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Abstract
Recent phylogenomic analyses within the insect superfamily Coreoidea (Hemiptera: Heteroptera) have begun to challenge 
previous phylogenetic hypotheses of the Coreidae and Alydidae based on more traditional cladistic and non-cladistic stud-
ies. Phylogenomic studies have found the coreid subfamilies Hydarinae and Pseudophloeinae to be more closely related to 
a potentially paraphyletic Alydidae (an “AHP” clade) in contrast with traditional cladistic studies. However, taxon sampling 
within these higher-level groups has remained sparse in current phylogenetic analyses, and the taxonomic positions and 
monophyly of some of these taxa continue to be unclear. Here, we expand upon previous phylogenomic studies using ultra-
conserved element loci by increasing taxon sampling within the AHP clade. Using concatenation and summary coalescent 
approaches, we specifically tested previous support for an AHP clade, the paraphyly of Alydidae, the phylogenetic position of 
Hydarinae, and the monophyly of the two tribes of Pseudophloeinae. Our results robustly support an AHP clade and resolved 
the position of Hydarinae as the sister group to a clade consisting of a paraphyletic Alydidae and Pseudophloeinae, regardless 
of analytical method and locus/gene tree filtering strategies we employed. We also found support for the monophyly of the 
pseudophloeine tribes Clavigrallini and Pseudophloeini, but generic relationships within each of these tribes varied across 
analyses. We discuss past non-cladistic morphological studies that have suggested the potential for an AHP clade in light 
of our results, and we highlight further systematic work needed to discern the AHP clade as a morphologically diagnosable 
group for future re-classification of the Alydidae and Coreidae.
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Introduction

The Coreidae (Hemiptera: Heteroptera: Coreoidea) 
include ~ 2600 extant species of phytophagous insects 
(CoreoideaSF Team, 2021), some of which are agricultur-
ally important (Mitchell, 2000) or are used as models for 
studies of microevolution and behavior (e.g., Procter et al., 

2012; Woodman et al., 2021). The family is divided into four 
extant subfamilies (Coreinae, Hydarinae, Meropachyinae, 
and Pseudophloeinae) and numerous tribes (CoreoideaSF 
Team, 2021). Currently, there is no consensus on the phy-
logenetic relationships within the Coreidae, with just a few 
hypotheses proposed based on modern cladistic approaches 
that have analyzed a small sample of taxa with limited mor-
phological (Li, 1996, 1997) or traditional Sanger data (Pan 
et al., 2008).

Recent phylogenomic analyses of Coreidae using 
sequence capture data comprised of hundreds of ultracon-
served elements (UCEs) have begun to test previously pro-
posed hypotheses on relationships within the Coreidae. 
Such analyses include family and subfamily level relation-
ships within the superfamily Coreoidea (Forthman et  al., 
2019) and subfamily to generic level relationships within the  
Coreinae + Meropachyinae clade (Forthman et al., 2020). These 
studies, which utilized greater taxon sampling and/or more 
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molecular data than past cladistic studies, have corroborated 
some previously proposed phylogenetic hypotheses, recovered 
novel sets of relationships challenging hypotheses based on other 
cladistic (Li, 1996, 1997) and non-cladistic (e.g., Ahmad, 1970, 
1979; Kumar, 1965; Schaefer, 1965) studies, and found evidence 
of para- and polyphyletic subfamilies and tribes of Coreidae.

The UCE phylogenomic analyses by Forthman et al. 
(2019, 2020) additionally found, with robust support, that 
Alydidae and Coreidae are not monophyletic families. 
Although taxon sampling was limited, the coreid subfami-
lies Hydarinae and Pseudophloeinae were consistently 
recovered in a clade comprised of a paraphyletic Alydidae. 
While this relationship has not been supported in past clad-
istic analyses (Li, 1996, 1997) (summarized in Fig. 1), with 
the exception of a mitochondrial DNA analysis of Pentato-
momorpha (Zhao et al., 2018), some non-cladistic mor-
phological studies have suggested some similarities among 
these taxa (Ahmad, 1970; Ahmad & Shadab, 1975; Cob-
ben, 1968; Kumar, 1965; Pluot-Sigwalt & Moulet, 2020; 
Schaefer, 1964, 1965, 1980; Shadab, 1972). However, given 
that the taxon sampling by Forthman et al. (2019) was 
very limited for members of this clade, and additional taxa 
within these higher-level groups were not included in their 
subsequent study that expanded sampling for the Coreinae 
(Forthman et al., 2020), additional analyses with greater 
sampling are needed to further test the hypotheses of an  

