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Abstract

Theoretical-based ocean wave retrieval algorithms are applied by inverting a synthetic aperture radar (SAR)
intensity spectrum into a wave spectrum, that has been developed based on a SAR wave mapping mechanism. In
our previous studies,  it  was shown that  the wave retrieval  algorithm, named the parameterized first-guess
spectrum method (PFSM), works for C-band and X-band SAR at low to moderate sea states. In this work, we
investigate the performance of the PFSM algorithm when it is applied for dual-polarization c-band sentinel-1 (S-
1) SAR acquired in extra wide-swath (EW) and interferometric wide-swath (IW) mode under cyclonic conditions.
Strong winds are retrieved from six vertical-horizontal (VH) polarization S-1 SAR images using the c-band cross-
polarization coupled-parameters ocean (C-3PO) model and then wave parameters are obtained from the image at
the vertical-vertical (VV) polarization channel. significant wave height (SWH) and mean wave period (MWP) are
compared with simulations from the WAVEWATCH-III (WW3) model. The validation shows a 0.69 m root mean
square error (RMSE) of SWH with a –0.01 m bias and a 0.62 s RMSE of MWP with a –0.17 s bias. Although the
PFSM algorithm relies on a good quality SAR spectrum, this study confirms the applicability for wave retrieval
from an S-1 SAR image. Moreover, it is found that the retrieved results have less accuracy on the right sector of
cyclone eyes where swell directly affects strong wind-sea, while the PFSM algorithm works well on the left and
rear sectors of cyclone eyes where the interaction of wind-sea and swell is relatively poor.
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1  Introduction
Ocean waves are the main feature of the upper ocean dynam-

ic processes and play an important role in atmosphere-ocean in-
teractions. Moreover, an extreme wave is also a natural hazard in
coastal waters. Therefore, waves are a crucial factor in oceano-
graphy and offshore engineering. At present, waves are derived
from operational wave models and are usually forced by forecast
winds. However, forecast waves have less accuracy when using
less accurate values for winds. Satellites carrying an altimeter
sensor are a remote-sensing technique for wave monitoring over
global seas. For instance, open-access wave data derived from
such satellites as Topex/Poseidon, Jason-2 and HY-2, have been
popularly used by investigators world-wide. The spatial coverage
of an altimeter wave is relatively small (~10 km) with a revisit fre-
quency of 10–15 d and the available wave data from an altimeter

only covers the track footprints of a satellite orbit. This kind of
limitation does not satisfy the requirements of marine research,
especially when researching cyclonic conditions. Synthetic aper-
ture radar (SAR) has the capability of monitoring the sea surface
with a large swath coverage (up to 600 km) and fine spatial resol-
ution (up to 1 m). SAR-derived waves can improve wave fore-
casts and make up the gaps in remotely sensed measurements at
coastal waters.

Traditionally, the methodology of a wave retrieval algorithm
was exploited for deriving a wave spectrum from a SAR intensity
spectrum based on the SAR wave mapping mechanism, e.g., tilt
modulation, hydrodynamic modulation (Alpers et al., 1981), and
non-linear velocity bunching (Alpers and Bruening, 1986). To
date, these algorithms have included the “max-planck institute”
(MPI) algorithm (Hasselmann and Hasselmann, 1991), the semi  
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parametric retrieval algorithm (SPRA) (Mastenbroek and de Valk,
2000), the partition rescaling and shift algorithm (PARSA)
(Schulz-Stellenfleth et al., 2005), and the parameterized first-
guess spectrum method (PFSM) (He, 1999; Sun and Guan, 2006).
In particular, it has been shown that the PFSM algorithm works
for C-band (Lin et al., 2017) and X-band (Shao et al., 2015) SAR at
low to moderate sea states. It is necessary to understand that pri-
or information on wind is needed in order to produce a first-
guess wave spectrum when applying the theoretical-based al-
gorithms that are used to deal with the modulation transfer func-
tion (MTF) of non-linear velocity bunching. Moreover, the MTF
of velocity bunching was theoretically derived at low to moder-
ate sea state (Hasselmann and Hasselmann, 1991), therefore, the
applicability MTF of velocity bunching at high sea seta needs to
be studied. In practice, wind can be directly retrieved from a SAR
image.

