
Influence of parental sample sizes on the estimating genetic
parameters in cultured clam Meretrix meretrix based on
factorial mating designs
LIANG Bingbing1, 2, YUE Xin1, 3, WANG Hongxia1, 3*, LIU Baozhong1, 3

1 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao
266071, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and

Technology, Qingdao 266200, China

Received 31 March 2015; accepted 14 September 2015

©The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2016

Abstract

The precise  and accurate  knowledge of  genetic  parameters  is  a  prerequisite  for  making efficient  selection
strategies in breeding programs. A number of estimators of heritability about important economic traits in many
marine mollusks are available in the literature, however very few research have evaluated about the accuracy of
genetic parameters estimated with different family structures. Thus, in the present study, the effect of parent
sample size for estimating the precision of genetic parameters of four growth traits in clam M. meretrix by factorial
designs were analyzed through restricted maximum likelihood (REML) and Bayesian. The results showed that the
average estimated heritabilities of growth traits obtained from REML were 0.23–0.32 for 9 and 16 full-sib families
and 0.19–0.22 for 25 full-sib families. When using Bayesian inference, the average estimated heritabilities were
0.11–0.12 for 9 and 16 full-sib families and 0.13–0.16 for 25 full-sib families. Compared with REML, Bayesian got
lower heritabilities, but still remained at a medium level. When the number of parents increased from 6 to 10, the
estimated heritabilities were more closed to 0.20 in REML and 0.12 in Bayesian inference. Genetic correlations
among traits were positive and high and had no significant difference between different sizes of designs. The
accuracies of estimated breeding values from the 9 and 16 families were less precise than those from 25 families.
Our results provide a basic genetic evaluation for growth traits and should be useful for the design and operation
of a practical selective breeding program in the clam M. meretrix.
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1  Introduction
The clam Meretrix meretrix, which is widely distributed in the

shallow seas of South and Southeast Asia, is an important com-
mercial shellfish species in China (Liu et al., 2006). The success-
ful artificial breeding of M. meretrix has promoted the develop-
ment of an aquaculture industry in this species. However, a lack
of high-quality seed has become a limitation to its production.
Therefore, the establishment of a suitable selection program is
needed to guide genetic breeding.

A sustainable genetic improvement program is largely de-
pendent on the effective use of additive genetic variance and the
accuracy of estimates of heritability. However, the accuracy of ge-
netic parameter estimates is affected by the mating design, the
number and size of families and the method of analysis (Falcon-
er and Mackay, 1996). Typically, three different mating designs
are used in genetic parameter estimation: factorial design, nes-

ted mating design and single pair design. The nested mating
design is the most commonly used mating design in the genetic
parameter estimation of bivalves (Mallet et al., 1986; Nguyen et
al., 2011; Strömgren and Nielsen, 1989; Toro et al., 2004; Yan et
al., 2014). However, many studies have shown that the factorial
design has better performance in breeding programs than either
the nested mating design or single pair design, as it can increase
the accuracy of genetic parameter estimation (Blanc, 2003), pro-
duce a higher genetic response and lower inbreeding depression
for the traits of interest (Dupont-Nivet et al., 2006; Engström et
al., 1996). In addition, Busack and Knudsen (2007) also hypothes-
ized that the factorial design could increase the effective number
of breeders in fish hatchery operations.

