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Abstract

Linearized shallow water perturbation equations with approximation in an equatorial β plane are used to obtain
the analytical solution of wave packet anomalies in the upper bounded equatorial ocean. The main results are as
follows. The wave packet is a superposition of eastward travelling Kelvin waves and westward travelling Rossby
waves with the slowest speed, and satisfies the boundary conditions of eastern and western coasts, respectively.
The decay coefficient of this solution to the north and south sides of the equator is inversely proportional only to
the phase velocity of Kelvin waves in the upper water. The oscillation frequency of the wave packet, which is also
the natural frequency of the ocean, is proportional to its mode number and the phase velocity of Kelvin waves and
is inversely proportional to the length of the equatorial ocean in the east-west direction. The flow anomalies of the
wave packet of Mode 1 most of the time appear as zonal flows with the same direction. They reach the maximum
at the center of the equatorial ocean and decay rapidly away from the equator, manifested as equatorially trapped
waves. The flow anomalies of the wave packet of Mode 2 appear as the zonal flows with the same direction most of
the time in half of the ocean, and are always 0 at the center of the entire ocean which indicates stagnation, while
decaying away from the equator with the same speed as that of Mode 1. The spatial structure and oscillation
period of the wave packet solution of Mode 1 and Mode 2 are consistent with the changing periods of the surface
spatial field and time coefficient of the first and second modes of complex empirical orthogonal function (EOF)
analysis of flow anomalies in the actual equatorial ocean. This indicates that the solution does exist in the real
ocean, and that El Niño-Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) are both related to Mode 2.
After considering the Indonesian throughflow, we can obtain the length of bounded equatorial ocean by taking
the sum of that of the tropical Indian Ocean and the tropical Pacific Ocean, thus this wave packet can also explain
the decadal variability (about 20 a) of the equatorial Pacific and Indian Oceans.
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1  Introduction

f
¯ = d f =dy

The earliest research of an equatorial wave system was done
by Matsuno (1966). As the Coriolis parameter  is 0 and its deriv-
ative  reaches a maximum at the equator, fluctuations

in equatorial waters become the most distinctive motion in mar-
ine dynamics. In the equatorial ocean, there are Kelvin waves
travelling eastward and Rossby waves travelling westward, as well
as inertial gravity waves of high frequency and mixed Rossby in-
ertial-gravity waves. These waves constitute the Matsuno wave
system, also known as the equatorial wave system. The adjust-
ment of Kelvin and Rossby waves in the equatorial wave system
will produce the oscillation of the interannual time scale and can
explain El Niño-Southern Oscillation (ENSO) circulation. Thus,
the importance of the fluctuations in the equatorial waters has
gradually been recognized.

Waves which propagate in parallel with the shoreline but be-
come obvious only in the vicinity of the shoreline were first stud-
ied by Lord Kelvin and are thus named after their discoverer. Ob-
viously the constraint of shoreline is an important factor. Mat-
suno (1966) found that similar waves also exist even without the
constraint of shoreline when the Coriolis parameter changes with
space, a condition in which a wave form is only obvious close to
the equator and there is only one eastward moving wave. Here,
the equator plays the role of shoreline. Hirst (1989) and Yamagata
and Masumoto (1989) theoretically proved that disturbances
propagating to the east exist in an ocean-atmosphere coupled
model, which they believe is induced by eastward moving equat-
orial Kelvin waves. We also found that subsurface ocean temper-
ature anomalies (SOTA) in the tropical Pacific propagate from
west to east along the thermocline of the equator in years of both
higher-than-average plum rain precipitation and lower-than-av-  
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erage plum rain precipitation in the middle and lower reaches of
the Changjiang (Yangtze) River (Lu and Zhang, 2009), which sug-
gests that this may be related with eastward moving Kelvin waves
in the equatorial Pacific.

¯

Nevertheless, as there are coastlines in the eastern and west-
ern tropical Pacific, Kelvin waves will inevitably be reflected by
the eastern boundaries of the ocean as they travel eastward, dis-
rupting their mode of propagation, which has been used to ex-
plain the ENSO (Chao, 1993). This indicates that travelling Kelvin
waves in an equatorial ocean cannot satisfy lateral boundary
conditions from the perspective of mathematical physics, nor is it
the solution of that bounded ocean. All of the three major tropic-
al oceans, i.e., the Pacific, the Indian Ocean and the Atlantic
Ocean, have boundaries. Thus it is of great significance to seek
the solution of equatorial oceans with boundaries in the equator
wave system. Does the solution exist? If it does, what are its spa-
tial structure and vibrational frequencies? How is it connected
with climate change? These are key issues of physical oceano-
graphy and climate science. Existing research in this regard,
however, is lacking, and the above questions remain largely un-
answered. Our earlier analyses (Zhang, 2006; Zhang and He,
2005; Lu et al., 2014) of complex EOF (empirical orthogonal func-
tion) for the flow field anomalies of the tropical Pacific and the
tropical Indian Ocean show that the spatial field of anomalous
flow fields, in the form of zonal flows, is trapped near the equator
and decays rapidly away from it. This suggests that these equat-
orial flow field anomalies are very likely to be a wave packet solu-
tion satisfying the requirement of the wave system of bounded
equatorial oceans. This wave packet solution may play an im-
portant role in the flow field anomalies in the equatorial ocean.
An ideal ocean model is used in this paper to answer these ques-
tions and prove the above hypothesis that the mode of the com-
plex EOF for the flow field anomalies is the wave packet solution
of the bounded equatorial oceans. Since the upper ocean above
the thermocline can be seen as positive, linearized shallow dis-
turbance equations (positive) with approximation in the equat-
orial  plane is used in this paper. By introducing reduced grav-
ity (Zhang, 1995) and taking the lateral boundary conditions of
the east and west coasts in an ideal ocean into account, the pa-
per seeks the analytical solution of wave packet perturbation (an-
omaly) of the bounded ocean in a climatic scale, which is neces-
sary and highly significant for understanding its shape and char-
acteristics and for explaining the nature of the complex EOF ana-
lysis results of the flow field anomalies made earlier on the trop-
ical Pacific and Indian Oceans.