The geophysical model function (GMF) is commonly applied
for wind retrieval from a SAR image. It describes the empirical re-
lationship between a SAR-measured backscattering signal in co-
polarization (vertical-vertical (VV) and horizontal-horizontal
(HH)), called the normalized radar cross section (NRCS), and a
wind vector at 10 m height above the sea surface (Masuko et al.,
1986). C-band GMFs include CMOD4 (Stoffelen and Anderson,
1997), CMOD-IFR2 developed at the Institut Francais de Recher-
che pour Exploitation de la MER (IFREMER) (Quilfen et al.,
1998), CMOD5N for neutral wind (Hersbach, 2010), C-SARMOD
(Mouche and Chapron, 2015), CMOD7 (Stoffelen et al., 2017) and
C-SARMOD2 (Lu et al., 2018). The CMOD family has been well
studied over the last few decades and has been implemented for
various C-band SAR data, e.g., ENVISAT-ASAR (Yang et al.,
2011a), RADARSAT-1/2 (R-1/2) (Yang et al., 2011b; Shao et al.,
2014) and Sentinel-1A/1B (S-1) (Monaldo et al., 2016) and
Gaofen-3 (GF-3) (Shao et al., 2017a, 2019). However, the backs-
cattering signal encounters a saturation problem at strong winds
(probably at wind speeds greater than 25 m/s) (Hwang et al.,
2010; Voronovich and Zavorotny, 2014; Shao et al., 2017b), indic-
ating these GMFs do not work under these conditions. Under
these circumstances, the PFSM algorithm is not applicable for
typhoon and hurricane wave retrieval from SAR images.

Several empirical models, e.g., CWAVE_ERS for ERS-1/2
(Schulz-Stellenfleth et al., 2007), CWAVE_ENVI for ENVISAT-AS-
AR (Li et al., 2011), CWAVE_S1 for S-1 (Stopa and Mouche, 2007)
and CSAR_WAVE for GF-3 (Sheng et al., 2018), have also been
developed, and are aimed at directly retrieving the wave para-
meters from SAR images without having to calculate the complex
MTF of each modulation. These models work at low to moderate
sea states, because data collection taken at high sea states is un-
available in the tuning process. Although two empirical models
are preliminarily exploited for wave retrieval in hurricanes and
typhoons (Romeiser et al., 2015; Shao et al., 2018a), these have
only been tuned through a few images and simulations from a
numerical wave model and they need to be refitted for different
SAR bands and imaging modes.

Several recent works are devoted to study the characteristic of
typhoon/hurricane generated waves on SAR (Mouche et al.,
2017; Hwang and Walsh, 2016; Zhang et al., 2018), however,
typhoon and hurricane wave monitoring is still a challenge for
the SAR research community. Interestingly, strong winds (up to
55 m/s) can be retrieved from cross-polarization (basically vertic-
al-horizontal, VH) NRCS, because cross-polarization NRCS does
not saturate as easily as the co-polarization backscattering signal
(Hwang and Fois, 2015; Shao et al., 2017a). Recently, a methodo-

logy for strong wind retrieval using C-band cross-polarization
NRCS was developed for R-2 SAR (Zhang and Perrie, 2012; Shen
et al., 2014; Zhang et al., 2017) and GF-3 SAR (Shao et al., 2018c).
This issue presents an interesting question and that is whether
the MTF of velocity bunching and PFSM algorithm is suitable for
wave retrieval at the VV-polarization channel as using a SAR-de-
rived strong wind from an image at the VH-polarization channel
under cyclonic conditions.

