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Abstract

In 2013, the 29th Chinese National Antarctic Research Expedition (CHINARE) prospected the Prydz Bay on the
Antarctic continental shelf, and the Chinese R/V Xuelong icebreaker sampled all of the examined locations. The
nature of Antarctic fish diversity in the high-latitude Prydz Bay is virtually unknown, and the accuracy of relevant
estimates  has  not  been established.  Thus,  it  is  necessary  to  evaluate  this  diversity  and propose protective
measures. In total, ninety-nine specimens were collected from various locations. To overcome uncertainties
associated  with  identifying  species  based  on  morphology,  DNA  barcoding  (COI  gene)  was  employed  to
reconstruct phylogenetic relationships with delimited references from NCBI. Twenty-two species representing six
families  were  unambiguously  identified  from  a  neighbor-joining  (NJ)  tree  and  barcoding  gaps.  With  the
morphological identification, thirteen species were identified correctly, five species were identified correctly at the
genus level, and four species were identified at the close sister species level. Notothenioid dominance was not
evident in the Prydz Bay, in contrast to other published studies. The low species diversity and catch biomass
during this CHINARE were severely constrained by limited fishing methods and localized sites, which led to
biased underestimation. Our analyses indicate that DNA barcoding is an effective tool for the identification of fish
species in the Prydz Bay. The identification and distribution of Antarctic fish should be an integral component of
understanding Antarctic fish biodiversity and biogeography, and large-scale studies are necessary for the further
taxonomic identification of Antarctic fish.

Key words: DNA barcoding, Prydz Bay, Antarctic fish, phylogenetic relationship, barcoding gap

Citation: Li Yuan, Zhang Liyan, Song Puqing, Zhang Ran, Wang Liangming, Lin Longshan. 2018. Fish diversity and molecular taxonomy in
the Prydz Bay during the 29th CHINARE. Acta Oceanologica Sinica, 37(8): 15–20, doi: 10.1007/s13131-018-1228-y

1  Introduction
Species identification is the most significant task in many

fields of biological research and for conservation efforts. Tradi-
tional morphological identification is not fully effective for eggs,
larvae, juveniles and adults lacking distinctive morphological
characteristics. Congeneric or confamilial species sometimes re-
semble each other to a high degree, which can lead to unreliable
identification. Moreover, commonly used morphological fea-
tures can change with developmental age and thus, may not
provide definitive identification. Moreover, identification must
be based on a sound knowledge of taxonomy, as a faulty delin-
eation of species limits often precludes identification altogether
(Dettai et al., 2011b).

Molecular species identification based on mitochondrial
DNA (mtDNA) has been utilized for several decades but has re-
cently acquired a new dimension through larger-scale projects
using a standardized approach with high quality control. One
proposed method is DNA barcoding, which uses the mtDNA
gene cytochrome c oxidase subunit I (COI) for molecular tax-
onomy (Hebert et al., 2003a, b). Sequences from the same spe-
cies are generally considered to be correctly identified when they
form a monophyletic cluster on a neighbor-joining (NJ) tree with
intraspecific distances that are below a given threshold (Srivath-

san and Meier, 2012). At present, this approach has proven to be
highly efficient and reliable in many fish groups (Ward et al.,
2005; Keskin et al., 2013; Loh et al., 2014; Murphy et al., 2017) and
is regularly used for a variety of applications, such as fishery
management, biodiversity assessment and conservation (Dettai
et al., 2011a, b; Keskin et al., 2013; Loh et al., 2014; Murphy et al.,
2017; Shen et al., 2016). Both the evaluation of the approach and
the development of ameliorations are still underway; however,
these approaches seem promising for numerous taxa and devel-
opmental stages.