2  Mathematical model and its solution

½1 ½2

¯

Suppose the ocean is divided homogeneously in the vertical
direction into upper and lower layers, which is bounded by ther-
mocline. The densities of the two layers are constant  and  re-
spectively after the introduction of reduced gravity (Zhang and
He, 2005). Suppose the lower ocean is still, then the governing
equation of the upper ocean may be considered as satisfying lin-
earized shallow disturbance equations (positive) with approxim-
ation in equatorial the  plane.
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where  is the average depth of the upper layer and is a constant;
 represents a small disturbance near ; , is re-

duced gravity and is the gravity. In the non-dimensionalization
of the above equations, “′” represents the non-dimensional vari-
ables. ,  and , are introduced for
dependent variables, with “-” representing the corresponding
scale. ,  and  are introduced for inde-
pendent variables. Here ,  and  represent the scale of cor-
responding variables. Then the corresponding dimensionless
equations (Xuan et al., 2014; Wu, 2002) can be obtained as fol-
lows:
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where  and it is equivalent to long wave approxima-
tion when . The symbol “′” representing non-dimensional
variables in Eq. (2) is omitted for the convenience of writing and
so is in the following text unless otherwise indicated. Suppose the
wave solution is

(u; v; ´)T = [U(y); iV(v); ©(y)]T ¢ ei(kx¡!t); (3) 

where Φ represents the structure of η in the y (meridional) direc-
tion.

Then

!U+yV= k©; (4a) 
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; (4b) 
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= 0: (4c) 
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The solution of Eq. (4) is as follows. First considering the
simplest Kelvin wave, we set . Thus, according to the exist-
ing literature (Xuan et al., 2014; Wu, 2002), the dispersion rela-
tion of  and can be obtained as

! = k: (5) 

It can be seen that the wave propagates eastward, and the
solution of the wave is
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~U ~© = ~U!=kwhere  is a random integral constant; and , is the

amplitude of Kelvin wave.
Next, we take general circumstances into account. According
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U ©

to literature (Xuan et al., 2014; Wu, 2002), similarly, by eliminat-
ing  and  from Eq. (4), we can get the second-order linear
equation with variable coefficients as

d2V
dy2

+

·
"
¡
!2 ¡ k2

¢
¡ k

!
¡ y2

¸
V= 0: (7) 

This is a Hermite equation, which means its solution with
boundaries, i.e., the solution with physical significance, contains
Hermite polynomials. This solution must satisfy the following
condition (Wu, 2002; Zhang and Zhang, 2006):

"
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! kThe above formula is also the dispersion relation of  and .
The solution meeting the requirement of this dispersion relation is
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were  is also a random integral constant and  are Hermite
polynomials. The first six polynomials are , ,

,  ,  ,

, respectively. By eliminating  from

Eq. (4), we can get . By substitut-

ing Eq. (9a) in this equation and using derivative formula of
Hermite polynomials  and recursive formula

, we can get the following equation:
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Û= V̂ V Uwhere , is an arbitrary constant. After and are solved,
the following equation can be obtained according to Eq. (4a):
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It can be seen that factor  exists in the expression of both

Eq. (6) and Eq. (10). This shows that it decays faster than expo-
nential decay with increasing distance from the equator, which
means the disturbance or anomalies may be trapped near the
equator. The following is a brief discussion of the dispersion Eq.
(8), which is a cubic equation for frequency . Three real  can
be obtained with a given wavenumber  (or wavelength) and an
integer . They correspond to a couple of inertial gravitation-
al waves and westward Rossby waves, respectively. The former
two are fast waves and the latter is a slow wave. The frequencies
of the former two and the latter are absolutely distinguishable.
When , one solution of Eq. (8) is , which corres-
ponds to Rossby-inertial gravitational waves. Besides, there are
two inertial gravitational waves propagating eastward and west-
ward, respectively. must be a nonnegative integer in Eq. (8).
However, if , the solution of Eq. (8) is , which is Eq.
(5) above, namely, the dispersion relation of Kelvin wave. Thus,
the dispersion relation of Kelvin wave is also included in Eq. (8).

U; V © and  in Eqs (6) and (9) are substituted into Eq. (3) and
the real part is taken to obtain the solution of the disturbances of
waves propagating along the direction of x in the unbounded

L = L x

ocean, i.e., the solution of anomalies. In practice, however, the
Pacific, Indian and Atlantic Oceans are invariably bounded at the
equator by eastern and western coasts, while none of the above
wave solutions satisfy the boundary conditions. Suppose the
ocean is bounded by the eastern and western coasts in the north-
south direction and its length is , then the boundary con-
ditions can be represented as

x = 0; u = 0; x = 1; u = 0: (10) 

U

H1(y)=2y n=0
U y=0

y
n=1

n=1 H1=2y
H2=4y2 ¡ 2

Then the wave solution satisfying the boundary Eq. (10) can
be obtained. As the purpose of this paper is to discuss the inter-
annual and decadal variabilities of abnormal fluctuations, the
gravity inertia wave which propagates faster than the Kelvin wave
is ruled out. Thus, the Kelvin wave is the only wave propagating
eastward. It can be seen from Eq. (6a) that  reaches the maxim-
um at the equator. After ruling out the gravity inertia wave
propagating westward, the mixed Rossby inertial-gravity wave
and the Rossby wave are the only westward travelling waves. For
the former, as can be seen from Eq. (9b),  when ,
and is 0 at the equator where , obviously making it im-
possible be superposed on Kelvin waves to satisfy the boundary
Eq. (10). Therefore, Kelvin waves superposed on Rossby waves
must be considered to see if it satisfies the boundary Eq. (10). To
explore the interannual and decadal variabilities of the abnor-
mal fluctuations as mentioned above, the lowest frequency
modes should be considered first. Now examine the structure of
Rossby waves with the lowest frequency in the direction of .
Here, we might take . In addition, as fluctuations are
trapped near the equator, it is only necessary to study the situ-
a t i o n s  n e a r  t h e  e q u a t o r .  I f  ,  n o t i c e a b l y  a n d

, it can thus be derived that:
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The structure of Eq. (11a) is the same with that of Eq. (6a) in

the direction of . When , it can be written as
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As Eq. (11b) shows, . It can also be found that the struc-
ture of  is the same with Eq. (6b) in the direction of . Thus we
can consider the superposition of eastward travelling Kelvin
waves and westward travelling Rossby waves when . Here,
take the frequency  of Kelvin wave, wave number  and integ-
ral constant . Then the solution of eastward travelling waves in
an unbounded ocean is (substitute Eq. (6a) into Eq. (3) and take
the real part of it)

u1 = ~U1e
¡y2

2 cos (k1x ¡ !0t) : (12a) 