The accurate estimation of the variance component by statist-
ical methods is a fundamental component of the development of
accurate estimates of genetic parameters and is an active area of
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research. In recent years, a major transition occurred in the stat-
istical approaches for analyzing the variance component, shift-
ing from analysis of variance (ANOVA) to likelihood-based meth-
ods (Littell, 2002). ANOVA has been a mainstay of statistical data
analysis for several decades, but computer programs for this
methodology have been encumbered with technical problems of
estimation, weighting, and the handling of missing data (Littell,
2002). With the rapid development of computer technology, sev-
eral methods based on maximum likelihood estimations have
been developed. These include methods for the estimation of
variance components, such as REML (restricted maximum likeli-
hood), MIVQUE (minimum variance quadratic unbiased estim-
ators) and MINQUE (minimum norm quadratic unbiased estim-
ators). The implementation of REML estimation, which is widely
used presently, heavily depends on the mixed model equations
(MME) introduced by Henderson to construct the best linear un-
biased predictors (BLUP) (Henderson, 1974). To accurately pre-
dict breeding values, the genetic relationships among all animals
need to be accounted for. Therefore, animal models have been
introduced that allow the specification of all additive variances
among relatives by incorporating a random effect for the breed-
ing value of each animal (Thompson et al., 2005). In addition to
REML, Bayesian approach is another important method for ana-
lyzing genetic parameters with animal models; recently, this ap-
proach has attracted increased attention from researchers. REML
is faster and easier to use than Bayesian analysis, but it has limit-
ations. For example, parameter estimation and hypothesis test-
ing becomes problematic when REML is used with non-Gaussi-
an traits (Bolker et al., 2009). In contrast, these issues can be
neatly solved by Bayesian inference via Markov chain Monte
Carlo (MCMC) algorithms, but the computational speed can be
slow and the analysis technically more challenging. For example,
there are challenges in the specification of a sensible prior, which
is a non-issue in REML analysis (Hadfield, 2010).

The aim of the present study was to estimate and compare the
genetic parameters in three sample sizes of parents based on
factorial mating designs (3×3, 4×4 and 5×5) through REML and
Bayesian analysis. The accuracies of estimated breeding values
(EBV) of growth traits were also compared from three families
sizes using REML methods. Our results may be useful for identi-
fying suitable mating schemes and analytical methods for a
breeding improvement program of M. meretrix.

2  Materials and methods

2.1  Experimental design
The broodstock M. meretrix clams were the 3rd generation in-

dividuals under growth selection in the hatchery laboratory of
Zhejiang Mariculture Research Institute (Wenzhou, China). The
matured parent clams were treated by air-drying for 4–8 h, and
each clam was placed in a 1 000 mL beaker containing 800 mL
filtered seawater to induce spawning (Liu et al., 2006; Wang et al.,
2011).

Twenty-five families were produced according to a factorial
mating design in June 2012: typically five sires, each mated with
five dams. Larvae rearing, juvenile nursing and grow-out were
conducted following Wang et al. (2011). The 5×5 factorial design
could be decomposed into one-hundred different 3×3 factorial
designs, twenty-five different 4×4 factorial designs, thus, the
three sizes of factorial designs (3×3, 4×4 and 5×5) could be used

to estimate genetic parameters.

2.2  Traits evaluated
Four growth traits were measured at 12 months after fertiliza-

tion for each size of factorial design: shell length (SL), shell height
(SH), shell width (SW) and total body weight (TW). SL, SH and
SW were measured using vernier calipers with each clam, and
TW was measured using a digital balance. At least 25 individuals
were chosen from each family.

2.3  Genetic parameter estimation
Genetic parameters were estimated using ASReml 3.0

(Gilmour et al., 2009) and the MCMCglmm package in R (Had-
field, 2010) with animal model. In matrix notation, the model is
written as follows:

y = b+ aa+ cc + e;

where y is the phenotypic measure of the trait being analyzed, b
is the vector of the fixed effects, a is the additive genetic effect of
the individual animal, and c is the vector of common environ-
ment effects. X, Za and Zc are incidence matrices related to the
fixed, additive genetic and common environment effects.

For the Bayesian analysis, the variance components were es-
timated using a Bayesian MCMC approach. The model was run
with nitt=650 000, thinning interval=100, and burn-in period=
150 000. We assumed that the contribution of the genetic and re-
sidual effects were equivalent when setting the priors. Rerunning
the model with a larger proportion (0.95 for the genetic effect)
(Wilson et al., 2010) demonstrated that the prior had little effect
on the outcome of the analysis.