We organize this paper as follows: S-1 SAR images and other
auxiliary data are introduced in Section 2. Section 3 shows the
methodologies of cross-polarization strong wind retrieval al-
gorithms, scheme of co-polarization wave retrieval algorithm PF-
SM and the setup of WW3 model. The validation is presented in
Section 4 when comparing the retrieval results with measure-
ments from the simulations of the numeric wave model WAVE-
WATCH-III (WW3). The discussion is included in Section 5 and
the conclusion and summary are given in Section 6.

2  Description of dataset
In total, six S-1 images with visible cyclone eyes acquired in

dual-polarization (VV and VH) during the period of August 27 to
September 23, 2016 were made available for this study. These im-
ages were acquired in extra wide-swath (EW) and interferomet-
ric wide-swath (IW) mode with a pixel size of 40 m and 10 m re-
spectively at both azimuth and range directions. The quick-look
images of Typhoon Lionrock, Hurricane Lester, Hurricane
Gaston, Hurricane Hermine, and Hurricane Karl overlaying the
tracks of cyclones are shown in Fig. 1, in which the maximum
wind speeds are up to 60 m/s at the several SAR imaging mo-
ments.

Although measurements from a satellite altimeter, e.g., Jason-
2, are useful for wave analysis (Liu et al., 2016), wave measure-
ments from altimeter Jason-2 passing the six S-1 SAR images
were unavailable. Therefore, the WW3 model (the latest version
5.16) in the spirit of the previous WAM model, which was de-
veloped by the National Centers for Environmental Prediction
(NCEP) of the National Oceanic and Atmospheric Administra-
tion (NOAA), was employed to simulate the wave fields during
the period of the five cyclones. Since 1979, the European Centre
for Medium-Range Weather Forecasts (ECMWF) has released a
daily global reanalysis dataset at intervals of six hours, e.g., sea
surface wind and wave parameters, which has a fine spatial resol-
ution. We employed ECMWF winds at 0.125° grids as the forcing
fields and water depth information is derived from 30 arc-second
topography data consisting of the General Bathymetric Chart of
the Oceans (GEBCO) from the British Oceanographic Data
Centre (BODC). The WW3 model performs simulations of wave
fields well (Bi et al., 2015; Zheng et al., 2016; Liu et al., 2017) and
the validation of WW3-simulated hurricane waves against Na-
tional Data Buoy Center (NDBC) buoys of the NOAA was used in
our recent study (see Fig. 8 in Shao et al., 2018c). WW3-simu-
lated wave parameters, e.g., significant wave height (SWH) and
mean wave period (MWP), are used to study the accuracy of SAR-
derived waves under cyclonic conditions.

In this study, we also use independent sources, e.g., polari-
metric radiometer WindSAT, in order to validate the SAR-de-
rived wind speed from VH-polarization S-1 SAR images by using
a cross-polarization wind retrieval algorithm. WindSAT is a space
borne satellite for measuring sea surface winds using a polari-
metric radiometer with a swath coverage of more than 350 km
following the orbit, and the standard deviation (STD) of wind
speed is about 1.4 m/s as validated against the measurements of
aircraft (Meissner and Wentz, 2012). Therefore, WindSAT wind
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products satisfy the requirements of global wind monitoring, es-
pecially in typhoon and hurricane conditions. It is proved that
overall root mean square error (RMSE) difference of the re-
trieved wind speeds from WindSAT with respect to the H* wind
analysis data developed by the Hurricane Research Division
(HRD) is 2.75 m/s in hurricanes (Zhang et al., 2016). The Wind-
SAT products with wind speed smaller than 30 m/s are used in
this study, due to we think the WindSAT winds are most reliable
at such wind condition.

3  Methodology
When applying the PFSM wave retrieval algorithm to retrieve

waves, prior information on wind speed is necessary. Therefore,
we first present the methodology of the cross-polarization
coupled-parameters ocean (C-3PO) model, which was de-
veloped for retrieving hurricane winds using cross-polarized SAR
NRCS at C-band. Then the theoretically based PFSM wave re-
trieval algorithm scheme is briefly introduced.