¡!0 n=1Take the frequency  of Rossby wave, when , wave

  Zhang Dongling et al. Acta Oceanol. Sin., 2019, Vol. 38, No. 3, P. 45–59 47



k2 Ûnumbers  and integral constant . Then the solution of west-
ward travelling waves in an unbounded ocean is (substitute Eq.
(11a) into Eq. (3) and take the real part of it)

u2 = Û2
2k2

!2
0 ¡ k2

2
e
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2
y2

cos (k2x+!0t) : (12b) 
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¡
!2

0 ¡ k2
2

¢
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Equations (12a) and (12b) are both solutions of Eq. (2). The
equations are homogeneous linearity equations and satisfy a su-
perposition principle. Therefore, the solution  after
superposing two waves is also the solution of Eq. (2). Now, take

integral constants  and . Then
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Equation (5) shows that 

can be gotten from Eq. (8). For convenience’s sake while not sac-
rificing generality, we take a long wave approximation, i.e., take

. Here, the dispersion relation of Rossby wave is 
and  can be derived. Substituting this into Eq. (13), we
can get

u0 = U0e¡
y2

2 ¢ sin (2k1x) ¢ sin (k1x+!0t) : (14a) 

U0

In the above equation, the integral constant is still denoted by
. The equation is a wave packet and satisfies Eq. (2). Here, we

have

v0 = v1 ¡ v2 = 0; (14b) 

´0 = ´1 ¡ ´2 = ©0e
¡y2

2 sin (2k1x) sin (k1x+!0t) ; (14c) 

x = 0; u0 = 0 x = 1
k1 = l =2 l

x = 1; u0 = 0
k1

k1 = l =2 l

l k1

Equation (14a) can now be examined to see whether it satis-
fies the boundary Eq. (10). Obviously, it satisfies the conditions
that . In addition, when , if it satisfies the re-
lation , here being an integer and a mode number,

then it also satisfies the boundary condition . We
can therefore see that wave number of Kelvin wave cannot be
arbitrary, and can only take discrete values satisfying the rela-
tionship  (for  is a positive integer). Once mode num-

ber  is determined, then wave number is fixed, and according
to Eq. (5), the frequency is also determined. Therefore, the abso-
lute value of the frequency of the corresponding Rossby wave
equals the frequency of the Kelvin wave and the wave number of
the Rossby wave is three times of that of the Kelvin wave.

Finally, in order to discuss and compare with actual ocean
situations, the above dimensionless solution is converted to a di-
mensional one. The following dimensional quantity is

x = 0; u = 0; x = L ; u = 0; (15) 

L
k1 = l =L

where is the length of the bounded ocean. The wave number of
the Kelvin wave can only be . Thus the solution satisfy-

ing Eq. (1) and boundary Eq. (15) at the same time near the
equator is
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Note that all variables and parameters in the above Eq. (15)
are dimensionless. It can be seen from Eq. (16) that the solution
is a wave package and its envelope is a sine wave unchanged with
time, of which the wave number is  and the wave length is

. The carrier frequency is a sine wave propagating westward
and its wave number is , the wave length is , the wave

speed is , the oscillation frequency is 

 and the oscillation period is 

. The frequency  and the period  is also the respective

frequency and period of the bounded equatorial ocean wave
packet.

3  Analysis and discussion

¹H = 200 m (½2 ¡ ½1) =½2 1:704£ 10¡5

g=9:8 m=s2 ĝ=1:67£ 10¡4

c0 =

q
ĝ ¹H = 0:183 m=s ¯=2:289£10¡11 m¡1 ¢ s¡1

U0 = 0:02 m=s ¯=(2c0) = 6:26£ 10¡11

L l

In the following calculations, take the standard depth of the
upper ocean , take  coefficient 

and acceleration of gravity . In this case 

and . Then take 

and . Thus . Note that these

environmental parameters are not related to the length of the
bounded ocean  or mode number .

3.1  Results regarding the equatorial Pacific
The following are calculation results regarding the equatorial

Pacific. The equatorial Pacific Ocean spans a distance of approx-
imately 160° at longitude in the east-west direction. Take the dis-
tance L=17 600 km.

(1) The result of Mode 1.
l = 1

u y = 0
t = 0; T=8; T=4; 3T=8; T=2; 5T=8; 3T=4; 7T=8; T

¾ = 1:631£ 10¡8 s¡1

T = 12:21

3T=8 7T=8

´0=(c0=ĝ)u0

y = 0

Take mode number , and the images of the abnormal
wave packet of the equatorial Pacific Ocean can be obtained from
Eq. (16). Figure 1 shows the wave form of zonal flow anomalies of
the ocean wave packet, i.e., the wave form of , when  at
t ime .  Here,
take L=17 600 km, and the corresponding oscillation frequency of
the wave packet is , the oscillation period

 a, manifesting decadal variability. The figure shows
that the zonal flow anomaly is 0 in the east-west coast of the
equatorial ocean, which satisfies the boundary Eq. (15). The zon-
al flow anomalies show consistency across the entire ocean most
of the time, i.e., half-wave abnormality. It shows an abnormal
wave in a rather short period only when conversion occurs in the
zonal flows (at the moment  and ) with a rather small
abnormality value. The wave form is restored to that in the start-
ing time at the end of a cycle. The amplitude of the zonal flow an-
omaly of the ocean wave packet is about 0.02 m/s. As ,
the wave form of upper depth (thickness) anomaly of the ocean
wave packet at the equator ( ) at the above moments is the
same as in Fig. 1. The thickness anomalies, with an approximate
amplitude of 22 m, also show consistency across the entire ocean
most of the time.

Figure 2 is the vector diagram of flow field anomalies of the
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wave packet in a range of 1 000 km (about 10º) to the equator in
this mode when t=0, T/4, T/2, 3T/4. The figure shows that the
meridional flow anomaly is 0 and the zonal flow anomalies are
invariably in the east-west direction at the above moments. The
flow field anomalies reach the maximum in the central equatori-
al ocean and decay rapidly away from the equator, and are lim-
ited to within a range of about 2º of the equator. Besides, the flow
field anomalies show very strong characteristics of equatorially
trapped waves. On the east and west coasts of the ocean, the flow
field anomaly is always 0, which satisfies the above boundary
conditions. When t=3T/8 or t=7T/8, the time when the flow field
anomaly changes its direction, the consistent east-west flow is
disrupted (figure omitted).

t=0; T=4; T=2;

3T=4

t = 3T=8 t = 7T=8

Figure 3 shows the distribution of thickness anomalies of the
wave packet in the same range of Fig. 2 when 

, respectively. As can be seen from this figure, the thickness

anomalies show consistency across the entire ocean at the above
moments, indicating half-wave abnormality. The anomaly is 0 on
the east and west coasts. Its absolute value reaches the maxim-
um at the center of the ocean and decays rapidly away from the
equator, and is limited to within a range of about 2° of the equat-
or, which is the same as that of the above mentioned flow anom-
alies. When or , which is the time of positive-

negative conversion of the thickness anomalies, the consistency
of the thickness anomalies is disrupted (figure omitted).