Antarctic waters are home to a largely benthic and highly en-
demic ichthyofauna, dominated by actinopterygian members
that arose through nested adaptive radiations within the isolated
Southern Ocean (Eastman, 2005; Lecointre et al., 2013; Fallon et
al., 2016). Five families—Artedidraconidae, Bathydraconidae,
Channichthyidae, Harpagiferidae, and Nototheniidae—are tradi-
tionally recognized, encompassing predominantly endemic Ant-
arctic species (Gon, 1990; Eastman and Eakin, 2014). The major-
ity of Antarctic notothenioid species have benthic lifestyles and
limited home ranges as adults (Miyamoto and Tanimura, 1999).
The Prydz Bay is the third largest bay in Antarctica. The world’s
largest glacier, the Lambert Glacier, enters this bay, forming the
vast Amery Ice Shelf, which is a key area for scientific investiga-  
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tion in the Southern Ocean. The Prydz Bay is an important source
of bottom water in Antarctica and is a focus of research on phys-
ical oceanography, marine geology, marine geophysics, and mar-
ine ecology (Van de Putte et al., 2010; Gao et al., 2013; Yin et al.,
2014). Unfortunately, no dedicated studies of fish diversity and
molecular taxonomy in the Prydz Bay have been performed. In
contrast, several studies of high-latitude fish barcoding and mo-
lecular taxonomy have been conducted further east in the Du-
mont d’Urville Sea and McMurdo Sound (Dettai et al., 2011a, b ;
Murphy et al., 2017).

The ecological community is greatly impacted by global
warming. With changes already visible in the Antarctic, a biod-
iversity baseline inventory is necessary to monitor these changes.
A large amount of taxonomic work, especially for fish, is still
needed in the Antarctic (Dettai et al., 2011b). We employed a
DNA barcoding approach as a molecular tool for the identifica-
tion of fish species collected from the Prydz Bay using available
data from NCBI as a reference. We reconstructed phylogenetic
relationships to assign species identity and evaluated the identi-
fication success rates based on the Kimura’s two-parameter
(K2P) model. Furthermore, the present study of fish diversity and
molecular taxonomy can provide important information regard-
ing biodiversity, biogeography and conservation in Antarctic
coastal waters.

2  Materials and methods

2.1  Specimen collection and morphological identification
All specimens from 15 stations were collected from the Prydz

Bay based on a triangular bottom trawl net (2.2 m wide, 0.65 m
high, and 6.5 m long; 20 mm mesh size) during the 29th Chinese
National Antarctic Research Expedition (CHINARE) in 2013
(Table 1), which was surveyed on the R/V Xuelong icebreaker.
Every net was operated for 10–60 min, with variations due to dif-
ferences among the seabeds at a speed of 3–4 kn. A few speci-
mens were obtained from each station, and all specimens from
the same station were packaged together and sorted again in the
laboratory. Morphological identification was performed by visu-
al inspection, and the fish were taxonomically classified by taxo-
nomic specialists (Fischer and Hureau, 1985). Photographs of as
many fresh specimens as possible were taken on board. Muscle
samples were obtained and preserved in 95% ethanol or frozen
for DNA extraction after specimen identification and morpholo-
gical characterization. Subsequently, the whole fish were fixed in
a 10% formaldehyde solution and stored as voucher samples in
the Third Institute of Oceanography, State Oceanic Administra-
tion.

2.2  DNA extraction, amplification and sequencing
Genomic DNA was isolated from muscle tissue by proteinase

Table  1.     Information  on  Antarctic  fish  collected  from  the  Prydz  Bay  during  the  29th  CHINARE  and  homologous  sequences
downloaded from NCBI

ID Scientific name from
morphological identification

NCBI accession Nos Sort by
identification /%

Species name from NCBI NCBI accession Nos

S1 Bathyraja sp. 99 Bathyraja spinicauda FJ164384, JF895081

S2, S3 Trematomus scotti 100, 100 Trematomus scotti HQ713283, JN641171

S4, S5 Artedidraco lonnbergi 99, 100 Artedidraco lonnbergi HQ712811, HQ712827

S6 Dolloidraco sp. 100 Histiodraco velifer HQ713027, JN640978

S7, S7-1 Chionodraco hamatus 100, 100 Chionodraco hamatus HQ712912, JN640841,
KT921282