3.1  C-3PO model
It was initially revealed in a study by Vachon and Wolfe (2011)

that cross-polarization NRCS has a strong linear relationship
with wind speed and a quadratic linear model was developed to
retrieved wind speed at low to moderate winds (up to 25 m/s).
Later, a C-band cross-polarized ocean surface strong wind re-
trieval model for dual-polarization SAR, named C-2POD, was de-
veloped based on a collocated dataset, including R-2 VH-polar-
ized NRCS, measurements from a stepped-frequency microwave
radiometer (SFMR) and wind speeds from the NOAA H* wind
model (Zhang and Perrie, 2012). In fact, VH-polarized NRCS has
also been related to radar incidence angle based on a statistical
analysis (Hwang et al., 2015). However, C-2POD models only in-
clude the term of wind speed, taking the following function,

¾0 = p1+ p2 £U10; (1) 

¾0where  is the cross-polarized NRCS united in dB and coeffi-
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Fig. 1.   The quick-look images of six Sentinel-1 (S-1) SAR images in VV-polarization overlaying the tracks of cyclones. a. The image for
Typhoon Lionrock acquired in extra wide-swath (EW) mode on August 27, 2016 at 20:53 Universal Time Coordinated (UTC); b. the
image for Hurricane Lester acquired in EW mode on August 30, 2016 at 14:46 UTC; c. the image for Hurricane Gaston acquired in EW
mode on September 1, 2016 at 20:30 UTC; d. the image for Hurricane Hermine acquired in EW mode on September 4, 2016 at 22:32
UTC; e. the image for Hurricane Hermine acquired in interferometric wide-swath (IW) mode on September 1, 2016 at 23:44 UTC; and
f. the image for Hurricane Karl acquired in EW mode on September 23, 2016 at 22:23 UTC.
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cients p1 and p2 are the tuned constants, U10 is the wind speed at
10 m above sea surface united in m/s.

As proposed in Zhang et al. (2017), an advanced C-3PO mod-
el considers the terms of wind speed and radar incidence angle
through theoretical analysis by using a hybrid backscattering
model. The C-3PO model is stated as follows:

¾0 = A (U10)£ [1+ B (µ)] ; (2a) 

A(U10) = a1 £U2
10 + a2 £U10+ a3; (2b) 

B (µ) = b1 £
µ¡ 34:5

34:5
; (2c) 

¾0 µwhere  is the cross-polarized NRCS united in dB,  is the radar
incidence angle united in degree and matrix a and coefficient b1

are the tuned constants. The C-3PO model has a better perform-
ance than the C-2POD model, because a 2.81 m/s RMSE of wind
speed is achieved when using the C-3PO model at wind speeds
ranging from 9 to 40 m/s, which is less than a 2.90 m/s RMSE us-
ing the C-2POD model (Zhang et al., 2017).

3.2  The PFSM algorithm
The advantage of the PFSM algorithm is that a SAR-derived

wave spectrum is composed of two portions, including wind-sea
and swell spectrum, which are retrieved from two corresponding
portions separated from a prior SAR spectrum. The separation
wave number ks is calculated using the following equation,

ks =

Ã
2:87gV2

R 2U4
10 cos 2'

¡
sin 2' sin 2µ+ cos 2'

¢!0:33

; (3) 

'

where g is the gravity acceleration, V is the satellite flight velocity,
R is the satellite slant range, U10 is the SAR-derived wind speed, θ
is the radar incidence angle and  is the angle of wave propaga-
tion direction relative to radar look direction. The portion of the
SAR spectrum at wave numbers greater than the separation wave
number ks is non-linearly mapped by the wind-sea and the left
portion is linearly mapped by the swell.