(2) The result of Mode 2
l = 2

u
y = 0 t = 0; T=8; T=4; 3T=8; T=2; 5T=8; 3T=4; 7T=8; T

3:262£ 10¡8 s¡1

Take mode number  and the images of anomalies of the
wave packet of the equatorial Pacific Ocean can be obtained from
Eq. (16). Figure 4 shows the wave form of the zonal flow anom-
alies of the ocean wave packet, namely, the wave form of , when

 at time .

Here, take L=17 600 km, and the corresponding oscillation fre-
quency of wave packet is , the oscillation period
is T=6.10 a, manifesting interannual variability. As can be seen
from the figure, the zonal flow anomaly is always 0 on the east-
west coasts of the equatorial ocean, which satisfies the boundary
Eq. (15). In stark contrast to Mode 1 (Fig. 1), at this time there is a
stagnation point at the center of the ocean, where the zonal flow
anomaly is always 0. This stagnation point splits the ocean into
eastern and western halves. The amplitude of zonal flow anom-
alies of the ocean wave packet is also about 0.02 m/s. The wave

y = 0
form of the upper depth (thickness) anomaly of the ocean wave
packet at the equator ( ) at the above moments is the same
as in Fig. 4, also with an approximate amplitude of 22 m.

t = 0; T=4; T=2; 3T=4

t = 3T=8 t = 7T=8

3T=8 5T=8

Figure 5 is the vector diagram of flow field anomalies of the
wave packet in the range of 1 000 km (about 10°) to the equator in
this mode when . In this figure, the meridi-

onal flow anomaly is also 0, and the zonal flow anomalies decay
rapidly away from the equator with the same speed as that of
Mode 1 and are limited to within a range of about 2° of the equat-
or. Besides, the flow field anomalies show very strong character-
istics of equatorially trapped waves. The flow field anomalies are
always 0 on the east and west coasts of the ocean, which satisfies
the above boundary conditions, as well as at the center of the
ocean. As shown in Figs 4 and 5, the direction of zonal flow an-
omalies of Mode 2 is consistent in the eastern half of the ocean
most of the time, and so is in the western half. However, the dir-
ections of the flow in the eastern and western half might be the
same or opposite. In this case, the zonal flow anomalies of this
mode are semi-wave abnormalities in the eastern half of the
ocean. When  and , the time when the flow

field anomaly changes direction, there will be a one-wave anom-
aly lasting for a rather short period in half of the ocean within this
range, with a rather small value. Situations are the same in the
western half of the ocean except that the time is  and .

Notice that the above half-wave and one-wave analysis is for half
of the ocean. More complex analysis is needed for the entire
ocean when the eastern and western halves of the ocean are both
taken into consideration.

t = 0; T=8; T=4; 3T=8; T=2; 5T=8; 3T=4; 7T=8
Figure 6 shows the distribution of thickness anomalies of

Mode 2 when ,

respectively. More diagrams are given regarding mode 2 than
Mode 1 for the sake of the following discussion. As can be seen
from this figure, the thickness anomalies of the wave packet is
consistent with the same sign in the eastern and the western half
of the ocean. Its absolute value reaches the maximum at the cen-
ter of the ocean and decays rapidly to the north and south sides
of the equator at the same speed as that of Mode 1. This thick-
ness anomaly is also limited to within a range of about 2° of the
equator and trapped near the equator. The anomaly is always 0 at
the east and west coasts as well as at the center of the ocean,
which is different from Mode 1 (Fig. 3).
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Fig. 1.   The wave form of zonal flow anomalies of the ocean wave packet at the equator at different time of Mode 1. The solid line, the
cross line, the hollow round line and the solid round line represent the wave form in time 0, T/8, T/4 and 3T/8, respectively. In Fig. 1a,
T represents period and T=12.21 a; and in Fig. 1b, the solid line, the cross line, the hollow round line, solid round line and the hollow
block line represent the wave form in time T/2, 5T/8, 3T/4, 7T/8 and T .
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3.2  The results of the equatorial Indian Ocean and the Atlantic
Ocean
As all environment parameters in this paper are the same as

the above beside the length of the ocean in the east-west direc-
tion, the wave form of the ocean wave packet and its attenuation
to the north and south of the equator are the same, except that
difference in length L of the equatorial Indian Ocean and the
equatorial Atlantic Ocean in the east-west direction will affect the

oscillation frequency and period of the wave packet of each
mode. This section gives the results in this regard. While the
above figures show the wave form, we will only replace L in these
figures with the length of the equatorial Indian Ocean and the
equatorial Atlantic and T with the oscillation period of the equat-
orial Atlantic and the equatorial Indian Ocean.

(1) The results regarding the equatorial Indian Ocean
First, as to Mode 1 results of the equatorial Indian Ocean, take
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Fig. 2.   Vector diagram of flow field anomalies of Mode 1. a. t=0, b. t=T/4, c. t=T/2, and d. t=3T/4.
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l = 1

¾ = 3:729£ 10¡8 s¡1 T = 5:34

l = 2

¾ = 7:457£10¡8 s¡1 T = 2:67

mode number , and L=7 700 km as the equatorial Indian
Ocean in the east-west direction spans about 70° degrees at lon-
gitude. The results indicate that the oscillation frequency is

 and the period is a for Mode 1,

manifesting the interannual variability. Then, as to Mode 2 res-
ults of the equatorial Indian Ocean, take mode number  and L=
7 700 km. The results indicate that the oscillation frequency is

and the period is  a for Mode 2, also
manifesting the interannual variability. The above results illus-
trate that the oscillation frequency of the wave packet is higher
than that of the equatorial Pacific Ocean while the period is
shorter than that of the equatorial Pacific Ocean because the
length of the equatorial Indian Ocean in the east-west direction is

smaller than that of the equatorial Pacific Ocean.
(2) The results regarding the equatorial Atlantic

l = 1

¾ = 5:800£ 10¡8 s¡1 T = 3:43

l = 2

¾ = 1:160£ 10¡7 s¡1 T = 1:72

First, as to Mode 1 results of the equatorial Atlantic Ocean,
take mode number  and L=4 950 km as the equatorial At-
lantic Ocean in the east-west direction spans about 45° at longit-
ude. The results indicate that the oscillation frequency is

 and the period is a for Mode 1,

manifesting the interannual variability. Then, as to Mode 2 res-
ults of the equatorial Atlantic Ocean, take mode number  and L=
4 950 km. The results indicate that the oscillation frequency is

and the period is  a for Mode 2,

also manifesting the interannual variability. The above results il-
lustrate that the oscillation frequency of the wave packet is high-
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Fig. 3.   The distribution of thickness anomalies of Mode 1. a. t=0, b. t= T/4, c. t= T/2, and d. t=3T/4.
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er than that of the equatorial Pacific Ocean and the period is
shorter than that of the equatorial Pacific Ocean because the
length of the equatorial Atlantic Ocean in the east-west direction
is smaller than that of the equatorial Pacific Ocean.