Likelihood ratio tests and deviance information criterion
(DIC) were used to test if the variance components of random ef-
fects were significant. For REML, we took off one random effect
each time from the model above and run the programs to obtain
log-likelihoods. Then compared twice the differences between
these two log-likelihoods values (with and without one random
effect) with Chi-squared values. For Bayesian analysis, deviance
information criterion (DIC) was used to test the significance of
random effects and lower DIC values indicated the random ef-
fect contributed to model.

h2 =
¾2

a

¾2
a + ¾2

c + ¾2
e

¾2
a

¾2
c ¾2

e

Heritabilities for traits were calculated as 

from two univariate animal models. Here  is the additive ge-

netic variance,  is the common environmental variance and 

is the residual variance. Genetic and phenotypic correlations
were estimated using the most appropriate animal model with
the fixed and random effects as described above.
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where  is the additive genetic or phenotypic covariance
between the two traits, and  and  are the additive genetic or

phenoypic variances of Traits 1 and 2, respectively.

2.4  The accuracy of estimated breeding values
The estimated breeding values (EBV) were also obtained

through REML analysis. The accuracy (r) of each animal’s EBV
from each factorial design was calculated as
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r =

s
1¡ PE V

(1+ F)¾2
a
;

¾2
a

where PEV is the prediction error variance of each EBV, F is the
inbreeding coefficient for each animal and  is the estimated

additive genetic variance obtained from the mixed model analys-
is (Lewis et al., 2013). ASReml 3.0 provides both the estimates of
the EBV and their associated PEVs.

3  Results

3.1  Growth traits
The number of observations, means, standard deviations and

coefficients of variation (CV) for four traits in total 25 full-sib fam-
ilies were shown in Table 1. The number of measured offspring
was 828. After one year growth, mean shell length of the clams
was 18.48 mm, mean shell height was 15.52 mm, mean shell
width was 8.94 mm and mean total weight was 1.92 g with high
CV (60.47%).

3.2  Heritabilities obtained from REML
The narrow-sense heritability (h2

a) of four growth traits have
been estimatied 100 times for 3×3 factorial design, 25 times for
4×4 factorial design and one time for 5×5 factorial design based
on different parent combination data. The distribution of herit-
ability estimates for 3×3 and 4×4 factorial designs were shown in
Fig. 1 and Fig. 2, respectively. In the case of 3×3 factorial designs,
the heritabilities of four growth traits ranged from 0 to 1, with the
standard error (SE) ranged from 0 to 0.37 (Fig. 1), while in the

case of 4×4 factorial designs, the heritabilities of four growth
traits ranged from 0 to 0.7 (SE, 0–0.34) (Fig. 2). From these histo-
grams, it is visualized that normal distributions might be suitable
approximation. The goodness of fit tests for normal distribution
indicated that with the exception of TW of 3×3 factorial designs,
the heritabilities of others obey the normal distributions. Gener-
ally, the variance of estimated heritabilities decreased with the
number of parents increased in factorial designs. Such as, the av-
erage estimated heritabilities of SL were 0.29 for both 3×3 and
4×4 factorial designs. But in 3×3, 90% of the values fell within the
range of 0.06–0.52 and the central 50% fell within the range of
0.20–0.38, versus in 4×4, the values of 90% confidence interval
ranged from 0.11 to 0.47 and the central 50% fell within the range
of 0.22–0.36. When the number of parents increased to 10, the es-
timation of heritability of the four growth traits obtained from
REML analysis were 0.19–0.22 (Table 2), these values fell within
the central 55% of the empirical heritability distribution of 3×3 or
4×4 factorial designs. The log-likelihood ratio tests for REML ana-
lysis in 5×5 factorial design showed that additive genetic vari-
ance components and common environment variance compon-
ents in four growth traits were significant (P<0.01) (Table 3). For

Table 1.  Descriptive statistics of four growth traits from 5×5
factorial design

Traits N Mean SD CV/%

Shell length/mm 828 18.48 5.36 29.02

Shell height/mm 828 15.52 4.19 26.98

Shell width/mm 828 8.94 2.81 31.47

Total body weight/g 828 1.92 1.16 60.47

 

Fig. 1.  The frequency of narrow-sense heritability estimates obtained from one-hundred 3×3 factorial designs using REML analysis.
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both 3×3 and 4×4 factorial designs, the common environment ef-

fects obtained from REML were about 0–0.02, which were lower

than 5×5 factorial design (0.10–0.20) (Table 2).