S8, S8-1 Pogonophryne sp. 99, 100 Pogonophryne scotti HQ713180, JN641119

S9, S10 Prionodraco evansii 100, 100 Prionodraco evansii EU326416, HQ713203,
JN641128

S11 Chaenodraco wilsoni 100 Chaenodraco wilsoni HQ712902, JN640813

S12 Trematomus sp. 99 Trematomus eulepidotus EU326425, HQ713263,
JN641141

S13 Dieidolycus sp. 100 Lycodichthys antarcticus HQ713053, HQ713056

S14,
S14-1

Cryodraco antarcticus 100, 100 Cryodraco antarcticus HQ712949, JN640867

S15 Gerlachea australis 100 Gerlachea australis HQ713006, JN640928

S16 Pachycara brachycephalum 100 Pachycara brachycephalum HQ713113, JN641050

S17 Pachycara brachycephalum HQ713113, JN641050 99 Ophthalmolycus
amberensis

HQ713104, HQ713105,
HQ713106

S18 Dolloidraco longedorsalis 100 Dolloidraco longedorsalis HQ712976, JN640907

S19 Lycodichthys antarcticus 99 Lycodichthys antarcticus HQ713053, HQ713056

S20 Bathydraco macrolepis EU326324, JN640779,
JN640780

99 Akarotaxis nudiceps HQ712805, HQ712806

S21 Racovitzia glacialis 100 Racovitzia glacialis HQ713223, JN641132

S22, S23 Trematomus pennelli EU326430, GU997445,
HQ713272

99, 99 Trematomus cf.
lepidorhinus/loennbergi

HQ713319, HQ713348,
HQ713349

Trematomus loennbergii GU997426, JN641157

Trematomus lepidorhinus GU997424, JN641151

S24 Artedidraco sp. 1 100 Artedidraco shackletoni HQ712858, HQ712859,
HQ712860

S25, S26 Artedidraco sp. 2 100, 100 Artedidraco shackletoni HQ712858, HQ712859,
HQ712860

S27, S28 Chionobathyscus dewitti 99, 100 Chionobathyscus dewitti HQ712909, JN640826

S29, S30 Dacodraco hunteri 100, 100 Dacodraco hunteri HQ712963, JN640896
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K digestion and purified by standard phenol-chloroform extrac-
tion (Sambrook et al., 1989). The extracted DNA was evaluated
using 1.5% agarose gel electrophoresis and was then stored at
–20°C before PCR amplification. A partial fragment of the COI
gene was amplified using universal barcoding primers, F1: 5′-
TCAACCAACCACAAAGACATTGGAC-3′ (forward) and R1: 5′-
TAGACTTCTGGGTGGCCAAAGAATCA-3′ (reverse) (Ward et al.,
2005). The PCR reactions were carried out in a 25 μL reaction
mixture containing 17.25 μL of ultrapure water, 2.5 μL of 10×PCR
buffer (including MgCl2) (Takara), 2 μL of dNTPs (Takara), 1 μL
of each primer (5 μmol/L), 0.25 μL of Taq polymerase (Takara),
and 1 μL of DNA template. The thermal cycling program con-
sisted of an initial step for 4 min at 95°C; 35 cycles of 0.5 min at
94°C, 0.5 min at 52°C, and 0.5 min at 72°C; and a final step for 10
min at 72°C. Negative controls were included in all PCR reac-
tions to confirm the absence of contaminants. Successful ampli-
fications were purified, and both strands were sequenced by Per-
sonal Biotechnology Co., Ltd.