3.3  Discussion of solution of the wave packet

¯=(2c0) ¯

c0 =
q
(½2 ¡ ½1) =½2g ¹H =

q
ĝ ¹H

c0

(½2 ¡ ½1) =½2
¹H

c0

c0

¯=(2c0)

First, as to the speed of decay of wave packet anomalies in a
bounded equatorial ocean away from the equator, it depends on
the value of . Because  of the earth is a constant, so the

value is inversely proportional to .

The smaller  is, the faster the wave packet decays away from the
equator. In fact, given the difference of  and  in the

above three oceans, the value of  will vary slightly, but should
be similar in general, thus in this paper is given the same value,
resulting in the same value of . This suggests identical de-

gree of attenuation of the wave packet anomalies to the north
and south sides of the equator.

l l = 1

l = 2

l

Then, as to the relationship between the wave packet anom-
alies and the mode number , when , the wave packet an-
omalies across the entire ocean appear in semi-wave forms most
of the time (Figs 1–3). The wavelength of the wave packet anom-
alies is twice that of the entire ocean in the east-west direction on
the equator. When , the wave packet anomaly appears in the
semi-wave form (Figs 4–6) in half of the ocean most of the time.
The greater the mode number , that is, the higher the wave
mode, the shorter the wavelength of the wave packet anomaly.

l

c0

l

Moreover, regarding the oscillation frequency and period of
the wave packet anomalies, the solution of the equatorial wave
packet in a bounded ocean as studied in this paper is a free fluc-
tuation satisfying the lateral boundary conditions in a bounded
ocean. When length L of a bounded equatorial ocean in the east-
west direction, mode number  and the phase velocity of equat-
orial Kelvin wave are determined, the oscillation frequency and
period can also be determined. As the value of  is constant in
this paper, the oscillation frequency (period) depends only on
the scale of the bounded ocean on the equator and the mode
number, and therefore the oscillation frequency of the wave
packet is the natural frequency of the ocean. It can be seen from
Eq. (16) that the longer length L of the equatorial ocean in the
east-west direction and the smaller mode number , the lower the

natural frequency of the wave packet anomalies and the longer
the period and wavelengths. The oscillation of the wave packet
manifests the interannual and decadal variabilities for low modes
(Mode 1 or 2) regarding the length in the east-west direction of
the three oceans on the equator.

Finally, regarding the flow field anomalies of the equatorial
ocean wave packet and depth (thickness) anomalies, the corres-
ponding thickness anomalies are positive (negative) in the range
of east (west) ward propagating flow anomalies close to the
equator. The absolute value of the thickness anomalies reaches a
maximum when the absolute value of the flow field anomalies is
at the maximum, which can be understood from analyzing Eqs
(16a) and (16c) (Figs 2, 3, 5 and 6). Thus, the configuration of flow
field and depth (thickness) anomalies is consistent with the clas-
sic equatorial Kelvin wave (Zhang and Zhang, 2006). It is worth
noting that the thickness anomalies of the upper ocean can re-
flect the temperature anomalies of the upper ocean to a certain
extent despite the fact that the temperature cannot be intro-
duced in the above shallow water (positive) mode. The temperat-
ure anomaly of the upper ocean is positive (negative) when the
thickness anomaly is positive (negative), which will be needed in
the following examination of the relationship of the wave packet
with the ENSO and the IOD (Indian Ocean dipole).

4  Comparison with actual equatorial oceans

4.1  Comparison with the actual equatorial Pacific

l = 1

l = 1

We have conducted the complex EOF analysis of the flow field
anomalies on the ocean surface (hereinafter referred to as the
former) in multiple years in the tropical Pacific in winter, spring,
summer, and autumn (represented by January, April, July and
October, respectively) (Lu et al., 2014), and found that the distri-
bution of the flow field anomalies corresponding to the wave
packet anomalies calculated from Section 3.1 when (herein-
after referred to as the latter) in the equatorial Pacific Ocean is
very similar to the spatial distribution of the first mode of the
former. The first mode of the former is a zonal flow with the same
direction near the equator throughout the Pacific with almost no
meridional flow. Its flow field is also trapped near the equator
[see Fig. 1 in Lu et al., (2014)]. When , the oscillation period
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Fig. 4.   The wave form of zonal flow anomalies of the ocean wave packet at the equator at different time of Mode 2. The solid line, the
cross line, the hollow round line and the solid round line represent the wave form in time 0, T/8, T/4 and 3T/8, respectively. In Fig. 4a,
T represents period and T=6.10 a; and in Fig. 4b, the solid line, the cross line, the hollow round line, solid round line and the hollow
block line represent the wave form in time T/2, 5T/8, 3T/4, 7T/8 and T .
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of the latter is 12.21 a as discussed above, which manifests the
decadal variability. Lu et al. (2014) conducted the wavelet analys-
is of the real time coefficient of the first mode of the former, and
found significant decadal variability of 14 a and 16 a (Figs 4a and
c in Lu et al., (2014)). The decadal variability period of the former
in that mode in winter and summer is similar with the oscillation
period of Mode 1 of the latter, especially in winter. Thus the first
mode of the complex EOF analysis for the equatorial Pacific in

winter and summer is equivalent in nature to the wave packet
anomalies in the equatorial Pacific Ocean of Mode 1. Therefore
the wave packet anomalies of Mode 1 in this paper exist in actual
situations. It has also been proposed that the nature of the first
mode of the former is equatorial Kelvin wave anomalies (Lu et
al., 2014). Seen from the present, this judgment is still not accur-
ate because the anomalies of pure equatorial Kelvin waves do not
satisfy the boundary conditions of east and west coasts. However,
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Fig. 5.   The vector diagram of flow field anomalies of Mode 2. a. t=0, b. t= T/4, c. t= T/2, and d. t=3T/4.
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as Lu et al. (2014) suggested, the equatorial Kelvin wave anom-
alies indeed play an important role here as one of the two com-
ponents of the wave packet solutions.