3.3  Heritabilities obtained from Bayesian inference

Distribution of estimated heritabilites obtained from 3×3 and

4×4 factorial designs using Bayesian inference were shown in

 

Fig. 2.  The frequency of narrow-sense heritability estimates obtained from twenty-five 4×4 factorial designs using REML analysis.

Table 2.  Narrow-sense heritability estimates (ha
2) of each growth trait estimation obtained from 5×5 factorial design using either

REML or Bayesian inference

Traits
REML Bayesian

ha
2±SE hc

2±SE ha
2 (95% HPID) hc

2 (95% HPID)

5×5

SL 0.19±0.10 0.20±0.002 0.13 (0.05–0.64) 0.27 (0.17–0.47)

SH 0.19±0.10 0.20±0.002 0.16 (0.05–0.61) 0.28 (0.16–0.47)

SW 0.21±0.11 0.10±0.002 0.13 (0.05–0.57) 0.27 (0.17–0.44)

TW 0.22±0.11 0.10±0.002 0.15 (0.05–0.66) 0.26 (0.17–0.45)

h2
c = ¾2

c =
¡
¾2

a + ¾2
c + ¾2

e

¢
Note: . The standard error (SE) is shown for REML ha

2 and hc
2 estimates. The 95% highest posterior density

interval (HPDI) is shown for Bayesian ha
2 and hc

2 estimates.

Table 3.  Log-likelihoods (LL) and deviance information criterion (DIC) for four traits with or without random effect in 5×5 factorial
design

Method Effect
Traits

SL SH SW TW
REML-LL ¾2

awithout –1 250.600 –1 113.550 –894.390 –591.223

¾2
awith –1 240.610 –1 102.240 –886.734 –575.947

¾2
cwithout –1 242.670 –1 104.410 –889.080 –577.951

¾2
cwith –1 240.610 –1 102.240 –886.734 –575.947

MCMCglmm-DIC ¾2
awithout 4 788.816 4 374.664 3 760.327 2 811.288

¾2
awith 4 768.367 4 259.403 3 704.877 2 803.536

¾2
cwithout 5 079.828 4 683.189 4 022.281 3 106.760

¾2
cwith 4 788.816 4 374.664 3 760.327 2 811.288

Note: Significance of variance components were tested using likelihood ratio tests for REML. The values in bold mean that the random
effect was significant (P<0.01). Significance of variance components were tested using DIC values for Bayesian and lower DIC (in bold)
indicated the random effect contributed to model.
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Figs 3 and 4. The Bayesian estimated heritabilties of 4×4 factorial
designs were normally distributed, whereas 3×3 factorial designs
were not strictly obey normal distribution under one sample

Kolmogorov-Smirnov test. The estimated heritabilities of 4×4
factorial designs ranged from 0.04 to 0.36 (Fig. 4). For SL, SH and
SW, the averages of heritabilities were 0.11, and the 90% confid-

 

Fig. 3.  The frequency of narrow-sense heritability estimates obtained from one-hundred 3×3 factorial designs using Bayesian inference.

 

Fig. 4.  The frequency of narrow-sense heritability estimates obtained from one-hundred 4×4 factorial designs using Bayesian inference.
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ence interval of the averages values were 0.09–0.13. As for TW,
the averages of heritability was 0.12±0.002, and the 90% confid-
ence interval ranged from 0.07 to 0.17.