'

For wind-sea retrieval, a “first-guess” spectrum is produced
using the widely-used parametric JONSWAP model (see Ap-
pendix) after searching for several best-fit parameters of the
model, including the sea surface wind speed at 10 m height U10,
wave propagation velocity at peak cp and wave propagation dir-
ection at peak , which are prior obtained from a SAR image,
similar to the SPRA scheme. Following this, the MPI scheme is
employed to retrieve the wind-sea spectrum by minimizing a cost
function (Hasselmann and Hasselmann, 1991). In the meantime,
the swell spectrum is directly obtained by inverting the linear-
mapping SAR spectrum, which considers the tilt modulation and
hydrodynamic modulation (Alpers et al., 1981) without the velo-
city bunching (Hasselmann and Hasselmann, 1991). The de-
tailed flowchart of retrieval process has been exhibited as Fig. 2 in
our previous study (Shao et al., 2015).

According to traditional wave theory, SWH Hs and MWP T0 is
calculated using Eqs (4) and (5) from a retrieved one-dimension-
al wave number spectrum Wk,

H s = 4£

sZ
Wkdk; (4) 

T0 =

Z
WkdkZ

k2Wkdk
: (5) 

3.3  WW3 model setup
As mentioned in Section 2, ECMWF winds at 0.125° grids are

the forcing field for the wave simulation. It should be noted that
ECMWF winds have a coarser spatial resolution than water depth
data from 30 arc-second GEBCO. Therefore, ECMWF winds and
GEBCO bathymetric data are both bi-linearly interpolated to be
0.1° in order to obtain reasonable simulations. The simulated
two-dimensional wave spectrum is default resolved into 24 regu-
lar azimuthal directions at an interval of 15° and the frequency
bins f are logarithmically ranged from 0.041 18 to 0.718 6 at an in-
terval of Δf/f=0.1. The time step of spatial propagation is set to
300 s in both the longitude and latitude directions. In particular,
the package of the non-linear term for four wave-wave interac-
tions (quadruplets), named Generalized Multiple Discrete Inter-
action Approximation (DIA), was implemented for the WW3
model, because it showed a good performance for simulation of
typhoon waves according to our recent study (Shao et al., 2018b).

The global simulations from the WW3 model with 0.5° grids
are treated as the open boundary. The ultimate WW3-simulated
wave fields at 0.2° grids, including the spatial coverages of
typhoon and hurricanes, are stored at an interval of 30 min, in-
dicating that the time difference between SAR acquisition time
and WW3-simulated results is within 15 min.

4  Validation
In this section, we first present the validation of SAR-derived

wind speed against measurements from WindSAT. Then a com-
parison between the inverted wave parameters and WW3-simu-
lated results is shown.

4.1  Wind speed
Figure 2 shows the SAR-derived wind maps corresponding to

the six S-1 SAR images acquired in VH-polarization, in which the
cyclone eyes are clearly observed. Although the retrieved wind
speed is up to 40 m/s, the saturation problem is not found which
encounters as applying the C-band co-polarization GMFs.
However, discontinuities exist in the retrieved wind maps, indic-
ated by more obvious changes of wind speed at the edge of each
radar beam than in other regions. This is caused by the instru-
mental noise of the radar beam, because the S-1 SAR image ac-
quired in EW and IW mode is comprised of several radar beams.
In fact, R-2 (Shen et al., 2014) and GF-3 (Shao et al., 2018c) SAR
acquired in dual-polarization also suffer from this problem. For
this reason, the European Space Agency (ESA) is privately work-
ing on reducing the influence of instrumental noise by means of
re-calibrating the S-1 SAR image.

The sub-scenes of S-1 SAR images covering the WindSAT
grids are used here. Moreover, the time difference between col-
lected sub-scenes and WindSAT winds is less than 1 h. In total, in
this study, around 1 000 matchups are available. Figure 3 gives a
visual comparison, showing the SAR-derived wind speeds when
using the empirical C-3PO model and WindSAT winds for
2 m/s of wind speed bin, in which the error bars represent the
standard deviation of each bin. It is found that the RMSE of wind
speed is 2.9 m/s with a 1.1 m/s bias and there is a trend of under-
estimation at wind speeds greater than 10 m/s. It is not surpris-
ing that this performance is worse than the standard error 2 m/s
of SAR-derived wind speed for co-polarization, because the in-
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strumental noise of the radar beam from S-1 is different from that
of the R-2, and the C-3PO model should be adapted for S-1 SAR.
However, winds retrieved from VH-polarization SAR images do
not encounter the saturation problem. In this situation, we think
the retrieved wind is useful for wave retrieval from VV-polariza-
tion S-1 SAR images.