It has also been found that the flow field distribution of Mode
2 of the latter is also similar to the distribution of the second
mode of anomalies in surface flow field of the former. Both of

them appear as waves trapped near the equator and a disruption
is observed in consistent zonal flow anomalies across the ocean,
with the zonal flow anomalies in opposite directions in the east-
ern and western ocean (Fig. 5 herein and Fig. 5 in reference Lu et
al., (2014)). The wavelet analysis of time coefficient of the second
mode of the former indicates a very significant variation period of
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6 and 7 a in winter and summer, respectively (Lu et al. 2014). The
oscillation period of Mode 2 of the latter is 6.1 a as discussed
above. The period of interannual variability of the second mode
of the former and the oscillation period of Mode 2 of the latter are
both manifested as the interannual variability in winter and sum-
mer, being very close to each other in value, and almost identical

in winter. From the wave form and period of flow field anomalies

on the equator, we may consider the second mode of the com-

plex EOF analysis for flow field anomalies in the equatorial Pa-

cific in winter and summer as equivalent in nature to the wave

packet anomalies in the equatorial Pacific Ocean of Mode 2.
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Fig. 6.   Distribution of thickness anomalies of Mode 2. a. t=0, b. t= T/8, c. t= T/4, d. t=3T/8, e. t= T/2, f. t=5T/8, g. t.=3T/4, and h. t=7T/8.
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4.2  Comparison with the actual equatorial Indian Ocean and At-
lantic Ocean

4.2.1  Comparison with the actual equatorial Indian Ocean
We conducted the complex EOF analysis of the flow field an-

omalies on the surface of the tropical Indian Ocean in May and
October (Zhang, 2006; Zhang and He, 2005), and found that the
flow field distribution of the wave packet anomalies (the latter) in
the equatorial ocean of Mode 1 obtained by taking the length of
the equatorial Indian Ocean in the east-west direction in Section
3.2 is also very close to the surface distribution of the first mode
of the former (Fig. 6.1–1 in Zhang (2006) and Fig. 2 in Zhang and
He (2005)). The spatial field of the first mode of the former ap-
pears as consistent zonal flows throughout the Indian Ocean
trapped near the equator. The oscillation period of Mode 1 of the
latter is 5.34 a as described above and the changing period of the
modulus of the complex time coefficient of the first mode of the
former is 4 a (Figs 6.1–7 in Zhang (2006)). Thus the period of in-
terannual variability of the first mode of the former is very close
to the oscillation period of Mode 1 of the latter. The above analys-
is indicates that the first mode is equivalent in nature to the wave
packet anomalies of Mode 1 in the equatorial ocean.

The surface spatial distribution of the second mode of the
former is also similar to the distribution of the flow field of Mode
2 of the latter. The consistent zonal flow anomalies throughout
the ocean are now disrupted and may have opposite directions in
the eastern and western parts of the ocean (Figs 6.1–3 in Zhang
(2006)) and Fig. 6 in Zhang and He (2005)). The oscillation peri-
od of Mode 2 of the latter is 2.67 a as discussed above while the
changing period of the modulus of the complex time coefficient
of the second mode of the former is 4 a (Figs 6.1–8 in Zhang
(2006)). The values of the former and the latter are close, again
indicating that the second mode is in nature the wave packet an-
omalies of Mode 2 in the equatorial Indian Ocean.

Xuan et al. (2014) showed the distribution of surface currents
of the tropical eastern Indian Ocean through OSCAR in May and
found rapid eastward jets in the equatorial waters in a range of
(2°S–2°N) with a maximum speed of 0.7 m/s, and identified them
as Wyrtki jets (Fig. 3 in Zhang and He (2005)) The position and
distribution of the jets show great similarity to the first mode of
the wave packet solution. Thus the jets can been seen as the wave
packet solution in the equatorial Indian Ocean.

Dong et al. (2016) provided the results of the complex EOF
analysis based on SST data in the Indian Ocean, where the spa-
tial field of the first mode shows a positive SST anomaly distribu-
tion across the entire equatorial Indian Ocean, with the strongest
positive anomaly observed at the center of the ocean (Fig. 2 in
Dong et al. (2016)), which is very similar to the thickness anom-
aly distribution of Mode 1 of the wave packet discussed in this
paper (Fig. 3).

The above analyses indicate that the solution of the wave
packet exist in the actual equatorial Indian Ocean.

4.2.2  Comparison with the actual equatorial Atlantic Ocean
As no complex EOF analysis for the flow field anomalies in

the tropical Atlantic has been conducted to the best of our know-
ledge, no detailed discussion of the wave packet anomalies in the
equatorial Atlantic is provided here. However, past research has
shown by analyzing the principal component of ship data that
the maximum of the first principal component of upper-ocean
sea surface temperature anomalies (SSTA) in the tropical At-
lantic occurs on the equator and shows a quasi-biennial variabil-
ity (Houghton and Tourre, 1992). This spatial distribution has

similarities with the distribution of thickness anomalies of Mode
1 of the wave packet anomalies in the equatorial Atlantic in Sec-
tion 3.2. This is because thickness anomalies of the upper layer of
sea water may reflect the temperature anomalies of the upper
ocean. The oscillation period of Mode 1 of the equatorial Atlantic
is 3.43a in Section 3.2, which is close to the quasi-biennial variab-
ility as mentioned above.

4.3  Considering the Indonesian throughflow

1:135£ 10¡8 2:270£ 10¡8 s¡1

The equatorial Atlantic is self-enclosed, a feature not shared
by the equatorial Pacific or Indian Ocean. The Indonesian
throughflow travels between the equatorial Pacific and Indian
Oceans, through which the equatorial Kelvin waves can enter the
equatorial Pacific from the equatorial Indian Ocean, and the
tropical Rossby waves can enter the tropical Indian Ocean from
the tropical Pacific Ocean. When the throughflow is considered,
the length of the bounded ocean on the equator in the east-west
direction shall be equal to the sum of the length of the equatorial
Indian Ocean and the length of the equatorial Pacific Ocean, i.e.,
L = 7 700 + 17 600 = 25 300 (km). This paper uses L to calculate
the oscillation frequency and period of Modes 1 and 2 of the wave
packet of the bounded equatorial ocean. Their respective oscilla-
tion frequencies are  and , with cor-
responding oscillation periods of 17.55 and 8.77 a, showing the
decadal variability and the inter annual variability, respectively.