2.3  Data analysis
Sequences were edited and aligned using the DNASTAR

Lasergene software package (Madison, WI, USA) and refined
manually. All of the aligned sequences were translated into
amino acids to confirm the accuracy of the sequences and to de-
tect the presence of nuclear DNA pseudogenes. Other genetic in-
dices, such as polymorphic sites, transitions, transversions, inser-
tions/deletions, and nucleotide composition, were calculated
with ARLEQUIN 3.0 (Excoffier et al., 2005). Pairwise genetic dis-
tance calculations and NJ tree analysis were implemented using
MEGA 5.0 (Tamura et al., 2011) based on the K2P model with
1 000 bootstrap replicates. The DNA “barcoding gap”, which is
the maximum intraspecific distance of each species compared
with its minimum distance to the nearest neighbor and is defined
as the average interspecific distance at least 10-fold greater than
the average intraspecific genetic distance, was calculated for all
species (Hebert et al., 2004). All specimen sequences were
aligned through a BLAST search in NCBI to evaluate the accur-
acy of morphological identification. Almost all currently bar-
coded Antarctic fish were collected during the CEAMARC survey
in the winter of 2007–2008 (Dettai et al., 2011a, b). We used a gen-
eral rule that defined a sequence similarity of at least 97% as a
top-matched species and 3% sequence similarity as a relatively
loose criterion for matched species (Wong and Hanner, 2008).

3  Results
Ninety-nine specimens were collected during the 29th CHIN-

ARE. Most of them were adults and could be easily sorted, but
there were also some juvenile stages. Some specimens were
damaged and could not be identified morphologically; these
were termed “sp.”, for example, Dolloidraco sp., Pogonophryne
sp., Bathyraja sp., Trematomus sp., Dieidolycus sp. and Arte-
didraco sp. Thirty-three specimens were used for molecular ana-
lysis; the number of specimens per species used for the molecu-
lar analysis ranged from one to three, but most species were rep-
resented by only one specimen.

3.1  Amplification and sequencing
Low-quality sequences (double peaks, short fragments, and

background noise), which may represent pseudogenes, were not
detected. The aligned sequences contained no insertions, dele-
tions or stop codons, indicating that all amplified sequences were
functional mitochondrial COI sequences. A 652 bp fragment was
successfully amplified and sequenced in this study, and the

alignment revealed 256 polymorphic sites (including 239 parsi-
mony-informative sites and 6 singleton sites), with 256 trans-
itions and 119 transversions. The content of A, T, G, and C was
21.22%, 30.18%, 19.04% and 29.56% on average, respectively, with
a slight base against G and C.

3.2  Species identification by phylogenetic analysis of COI se-
quences
Because there are limited Antarctic fish taxonomic refer-

ences, mistakes were unavoidable during morphological identi-
fication. Our results indicated that six families were correctly
identified: Channichthyidae (5 species, 15 specimens), Arte-
didraconidae (6 species, 26 specimens), Bathydraconidae (4 spe-
cies, 17 specimens), Zoarcidae (3 species, 3 specimens), No-
totheniidae (3 species, 37 specimens) and Rajidae (1 species, 1
specimen) (Table 1). The consensus strength of all sequences
was determined by alignment through a BLAST search in NCBI.
Most morphological identification results matched the BLAST
annotations of the NCBI databases with at least 97% similarity,
supporting that they were the same species (Murphy et al., 2017),
except for five species (H. velifer, L. antarcticus, O. amberensis, A.
nudiceps, and Trematomus cf. lepidorhinus/loennbergi) that
matched with their sister species.

Based on our species sequences and vouchered data from
NCBI as a reference, an NJ tree was constructed to assign species
identity (Fig. 1), which depicted relationships between morpho-
logically identified species and vouchered references. Twenty-
two species from six families (Channichthyidae, Artedidraconid-
ae, Bathydraconidae, Zoarcidae, Nototheniidae and Rajidae)
were characterized by DNA barcoding. Based on the NJ tree, all
species formed distinct clusters, and all individuals were associ-
ated with their conspecifics in the monophyletic clades with high
bootstrap support values. However, all species from the same
family clustered together, except for Bathydraconidae. In total,
five Artedidraconidae species, five Channichthyidae species, four
Nototheniidae species, three Zoarcidae species and one Rajidae
species clustered together in the NJ tree. The NJ analysis also re-
covered the family Bathydraconidae as paraphyletic, consistent
with recent molecular phylogenies (Dettai et al., 2012; Murphy et
al., 2017), while the other families were monophyletic. Gerlachea
was sister to other genera in Bathydraconidae.