Compared with the REML, the distribution heritabilities of
Bayesian inference were more concentrated. Take SL for example,
90% confidence interval of the averages values obtained from
Bayesian analysis (0.09–0.13) were smaller than those obtained
from REML (0.11–0.47) in 4×4 factorial designs. The heritabilities of
four traits obtained from 5×5 designs ranged from 0.13 to 0.16
which were similar with 5×5 factorial design when using REML
analysis (Table 2). Deviance information criterion for each trait
also suggested that the additive genetic variance components and
common environment variance components were significant and
these random effects should be added into the model (Table 3).

3.4  Correlations among growth traits
The phenotypic and genetic correlations among the four

growth traits using the two different methods of analysis are
presented in Tables 4 and 5. The estimated genetic correlations
of the traits were higher than the phenotypic correlations, ran-
ging from 0.94 to 0.96 with REML analysis and 0.85 to 0.91 with
Bayesian analysis in 5×5 factorial design. All these phenotypic
and genetic correlations for growth traits were highly significant.
Most of the phenotypic and genetic correlation values estimated
from the 5×5 factorial design were slightly lower than those from
the 3×3 and 4×4 factorial design with REML. For Bayesian infer-
ence, the genetic correlation values of growth traits from three
factorial designs were similar except TW in 4×4 factorial design.
Overall, the four growth traits were highly correlated with each

other in the three sizes of factorial designs and both two meth-
ods of analysis.

3.5  The accuracy of estimated breeding values
The individual estimated breeding values (EBV) of growth

traits in three different sample sizes of parents were obtained
through REML analysis and the mean accuracies of EBV of the
four growth traits were also compared to analyze the influence of
different parental sample sizes on the accuracy of EBV. The res-
ults showed that the mean accuracies of EBV of the four growth
traits in the 5×5 factorial design ranged from 64.2%–65.7%, which
were significantly higher (p<0.01) than those in 3×3 and 4×4
factorial design (Fig. 5). In addition, TW was significantly higher
than (p<0.01) other three traits (Fig. 5) in 5×5 factorial design.

4  Discussion

4.1  Effect of parental sample sizes on estimates of heritability
In our study, a full factorial mating design was used to estim-

ate the genetic parameters and breeding values. Furthermore, we
compared the distribution of heritabilities of four growth traits
that obtained from different sample sizes of parents. The rela-
tionship of the number of families and the accuracy of heritabilty
have been studied using simulation data, such as Dupont-Nivet
et al. (2002) found that the number of breeders and families
seems significantly affect the accuracy of the heritabilities when
the total number of offspring is held constant in fully factorial
designs. That is the larger the number of families are, the higher
the accuracy of the heritability estimation will be. But in experi-

Table 4.  Genetic (above the diagonal) and phenotypic (below the diagonal) correlations among growth traits using REML analysis

3×3

Traits SL SH SW TW

SL 0.98±0.06 0.96±0.34 0.98±0.23

SH 0.95±0.03 0.99±0.04 0.99±0.01

SW 0.90±0.01 0.87±0.01 0.98±0.49

TW 0.90±0.01 0.86±0.01 0.82±0.01

4×4

SL 0.96±0.04 0.96±0.04 0.98±0.02

SH 0.98±0.01 0.99±0.05 0.98±0.01

SW 0.96±0.03 0.97±0.004 0.98±0.02

TW 0.93±0.01 0.93±0.01 0.94±0.01

5×5

SL 0.96±0.02 0.96±0.04 0.95±0.05

SH 0.96±0.003 0.95±0.04 0.95±0.05

SW 0.94±0.004 0.94±0.004 0.94±0.06

TW 0.89±0.008 0.89±0.008 0.89±0.008

Table 5.  Genetic (above the diagonal) and phenotypic (below the diagonal) correlations among growth traits using Bayesian
inference

3×3

Traits SL SH SW TW

SL 0.93 (0.35–0.98) 0.89 (0.22–0.96) 0.90 (0.18–0.97)