The first mode of this wave packet appears as consistent zon-
al flow field and thickness anomalies in the equatorial Indian and
Pacific Oceans most of the time (Section 3), with a calculated os-
cillation period of 17.55 a. The real time coefficients of the first
mode of flow field anomalies in the actual tropical Pacific show
the decadal variability of 22 and 21 a in winter and summer, re-
spectively (Fig. 4 in Lu et al. (2014)). However, the modulus of the
complex time coefficient of the first mode of the flow field anom-
alies shows decadal variability of 18 a in the actual tropical Indi-
an Ocean in May (Figs 6.1–7 in Zhang (2006). The above period of
decadal variability of the actual ocean is similar to the oscillation
period of Mode 1 of the wave packet, especially in the tropical In-
dian Ocean in May when the two are almost identical. This sug-
gests that Mode 1 of this wave packet does exist in reality, which
is the reason why the tropical Pacific Ocean and the tropical Indi-
an Ocean show the decadal variability of the flow field and thick-
ness anomalies.

There is a stagnation point at the midpoint of the length of
Mode 2 of this wave packet L=25 300 km, i.e., around 160°E,
where the value of the zonal flow and thickness anomalies is al-
ways 0. This stagnation point divides the tropical ocean into east-
ern and western halves. The western half comprises the tropical
Indian and Pacific Oceans west of 160°E, and the eastern half
comprises the tropical Pacific Ocean east of 160°E, accounting for
most of the entire tropical Pacific Ocean. As the consistency of
the flow field and thickness anomalies in the eastern and west-
ern halves of the ocean is disrupted, the zonal flow and thickness
anomalies in the tropical Indian Ocean and tropical Pacific
Ocean may become inconsistent, although the change in zonal
flow and thickness anomalies is still consistent in the entire trop-
ical Indian Ocean most of the time. The oscillation period of
Mode 2 of this wave packet is 8.77 a. The modulus and argument
of the complex time coefficient of the first mode in the flow field
anomalies in the tropical Indian Ocean have a decadal variability
of 8 a in (Figs 6.1–7 in Zhang (2006)), almost identical to the oscil-
lation period of Mode 2 of this wave packet.

Recent findings by Dong et al. (2016) show that warm SST an-
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omalies formed in the eastern tropical Pacific are accompanied
by basin-wide warm SST anomalies in the Indian Ocean, and vice
versa, which is very similar to the thickness anomaly distribution
of Mode 2 after considering the Indonesian throughflow in this
paper (Figs 6b and f). Mode 2 has a variability of 8 a and a double
period of 16 a, which is very close to decadal variability in the
above mentioned findings (Fig. 2 in Dong et al. (2016)). Dong et
al. (2016) also found that in the ocean-atmosphere coupled mod-
el, once SST changes in the eastern tropical Pacific are given as
observed data, then the amplitude and periodic changes of SST
decadal variability in the Indian Ocean can be simulated in great
detail. This suggests that although human activities have domin-
ated the long-term warming of the Indian Ocean, its decadal vari-
ability is mostly determined by the internal variability of the cli-
mate system. The results of Mode 2 of the wave packet after con-
sidering the Indonesian throughflow can provide physical ex-
planations for these findings (see “(3) Important findings” in Sec-
tion 4.4)

The above analysis shows that this wave packet can explain
the decadal variability of the tropical Pacific Ocean and the trop-
ical Indian Ocean after considering the Indonesian throughflow,
whose importance cannot be ignored.

4.4  Relationship with ENSO and IOD
The ENSO and the IOD are the most striking phenomena in

the tropical Pacific and tropical Indian Ocean, respectively. Many
studies have been done on the ENSO and the IOD and most con-
sider them as caused by air-sea interaction (Keller et al., 2015;
Sun et al., 2014, Su et al., 2015; Sein et al., 2015). Considering
their  shared feature as the disruption of  inconsistency
throughout the tropical ocean, we might interpret them as re-
lated to Mode 2 of this wave packet. As discussed above, the
thickness anomalies in the upper ocean can reflect the temperat-
ure anomalies to a certain extent in the shallow (positive) mode
in this paper although the temperature cannot be introduced.
When the thickness anomalies are positive (negative), the SSTA
in the upper ocean is also positive (negative).

(1) Relationship with the tropical Pacific Ocean
The following is an examination of the relationship between

the thickness anomalies of Mode 2 of this wave packet and the
ENSO cycle when the length of the equatorial Pacific in the east-
west direction L=17 600 km. Figure 6 shows positive and negative
thickness anomalies in the eastern and western halves of the
equatorial ocean at the initial time when t=0, respectively. When
t= T/8 (T is the natural period), positive thickness anomalies in
the western half of the ocean reach the maximum value while
those of the eastern half are close to the normal value; when t=
T/4, the positive anomalies in the western half of the ocean de-
crease while those in the eastern half increase; when t=3T/8, the
positive anomalies in the eastern half of the ocean reach the
maximum value while those in the western half are close to the
normal value, constituting an El Niño event; when t= T/2, the
positive anomalies in the eastern half of the ocean decrease while
the negative anomalies in the western half of the ocean increase;
when t=5T/8, the negative anomalies in the western half of the
ocean reach the maximum value while those in the eastern half
are close to the normal value; when t=3T/4; the negative anom-
alies in the western half of the ocean decrease while those in the
eastern half increase; when t=7T/8, the negative anomalies in the
eastern half of the ocean reach the maximum value while those
in the western half are close to normal value, constituting a La
Niña event. When t=T, the distribution of thickness anomalies in
the ocean is restored to that at the initial time, completing an EN-

SO cycle. The natural period of the cycle T is 6.1 a, which falls
within a period of 3–7 a in an actual ENSO cycle.

It has been mentioned that the second mode of the complex
EOF analysis for the flow field anomalies is also the ENSO mode
and has an interannual variability of 5–7 a, which is consistent
with the above analysis (Lu et al., 2014). A joint complex EOF
analysis has been made for an atmospheric wind field and a flow
field in May in the tropical Pacific Ocean (Lu and Zhang, 2009),
which shows that its second mode is also the ENSO mode and the
modulus and argument of the complex time coefficient of this
mode both have an interannual variability of about 5 a (Fig. 6 in
Lu and Zhang (2009)), which is very close to the natural period of
the above wave packet solution, i.e., 6.1 a. The spatial field on the
ocean surface of this mode also shares features of the above wave
packet solution (Fig. 4 in Lu and Zhang (2009)).

(2) Relationship with the IOD in the tropical Indian Ocean
The surface of the tropical Indian Ocean demonstrates the

typical SSTA, which has huge influence on the climate of the In-
dian Ocean and its surrounding areas. During positive IOD
events, the SSTA is positive in the western equatorial Indian
Ocean and negative in the eastern equatorial Indian Ocean, and
vice versa during negative IOD events (Yan and Zhang, 2004).
Figure 6 suggests obvious negative and positive thickness anom-
alies in the eastern and western halves of the ocean at the initial
time when t=0 and the length of the equatorial Indian Ocean in
the east-west direction L=7 700 km, constituting a positive IOD
event. There are obvious positive and negative thickness anom-
alies in the eastern and western halves of the ocean when t= T/2,
constituting a negative IOD event. The distribution of the thick-
ness anomalies in the ocean is restored to the positive IOD event
at the initial time when t=T, thus completing an IDO cycle. Here
the period of cycle is 2.67 a.