4.2  Wave parameters

'

In the wave retrieval process, the whole S-1 SAR image is di-
vided into a number of sub-scenes with 128×128 pixels, which
have a spatial coverage of 1×1 km2 and 4×4 km2 for EW and IW
mode, respectively. It is well known that the non-linear effect due
to velocity bunching is more pronounced in extreme weather
conditions, causing the short waves to be undetectable. Addition-
ally, precipitation also contaminates the SAR backscattering sig-
nature of cyclones. In this circumstance, the inhomogeneous
sub-scene with poor-quality SAR intensity spectra, where the ra-
tio of image variance and squared image mean is greater than
1.05 (Li et al., 2011), are excluded here. Out of those sub-scenes,

 is extracted from the SAR intensity spectrum, which is an indis-
pensable variable when employing the PFSM algorithm.

As an example, we present the sub-scene extracted from the
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Fig. 2.   The SAR-derived wind maps of six S-1 SAR images acquired in VH-polarization. a. The wind map for Typhoon Lionrock on
August 27, 2016 at 20:53 UTC; b. the wind map for Hurricane Lester acquired on August 30, 2016 at 14:46 UTC; c. the wind map for
Hurricane Gaston on September 1, 2016 at 20:30 UTC; d. the wind map for Hurricane Hermine on September 1, 2016 at 23:44 UTC; e.
the wind map for Hurricane Hermine on September 4, 2016 at 22:32 UTC; and f. the wind map for Hurricane Karl on September 23,
2016 at 22:23 UTC.
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Fig. 3.   Comparison between SAR-derived wind speeds using the
C-3PO empirical algorithm and WindSAT winds for 2 m/s of wind
speed bin, in which the error bars represent the standard devi-
ation of each bin.
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S-1 SAR image taken on September 1, 2016 at 23:44 UTC in Hur-
ricane Hermine, as shown in Fig. 4a. Figure 4b shows the two-di-
mensional SAR spectrum of the corresponding sub-scene in po-
lar coordinates. The retrieved one-dimensional wave spectrum is
shown in Fig. 4c. The SAR-derived SWH is 1.8 m and MWP is 5.4 s,
while SWH is 2.4 m and MWP is 5.2 s from the WW3 model.

In order to systematically evaluate the retrieval accuracy of
SWH and MWP, we compare the retrieval results with simula-
tions from the WW3 model at strong winds. Figure 5 shows that
the RMSE of SWH is 0.69 m with a –0.01 m bias and the RMSE of
MWP is 0.62 s with a –0.17 s bias when using the PFSM algorithm.
It is found that there is larger deviation at low sea state. We think
this is caused by inaccurate wind speeds retrieved from VH-po-
larization S-1 SAR images at low winds smaller than 5 m/s. The
accuracy of wave parameters retrieval is anticipated to be im-
proved using more accurate wind speeds from co-polarization S-
1 SAR images at low winds or re-calibrating images with low in-
strumental noise at the edge of radar beams. The pixel size of col-
lected S-1 SAR images are 40 m and 10 m for azimuth and range
directions, respectively, indicating that ocean wave with wave
length less than 50 m (approximately a 5 s MWP) cannot been
measured due to the coarse spatial resolution of collected SAR
images. This is the probable explanation that the minimum MWP
of retrieved waves is about 5 s in Fig. 5.
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Fig. 4.   The retrieval result for a case study. a. The sub-scene ex-
tracted from the S-1 SAR image taken on September 1, 2016 at
23:44 UTC in Hurricane Hermine; b. the two-dimensional SAR
spectrum, corresponding to Fig. a; and c. one-dimensional wave
spectra retrieved using the PFSM algorithm.