SH 0.91 (0.35–0.98)   0.87 (0.19–0.94) 0.88 (0.16–0.94)

SW 0.86 (0.18–0.96) 0.82 (0.19–0.94) 0.89 (0.16–0.95)

TW 0.86 (0.18–0.97) 0.82 (0.16–0.95) 0.82 (0.16–0.95)

4×4

SL 0.94 (0.43–0.98) 0.91 (0.43–0.97) 0.77 (0.16–0.96)

SH 0.92 (0.43–0.98) 0.83 (0.17–0.98) 0.78 (0.16–0.97)

SW 0.89 (0.43–0.97) 0.87 (0.16–0.98) 0.79 (0.17–0.97)

TW 0.85 (0.16–0.96) 0.86 (0.16–0.97) 0.87 (0.17–0.98)

5×5

SL 0.87 (0.47–0.98) 0.91 (0.15–0.96) 0.91 (0.15–0.96)

SH 0.92 (0.47–0.97) 0.85 (0.35–0.97) 0.85 (0.16–0.97)

SW 0.89 (0.15–0.96) 0.90 (0.35–0.97) 0.85 (0.13–0.97)

TW 0.81 (0.15–0.96) 0.83 (0.16–0.97) 0.83 (0.13–0.97)
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mental practice, the number of rearing facilities and the number
of progeny per dam limit the number of families to increase infin-
itely. What’s more, as the family number increase, the environ-
ment factors are more difficult to control, so the environmental
heterogeneity will influence the accuracy of genetic parameter
analysis. Our result showed that several factorial crosses with
smaller size for estimation heritabilty of confidence intervals per-
form, on the average, quite satisfactorily, though the reliability for
a single experiment may be quite low. It indicates that a large
number of families could be replaced by several small number of
families in studies estimating heritability, as a small size of
factorial design can be better controlled and easier to implement
in a practical breeding program.

h2
D h2

S

The heritabilities at high frequency obtained from three
sample sizes of parents based on factorial designs through REML
and Bayesian inference ranged from 0.1 to 0.2; these were medi-
um levels. However, we have noticed that, for most bivalves, the
heritabilities estimated from nested designs are high relative to
those from factorial designs. For example, Wang et al. (2011)
found high-magnitude heritabilities (0.64–0.85) in 6- and 12-
month-old M. meretrix using a nested mating design established
in 2007. Strömgren and Nielsen (1989) reported high heritabilit-
ies ( >0.6, >0.5) for growth in both larvae and juveniles of
Mytilus chilensis in a nested design (27 females, 9 males). Similar
values (0.62–0.92) were reported by Mallet et al. (1986), who es-
timated the heritabilities of shell length in juveniles and adults
using 30 full-sib and 10 half-sib families. Toro et al. (2004) stud-
ied the heritabilities of larval size in Mytilus chilensis based on a
nested design and obtained half-sib heritability estimates of shell
height ranging between 0.38±0.33 and 0.84±0.45. High estimated
heritabilities for growth were also found in Ruditapes philip-
pinarum (0.87±0.24) through 33 full-sib families nested within 11
half-sib families generated from the cultured population
(Dégremont et al., 2007).

The difference might reflect study differences in mating
design, model and method of analysis. The nested design, al-
though it has been frequently used, its additive effects may be in-
flated by non-additive genetic such as dominant, maternal or
common environmental effects. So the proper and practical ex-
perimental designs and suitable analysis models were important
when estimate genetic parameters. In the present study, we ex-
cluded the common environment effects from additive genetic
effects to obtain reliable estimates of heritability using a full
factorial design.

