-25B) shows the enhanced melting of both sea ice and
the Greenland ice sheet during AD 900–1000 and AD 1100–1400
(Moffa-Sánchez et al., 2014, Fig. 4e). A temperature reconstruc-
tion from the Agassiz and Renland ice cores also suggests relat-
ively warm conditions between AD 1000 and 1400 (Vinther et al.,
2009, Fig. 4d). These records around Greenland show different
time ranges for MWP compared to that of the present study,
which is probably caused by their uneven temporal sampling and
dating uncertainties.

One notable feature in our record is the decrease of summer
SST between AD 1100 and 1300, which suggests that the MWP in
the Holstensburg Dyb was not a uniformly warm interval. A diat-
om record from Igaliku Fjord, South Greenland, reveals a cold
period during AD 1100–1290, inferred by a large decrease of At-
lantic open water species during the MWP (Jensen et al., 2004),
which is in accordance with the summer SST record obtained in
the present study. In addition, the δ18O record from south of
Greenland (RAPiD-35-25B) shows reduced melting of both sea
ice and the Greenland ice sheet during AD 1000–1100.

The distinctly decreased BSi content and low diatom abund-
ance during AD 900–1000 reflect low primary productivity in the
Holsteinsborg Dyb, which is in accordance with the observed low
primary productivity between AD 900 and 1050 in Disko Bay
(Ribeiro et al., 2012). However, rather high SSTs and low sea-ice
concentration indicate warm conditions at that time. Sub-
sequently, the interval of AD 1000–1350 is characterized by a high
BSi content and diatom abundances, suggesting distinctly high
primary productivity in the study area. Interestingly, relatively
low summer SSTs during AD 1100–1300 indicate a cold condi-
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tion in the Holsteinsborg Dyb, as well as a slightly increase in sea-
ice concentration (Fig. 4c, Sha et al., 2016).

The element Ti, which is redox insensitive, can be used to re-
flect changes in the input of terrigenous components (Jansen et
al., 1998; Peterson et al., 2000; Yarincik et al., 2000) via run-off or
ice rafting (Solignac et al., 2011; St-Onge et al., 2007). The rather
high element Ti counts during AD 950–1300 suggest an increase
in meltwater influence from the Greenland ice sheet (Fig. 4a).
The co-variation of the element Ti counts and BSi content during
AD 1000–1300 indicates that high productivity in the study area
was caused by enhanced meltwater input. This is also supported

by an increase in meltwater influx between AD 1050 and 1250 in
Disko Bugt (Seidenkrantz et al., 2008). In addition, enhanced
mixing of the water column, caused by the strengthened wester-
lies in a positive North Atlantic Oscillation (NAO) state during the
MWP (Trouet et al., 2009; Olsen et al., 2012), may have stimu-
lated the growth of diatoms, relative to other phytoplankton
groups at the termination of the MWP.

In summary, there is a very weak negative correlation
between the BSi content and SSTs (r=–0.12, p<0.01) during AD
900–1400. Therefore, the relatively high primary productivity in
the Holsteinsborg Dyb during the WMP does not show a positive
correlation to summer SSTs and sea-ice reduction. Rather, a pos-
itive NAO and enhanced influence of the Irminger Current and
terrigenous input carried by meltwater, indicated by high ele-
ment Ti counts, may have been the major factors responsible for
the high productivity in the Holsteinsborg Dyb.

5.2  Variations in marine productivity during the LIA
A prolonged period of low SSTs from AD 1400 to AD 1900 in-

dicates the strengthened impact of the East Greenland Current
on the study area, corresponding to the Little Ice Age (LIA, Lamb,
1965). This is supported by a general increase in sea-ice diatoms,
in contrast to a pronounced decrease in the Atlantic species and
the disappearance of the Atlantic Water foraminifera species at
site GC4 during AD 1400–1900 (Erbs-Hansen et al., 2013; Sha et
al., 2012).This cooling is supported by another diatom record
which shows severe cooling after AD 1350 in South Greenland,
resulting in the deterioration of farming conditions which af-
fected the Norse people (Jensen et al., 2004). This is also in ac-
cordance with records of cold conditions in the eastern Labrador
Sea and in the Agassiz and Renland ice cores during AD 1400–
1900 (Moffa-Sánchez et al., 2014; Vinther et al., 2009) (Fig. 4d).