N=17 943
RMSE=0.69 m
bias=-0.01 m

N=17 943
RMSE=0.62 s
bias=-0.17 s

Si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 fr

om
 W

AV
EW

AT
C

H
-I

II
/m 6

5

4

3

2

1

0
0 1 2 3 4 5 6 2 3 4 5 6 7 8 9

SAR-derived significant wave height/m SAR-derived mean wave period/s

4 600

4 140

3 680

3 220

2 760

2 300

1 840

1 380

920

460

0

5 700

5 130

4 560

3 990

3 420

2 850

2 280

1 710

1 140

570

0

N
um

be
r o

f d
at

a

N
um

be
r o

f d
at

a

9

8

7

6

5

4

3

2M
ea

n 
w

av
e 

pe
rio

d 
fr

om
 W

AV
EW

AT
C

H
-I

II
/sa b

 

Fig. 5.     Comparison between SAR-derived wave parameters using the PFSM algorithm and simulations from WAVEWATCH-III
model, in which the error bars represent the standard deviation of each bin. a. Significant wave height for a 0.5 m bin, and b. mean
wave period for a 0.5 s bin.
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Fig. 6.   Comparison between SAR-derived significant wave height using the PFSM algorithm and simulations from WAVEWATCH-III
model, in which the error bars represent the standard deviation of each bin. a. Wind-sea for a 0.3 m bin, and b. swell for a 0.3 m bin.
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We also compare the SAR-derived SWHs of wind-sea and
swell with simulations from WW3 model, as shown in Fig. 6. It is
not surprising that a 0.52 RMSE of linear-inverted swell SWH is
achieved, which is better than a 0.66 RMSE of nonlinear-inverted
wind-sea SWH. In general, the above validation indicates, that
the PFSM algorithm can be applied for wave retrieval from a S-1
SAR image under cyclonic conditions, which is similar to wave
retrieval from C-band SAR at low to moderate sea states.

5  Discussion
As pointed in our previous study (Shao et al., 2017a), wave

characteristics under extreme weather conditions are complic-
ated (Hwang, 2016; Hwang and Fan, 2017; Hwang and Walsh,
2016; Young, 2017), e.g., wind-sea dominates at the right side of a
cyclone movement, wind-sea and cross swell mix at the left side
of a cyclone movement and opposing swell dominates at the rear
side. The wave system in Hurricane Gaston moving north-east-
ern in the Northern Hemisphere is illustrated in Fig. 7 (repro-
duce the Fig. 8 in Shao et al., 2017a). Therefore, we have under-
taken further study around the accuracy of SWH and MWP at dif-
ferent parts of cyclone eyes.

Figure 8 shows cases at the right side of a cyclone eye, where
wind-sea dominates in typical conditions of strong winds on the
right-hand sector. Wind-sea and swell propagate in the same dir-
ection, causing the interaction of swell and strong wind-sea en-
ergy. This leads to a situation whereby the inverted waves using
the PFSM algorithm show a large deviation from the WW3-simu-
lated results (a 0.74 m RMSE of SWH and a 0.71 s RMSE of MWP)
especially at SWH greater than 3 m. In contrast, wind-sea and
swell orthogonally propagate at the left side of the cyclone eye,
where the wind-sea energy is independent of swell energy. Re-
trieval results show a 0.59 m RMSE of SWH and a 0.52 s RMSE of
MWP, as shown in Fig. 9, indicating a good agreement with simu-
lations from the WW3 mode. As for wave retrieval at the rear of
the cyclone where wind-sea and swell propagate in opposite dir-
ections, Fig. 10 shows that the RMSE of SWH is 0.60 m and RMSE
of MWP is 0.42 s.