4.2  Comparison of the REML and Bayesian analysis
With the advances in computer technology, complex al-

gorithms can easily be implemented. A common method for vari-
ance components estimation uses restricted maximum likeli-
hood (REML) (Patterson and Thompson, 1971). However,
Bayesian prediction of genetic parameters has also been widely
employed. Mathew et al. (2012) used a Markov chain Monte
Carlo sampling algorithm to estimate genetic parameters in a lin-
ear mixed model with several random effects. They observed that
the Bayesian estimates of variance components were close to the
REML estimates for simulated data and as accurate as the REML
estimates for barley field data. Silva et al. (2013) also established
a Bayesian framework for mixed models analysis and demon-
strated that the Bayesian inference was as adequate as REML/
BLUP for genetic evaluation. In our study, the estimated heritab-
ilities at highest frequency of growth traits based on REML and
Bayesian methods were similar, remained approximately con-
stant at a medium level (h2 ranging from 0.10 to 0.20). However,
when six and eight parents were used to estimate the heritabilit-
ies of growth traits, the distributions of the heritabilities obtained
from Bayesian inference were more convergence than the results
got from REML analysis. The results showed that Bayesian infer-
ence has better performance than REML when facing small size
of mating design. When ten parents were used to produce factori-
al design, the heritabilities using Bayesian inference were slightly
lower than using REML. In the present study, the high standard
errors for REML and the wide credible intervals for Bayesian ana-
lysis were found for both the heritabilities and the correlations.
These results were likely due to the limited sample size, mass
spawning practices and the impacts of other environmental
factors arising during rearing and grow-out.

4.3  Prediction of breeding values
Best linear unbiased prediction (BLUP) (Henderson, 1974)

has been widely used for genetic evaluation in animal breeding
programs. Many theoretical studies have compared ANOVA/
BLUE (best linear unbiased estimation), REML/BLUP and
Bayesian inference in predicting genetic parameters. However,
no method is clearly superior in all situations. Waldmann and
Ericsson (2006) compared genetic parameters obtained with
REML and Bayesian Gibbs sampling using simulated data and
real data of Scots pine. They found that the REML estimates were
accurate and that the mode of posterior distribution from Gibbs
sampling can be overestimated depending on the heritability.
Schenkel et al. (2002) found that the breeding values obtained
from Bayesian and REML/BLUP did not differ over the range of
simulated situations with respect to Spearman’s rank correla-
tions between true and predicted breeding values, but that the
correlations were not strong (0.48–0.57) when the heritability was
0.2.

In our study, individual breeding values were estimated us-
ing REML/BLUP in three different sample sizes of families and
the mean accuracies of EBV of the four growth traits were also
compared to analysis the influence of different parental sample
sizes on the accuracy of EBV. When using BLUP to estimate the
breeding values, it is important that the pedigree and phenotype
data are correct, complete and credible, and that the variance
components are estimated accurately. The accuracy of heritabil-
ity estimation greatly influences the breeding value estimates.
From the results, we found that the mean accuracies of EBV of
the four growth traits in the 5×5 factorial design were signific-
antly higher (p<0.01) than those in 3×3 and 4×4 factorial design,

 

Fig. 5.   Mean accuracies of EBV of growth traits in three
different sample sizes of parents using REML analysis.
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which showed good agreement with Dupont-Nivet et al. (2002).
These results indicated that the 5×5 factorial design may be more
reliable in its estimates of breeding value. Furthermore, the mean
accuracy of EBV of TW was significantly higher (p<0.01) than oth-
er three traits in 5×5 factorial design, which might suggest that
TW in a 5×5 factorial design should be reliable for improve the
genetic progress in future studies.

5  Conclusions
In summary, we compared the genetic parameters and ac-

curacies of EBV of four growth traits by three sizes of factorial
designs in REML and Bayesian inference. The estimated heritab-
ilities of growth traits based on Bayesian inference were a little
lower than REML, but still remained at a medium level. Genetic
correlations among traits were positive and high, and had no sig-
nificant difference between different sizes of designs. The mean
accuracies of EBV of the four growth traits estimated from 25 full-
sib famlies were significantly higher than those from 9 and 16
full-sib famlies, especially the total body weight. Our results
provide a basic genetic evaluation of growth traits and should be
useful for the design and operation of a practical selective breed-
ing program in the clam M. meretrix.
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