Although Zhang (2006) and Zhang and He (2005) both men-
tioned that the second mode of the complex EOF for the flow
field anomalies is associated with the ENSO, strong upward and
downward flows are present in the eastern and western equatori-
al Indian Ocean, respectively, from the vertical motion field near
the equatorial surface in the two studies. Corresponding to a ver-
tical field, obvious cold and warm anomalies exist in the eastern
and western equatorial Indian Ocean in the temperature field
near the surface, which is exactly the configuration of the SST an-
omalies during the positive IOD events. When the argument of
complex time coefficient is inverse (Figs 6.1–6 in Zhang (2006)
and Fig. 9 in Zhang and He (2005)), the configuration during the
negative IOD events is formed. This second mode has a 4a inter-
annual variability, which is also similar to the oscillation period
of 2.67 a of Mode 2 of the above wave packet solution.

(3) Important findings
The above discussion about the wave packet solution of the

bounded ocean shows that the oscillation frequency of the wave
packet is the natural frequency of the ocean. It depends only on
the length L of the bounded equatorial ocean in the east-west dir-
ection when the phase velocity c0 of the Kelvin wave is determ-
ined. The principle of resonance in physics suggests that the
bounded ocean will resonate with the external forces (such as
wind stress and air-sea interaction, etc.). Once the changing fre-
quency of the external forces and the natural frequency are
identical or similar, resulting in the rapid increase of the amp-
litude of the natural frequency of disturbances (anomalies) of the
wave packet, in other words, strong responses from the bounded
ocean to the external forces. If the frequency of the external
forces is vastly different from that of the natural frequency of the
ocean, the response would not be strong. This indicates that the
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natural frequency of the wave packet plays the role of selector for
the frequency of its external forces, so that the ocean has the
strongest resonance to the external forces with identical or simil-
ar frequencies with its natural frequency, therefore limiting the
range of the period of inter annual variability of the ENSO and
the IOD. Although this paper has adopted a linear ocean model
and has not considered either wind stress or air-sea interaction,
the spatial field and the inter annual and decadal periods of oscil-
lation obtained in this paper are close to actual ones.

This is not to deny the importance of nonlinear interaction or
the external forces (air-sea interaction included), as the former
will lead to the oscillation frequencies from extremely low to ex-
tremely high frequencies in the air-sea system, while the latter is
the cause for equatorial oceanic oscillation; the importance of
the selector lies in the resonance of the equatorial ocean, which
determines that the oscillation frequency of the equatorial ocean
is its natural frequency, which is closely related to the length of
the equatorial ocean but not much related to the nonlinear inter-
action or external forces, therefore providing physical explana-
tions for the findings of Dong et al. (2016). The non-linear inter-
action, the external forces and the resonance are key factors for
the ENSO and the IOD events in the equatorial ocean, among
others, all of which are indispensable. The above results also in-
dicate the actual existence of the resonance.

Finally, it is worth noting that the wave packet in the bounded
equatorial ocean in this paper does exist in the actual ocean. This
wave packet is the superposition of eastward travelling Kelvin
waves and westward travelling Rossby waves with the slowest
speed, which satisfies boundary conditions. Therefore, the func-
tion and effect of these two waves must receive sufficient atten-
tion in physical oceanography.

5  Conclusions
This paper uses linearized shallow water perturbation equa-

tions with approximation in equatorial β plane, and introduces a
reduced gravity to obtain the analytical solution of the wave
packet anomalies on the upper bounded equatorial ocean. The
calculation results are given and compared with flow field anom-
alies in the tropical Pacific Ocean and the tropical Indian Ocean,
thus answering the questions raised in the introduction of this
paper. The main conclusions are as follows.

(1) The wave packet is the superposition of eastward travel-
ling Kelvin waves and westward travelling Rossby waves with the
slowest speed, and satisfies the boundary conditions of eastern
and western coasts respectively. The configuration of the flow
field and thickness anomalies correspond to positive and negat-
ive thickness field perturbations in east-west zonal flows, which
is consistent with the classic equatorial Kelvin wave.

(2) The coefficient determining the degree of attenuation of
the wave packet to the north and south sides of the equator is in-
versely proportional only to the square root of the product of the
reduced gravity and the mean depth of the upper water, which
means it is inversely proportional to the phase velocity of Kelvin
waves in the upper waters. The wave packet has the same speed
of decay when the phase velocity is fixed.

l
(3) The oscillation frequency of the wave packet is propor-

tional to its mode number and the above phase velocity of
Kelvin wave and is inversely proportional to the length of the
equatorial ocean in the east-west direction. This oscillation fre-
quency is the natural frequency of the ocean. Smaller mode
number of the solution, lower phase velocity and longer length
correspond to lower frequency and longer oscillation period; the
oscillation period is the longest in Mode 1 of the solution.

(4) The flow anomalies of the wave packet of Mode 1 appear
as zonal flows with the same direction most of the time, reach the
maximum at the center of the equatorial ocean and decay rap-
idly away from the equator in the form of equatorially trapped
waves.

(5) The flow anomalies of the wave packet of Mode 2 appear
as zonal flows with the same direction most of the time in half of
the ocean, and are always 0 at the center of the entire ocean, in-
dicating stagnation. The flow anomalies decay to the north and
south sides of the equator with the same speed as that of Mode 1.

(6) The spatial structure and oscillation period of the wave
packet solution of Modes 1 and 2 are consistent with the chan-
ging periods of the surface spatial field and time coefficient of the
first and second modes of the complex EOF analysis of the flow
anomalies in the actual equatorial ocean. This indicates that the
solution does exist in the actual ocean, and that the ENSO and
the IOD are both related to Mode 2.

(7) The length of the bounded equatorial ocean is the sum of
that of the tropical Indian Ocean and the tropical Pacific Ocean,
so that this wave packet can explain the decadal variability
(about 20 a) of the equatorial Pacific and the equatorial Indian
Ocean after considering the Indonesian throughflow.

It is worth noting that, as this is a theoretical investigation, the
model is simplified where necessary, (considering the east and
west coasts in the North-South direction, etc.) leading to certain
differences from the actual situations. It is therefore natural and
understandable that our results differ slightly from those ob-
tained through the complex EOF analysis of the actual ocean des-
pite overall consistency.
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