6  Conclusion and summary
In our previous studies, it was shown that the theoretically-

based PFSM wave retrieval algorithm worked for C- and X-band
SAR at low to moderate conditions. From August to September
2016, several cyclones, e.g., Typhoon Lionrock, Hurricane Lester,

Hurricane Gaston, Hurricane Hermine, and Hurricane Karl, were
captured by S-1. Therefore, it poses an interesting question as to
whether wave can be retrieved from an S-1 SAR image acquired
in dual-polarization under cyclonic conditions.

Because the co-polarization backscattering signal encounters
saturation problems at strong winds, the winds were retrieved
from a VH-polarization S-1 SAR image using the C-3PO model.
The RMSE of wind speed is 2.9 m/s with a 1.1 m/s bias as com-
pared with a retrieved wind speed of up to 40 m/s using measure-
ments from WindSAT, although the instrumental noise of S-1
SAR results in obvious changes of wind speed around the edge of
radar beams. Together with SAR-derived winds, we demonstrate
the applicability of the PFSM algorithm at high sea state. Valida-
tion against the simulations from the WW3 model shows a 0.69 m
RMSE of SWH with a –0.01 m bias and a 0.62 s RMSE of MWP
with a –0.17 s bias. We further investigate the performance at dif-
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Fig.  7.     The wave system in Hurricane Gaston moving north-
eastern in the Northern Hemisphere.
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Fig. 8.   Comparison between SAR-derived wave parameters using the PFSM algorithm and simulations from WAVEWATCH-III model
for cases at the rear of a cyclone eye, in which the error bars represent the standard deviation of each bin. a. Significant wave height for
a 0.5 m bin, and b. mean wave period for a 0.5 s bin.
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ferent parts of cyclone eyes. The interaction between swell en-
ergy and strong wind-sea energy to the right of a cyclone eye
leads to less accurate retrieval results than that at left and rear of
a cyclone eye, where this type of interaction is relatively poor.

It is concluded that the PFSM algorithm is suitable for estim-
ating wave parameters from a C-band S-1 SAR image under cyc-
lonic conditions, although the PFSM algorithm does rely on a
good quality of SAR spectrum. The adaptability of the PFSM al-
gorithm in details will be further studied through more images
the improvement of MTF at high winds, e.g., the change of sea
water dielectric coefficient and feature of azimuthal cut-off of ve-
locity bunching.
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Appendix:
　　The two-dimensional wave spectrum Wk, ϕ in terms of wave number k and propagation direction ϕ has a relationship with the
two-dimensional wave spectrum in terms of wave frequency ω and ϕ,

Wk;Á = W £ GÁ£
d
dk

; (A1) 

in which Gϕ is the directional function and Wω is the one-dimensional JONSWAP spectrum taking the following function.

W = ®£ g2

2
£ exp

h
¡ 1:25£

³
0
´4i

£ ¡; (A2) 

where

¡ = °exp[¡ ( ¡ p)2

2¾2 2 ]; (A3) 

® = 0:006£
µ

U10

cp

¶0:55

; (A4) 

2 = g£ k £ tanh kd; (A5) 

p =
g
cp

; (A6) 

¾ =

(
0:07 p;

0:09 > p:
(A7) 

where g is the gravity acceleration, γ is the peak-enhancement constant assumed to be 3.3, σ is a peak-width parameter, U10 is the sea
surface wind speed at 10 m height, d is the water depth and cp is wave propagation velocity at peak.

　　Gϕ is defined as the normalized distribution of wave energy density at all propagation directions, which is stated as follows:

GÁ = 0:5£ ¯£ sech2[¯£ (Á¡ Áp)]; (A8) 

where

¯ =

8>>><>>>:
2:61£

³
p
´1:3

0:56 p 0:95;

2:28£
³

p
´1:3

0:95 <
p 1:6;

1:24 others

(A9) 

where ϕp is the wave propagation direction at peak.

　　The one-dimensional spectrum Wk is obtained after integrating Wk, ϕ over all directions,

Wk =

Z
Wk; ÁdÁ: (A10) 
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