The results of the NJ tree showed that not all of the morpholo-
gically identified species were in agreement with the vouchered
references (Fig. 1); however, the majority was identified success-
fully, with at least 99% similarity (Table 1). S17 was distinctly dif-
ferent from S16, both of which were identified as P. brachyceph-
alum morphologically but shared 99% nucleotide sequence sim-
ilarity with the reference O. amberensis. S20 was identified as B.
macrolepis morphologically but was 99% similar to the reference
A. nudiceps. S22 and S23 were distinctly different from T. pennelli
references but shared 99% identity with the reference Tremat-
omus cf. lepidorhinus/loennbergi. Some damaged individuals
and juvenile fish were also identified accurately based on bar-
coding but had been previously unidentified and considered as
“sp.” S1 (Bathyraja sp.) shared 99% nucleotide sequence similar-
ity with the reference B. spinicauda, indicating that it was B. spin-
icauda. S6 (Dolloidraco sp.) was identified as H. velifer with 100%
nucleotide sequence similarity; thus, this species was distinctly
different from genus Dolloidraco species. S8 and S8-1 (Po-
gonophryne sp.) shared 99% and 100% nucleotide sequence iden-
tities with the reference P. scotti, respectively. S12 (Trematomus
sp.) shared 99% nucleotide sequence identity with the reference
T. eulepidotus. S13 (Dieidolycus sp.) was identified as L. antarctic-
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us with 100% nucleotide sequence similarity. Both Artedidraco
sp. 1 (S24) and Artedidraco sp. 2 (S25, S26) were identified as A.
shackletoni with 100% nucleotide sequence similarity, suggesting
that they were the same species. The majority of the problematic
species were, in fact, due to erroneous primary identification
with poor references.

3.3  Barcoding gaps
Intraspecific variability was generally similar across species,

and the range of interspecific differences was much more vari-
able depending on the group (Dettai et al., 2011b). The use of the
means for intraspecific and interspecific divergence comparison
does not allow the detection of problematic cases (Meier et al.,
2008); therefore, we instead compared minima for interspecific

divergences to maxima for intraspecific divergences. If the entire
dataset was considered, there would be a clear overlap between
intraspecific and interspecific variabilities, as the smallest inter-
specific divergences were well below 2%, but the largest intraspe-
cific divergences exceeded 2% (Hebert et al., 2003a; Dettai et al.,
2011b; Shen et al., 2016).

The intraspecific K2P distances exhibited considerable het-
erogeneity and ranged from 0% to 1.24%, with a mean value of
0.29%. The minimum interspecific distances of all species were
greater than 2%. The species discrimination power of DNA bar-
coding was demonstrated by the barcoding gaps that were drawn
for all species on the basis of the K2P distances shown in Fig. 2.
Because the latter value was always higher than the former, over-
laps were not detected in all species.
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Fig. 1.   NJ tree constructed with MEGA based on the K2P model. Bootstrap values higher than 50 are indicated along the branches.
The species listed on the left in red text were identified based on morphology.
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4  Discussion
Our study represents the first comprehensive molecular as-

sessment of fish in the Prydz Bay. In the current study, DNA bar-
coding was effective for identifying species and provided a
straightforward identification system when a perfect match exis-
ted between the morphology-based taxonomy and genetic diver-
gence (Chen et al., 2015). A few specimens that could not be
identified at the species level could therefore be placed with con-
fidence within species clusters by the molecular analysis. The
results showed nearly unanimous (99%–100%) species group
support for the unknown species with their vouchered refer-
ences in the NJ tree (Fig. 1), providing strong confidence for the
accuracy of the species assignment.