The relatively low diatom abundance and BSi content from
AD 1350 to 1550 indicates lower productivity in Holsteinsborg
Dyb than during AD 1000–1350 (Fig. 4b). This is also supported
by the pronounced negative NAO centered at ~ AD 1450 and by
XRF geochemical data from southwest Greenland, which indic-
ates decreasing productivity during AD 1350–1550 (Møller et al.
2006; Trouet et al., 2009). The fluctuating SSTs and sea-ice con-
centrations reconstructed from core GC4 show no significant cor-
relation with the marine productivity in the study area (Fig. 4c,
Sha et al., 2016). Notably, however, there is a distinct increase in
the BSi content during AD 1550–1700, when extensive sea-ice
conditions were recorded in West Greenland (Ribeiro et al., 2012;
Sha et al., 2016) (Fig. 4c). In addition, an enhanced East Green-
land Current and negative NAO are out of phase with increases in
productivity in the Holsteinsborg Dyb during AD 1550–1700
(Erbs-Hansen et al., 2013; Sha et al., 2016).

Similarly, a slightly increase in the element Ti counts at site
GC4 suggests the high export of meltwater from the Greenland
ice sheet to the Holsteinsborg Dyb between AD 1550 and AD
1750 (Erbs-Hansen et al., 2013) (Fig. 4a). This silicate-rich melt-
water likely stimulated the growth of diatoms relative to other
phytoplankton groups (Meire et al., 2016). Therefore, the relat-
ively high productivity inferred by the diatom abundance and BSi
record from the Holsteinsborg Dyb during AD 1550–1700 may be
associated with the increased supply of silicate-rich meltwater
from the Greenland ice sheet.

After AD 1700 there is a reduction of diatom abundance and
BSi content, with the minimum BSi content occurring at ~AD 1800,
suggesting a reduction in primary productivity in the Holsteins-
borg Dyb. This is in agreement with a distinct decrease in ele-
ment Ti counts after AD 1750, which indicates that less melt-
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water reached the study area (Erbs-Hansen et al., 2013) (Fig. 4a);
the resulting decrease in the export of meltwater from the Green-
land ice sheet would have limited the growth of diatoms in the
study area. This is in accordance with reduced onshore wind
stress during a period of a generally negative winter NAO index
(Trouet et al., 2009).

In most of the Arctic Ocean, there has been a distinct in-
crease in primary productivity over the past two decades, due to
rising temperatures and reduced sea-ice cover under ongoing
global warming (Arrigo and van Dijken, 2015; Ribeiro et al.,
2017). However, there is almost no correlation between marine
productivity and sea surface temperature and sea-ice concentra-
tion in the study area during the last millennium, with the correl-
ation coefficients between the BSi content and SSTs and sea-ice
concentration of -0.06 and 0.14 (p<0.01), respectively. In contrast,
there is a relatively high correlation between the BSi content and
element Ti counts (r=0.32, p<0.01). Therefore, the mechanism re-
sponsible for changes in the marine productivity in the Hol-
steinsborg Dyb may be related to meltwater input from the
Greenland ice sheet. Other factors, like wind-induced surface-
water mixing and the deep and bottom waters around the study
area (Knudsen et al., 2008; Ribeiro et al., 2012), may also have in-
fluenced the productivity variations. However, determining
which of the two mechanisms was responsible requires further
study.

6  Conclusions
The BSi content in sediment core GC4 from the Holsteins-

borg Dyb, West Greenland, varied from 5.75% to 8.85% during the
last millennium. There is a high positive correlation between the
BSi content and diatom abundance, and both of them can be
used to represent changes in productivity in the study area.

The reconstructed summer SSTs shows that the WMP was not
a sustained warm period in West Greenland. There is almost no
correlation between the SSTs and BSi content (r=–0.06, p<0.01),
suggesting that SSTs had little influence on the productivity in
the Holsteinsborg Dyb over the past 1 000 years.

The relatively high correlation between the BSi content and
element Ti counts (r=0.32, p<0.01) in core GC4 suggests that
meltwater input from the Greenland ice sheet may have had a
major impact on productivity variations in the study area, com-
pared to the influence of the SSTs and sea-ice concentration.
Other factors, like wind-induced surface-water mixing and the
deep and bottom waters around the study area may also have in-
fluenced the productivity variations.
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