Of the twenty-two species investigated in this analysis, only
thirteen species were identified correctly, five species were iden-
tified correctly at the genus level, and unfortunately, four species
were only identified to their close sister species based on mor-
phological characteristics. However, all problematic species were
entirely resolved with COI sequences. Identifications were suc-
cessfully made due to reference sequences of vouchered species
and the selection of COI as the gold standard barcode gene. Fur-
thermore, a 10-fold sequence divergence between the average in-
terspecific and the average intraspecific difference was detected;
this divergence was suggested to be the standard COI threshold
for species identification (Hebert et al., 2003a, b). Unfortunately,
there was slight uncertainty regarding T. lepidorhinus and T.
loennbergi, which did not form distinct clusters according to the
morphologically identified species in the NJ tree. Sillago analis, S.
ciliate (Krück et al., 2013), Thryssa mystax and T. vitrirostris (Ma
et al., 2015) had different morphological characteristics but also
clustered together in the phylogenetic tree. However, Krück et al.
(2013) previously presented a multigene barcoding approach to
successfully discriminate the two Sillago species.

Recent molecular phylogenies indicated that the family No-
totheniidae was paraphyletic (Dettai et al., 2012; Murphy et al.,

2017), but it was monophyletic in this study. Because all indi-
viduals of Nototheniidae were represented by only one genus,
the congeners were closely related and easily formed a mono-
phyletic clade. In Antarctic coastal waters, notothenioids consti-
tute over 70% of the species diversity and 91% of catch biomass
(Eastman and Hubold, 1999; Murphy et al., 2017), and five famil-
ies (Artedidraconidae, Bathydraconidae, Channichthyidae,
Harpagiferidae, and Nototheniidae) are traditionally recognized
(Gon, 1990). Moreover, notothenioid Trematomus fishes (family
Nototheniidae) were overwhelmingly dominant, as reported by
previous studies (Eastman and DeVries, 1982; Murphy et al.,
2017), accounting for 100% of all collected specimens. In con-
trast, the dominance of Nototheniidae species was not evident in
the Prydz Bay and was less than that reported in previous studies;
species from the other five families were also caught at higher fre-
quencies than notothenioids. The low species diversity and catch
biomass in this survey were caused by the severe constraints of
the limited fishing methods and localized sites, which led to a
biased underestimation.

This study demonstrated that DNA barcoding is a useful and
effective tool and can provide further insight into the identifica-
tion of species in addition to morphological characterization. The
identification and distribution of Antarctic species should be an
integral component in understanding Antarctic fish biodiversity
and biogeography. The overall Prydz Bay diversity (21 species)
represents only a small subset of Antarctic fauna. Therefore, fur-
ther morphological characterization and multigene barcoding of
specimens from around the Antarctic Continent is necessary.

5  Conclusions
This study elucidates fish species and their phylogenetic rela-

tionships in the Prydz Bay on the Antarctic continental shelf
based on the 29th CHINARE. All of the study results show that
DNA barcoding is an effective tool for accurate species identifica-
tion and could play a supporting role in species diversity surveys.
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Fig. 2.     DNA barcoding gaps for all  of the species based on the K2P model. Median interspecific distances with maximum and
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mean intraspecific distance.
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Twenty-two species from six families were characterized; only
thirteen species were identified correctly, five species were iden-
tified correctly at the genus level, and four species were merely
identified at the close sister species level. This work is important;
in particular, the partial list of fish species in the prospected wa-
ters provided in this paper represents a resource relevant to the
structure of the Antarctic community. More specimens should be
collected from the Prydz Bay in the future. In subsequent studies,
morphological identification should be combined with DNA bar-
coding to identify species because morphological identification
alone may not be sufficiently robust.
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