Alydidae + Hydarinae + Pseudophloeinae (AHP) clade 
(Forthman et al., 2019), as well as the relationships within 
it. For example, Li (1997) found the Pseudophloeini to be 
paraphyletic with respect to the Clavigrallini (one repre-
sentative of the latter tribe was included in the analysis), 
but this has remained the only cladistic study to test rela-
tionships within the Pseudophloeinae. Furthermore, the 
phylogenetic position of the Hydarinae remains uncertain 
within this clade; Forthman et al. (2019) recovered it as the 
sister group to Micrelytrinae or Alydidae + Pseudophloei-
nae but with weak support. Thus, increased taxon sampling 
of Hydarinae and Pseudophloeinae, as well as Alydidae, 
may further clarify phylogenetic relationships.

Here, we expand upon the taxon sampling by Forth-
man et al. (2019, 2020) to investigate relationships among 
and within the Alydidae, Hydarinae, and Pseudophloeinae 
using UCEs. Our taxon sampling strategy aimed to increase 
generic diversity, include representatives of several major 
biogeographic regions, and sample the same species or 
genera within these higher-level taxa as in Li (1997), when 
suitable tissues were available. With our improved taxon 
sampling, our goals were to (1) test whether we supported 
an AHP clade; (2) if the AHP clade was found, determine 
the phylogenetic position of Hydarinae within the clade; 
(3) test whether Alydidae was paraphyletic; and (4) test 
monophyly of the two tribes of Pseudophloeinae.

Fig. 1   Summary of phylogenetic hypotheses based on previous morphological and molecular cladistic analyses
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Material and methods

Taxon sampling

We sampled 212 taxa for this study. Previously published 
sequence data for 160 of these taxa were retrieved from 
Kieran et al. (2019), Forthman et al. (2019, 2020), and 
Emberts et al. (2020). Our sampling expanded on the taxa 
sampled in these past phylogenomic studies by including 
more members of the Hydarinae (5 of 9 genera sampled), 
Pseudophloeinae (17 of 28 genera; 3 of 4 sampled for 
Clavigrallini; 14 of 24 sampled for Pseudophloeini), and 
Alydidae (~ 30% of described genera sampled), as well 
as additional outgroup taxa in Rhopalidae. Our new sam-
pling primarily targeted freshly preserved material (i.e., 
recently collected material preserved frozen or in ethanol 
or isopropyl), but three samples were taken from pinned, 
degraded museum material (see Table S1, Online Resource 
1 for information about newly sampled taxa).

DNA extraction, sequence capture, and UCE 
identification and alignment

For the 52 new taxa sampled in this analysis, genomic 
DNA was extracted using a Gentra Puregene Tissue Kit, 
Qiagen DNeasy Blood and Tissue kit, or Qiagen DNeasy 
Blood and Tissue kit coupled with a Qiagen QIAquick 
PCR purification kit (see Knyshov et  al. (2019); and 
Forthman et al. (2019, 2020) for details regarding DNA 
extraction and isolation protocols) (Table  S1, Online 
Resource 1). We extracted DNA from the head, thorax, 
legs, and/or abdomen or the whole body depending on 
specimen size and quality to sample similar amounts 
of tissue across our samples. DNA quality was visually 
assessed by gel electrophoresis, and concentration was 
quantified using a Qubit 2.0 fluorometer. When possible, 
samples were normalized (10–20 ng/µL), and those with 
high molecular weight were fragmented into 200–1000 bp 
using a Covaris M220 Focused-ultrasonicator (20–60 s) or 
Bioruptor UCD-300 sonicator (4–10 cycles, 30 s on/30 s 
off). Degraded DNA from pinned museum samples were 
repaired using a PreCR Repair Mix kit, with a 3 × SPRI 
clean-up. Libraries were constructed, amplified (14–16 
cycles), and pooled following Forthman et al. (2019). We 
used Forthman et al.'s (2019) custom myBaits kit, which 
includes the pentatomomorphan UCE probes designed by 
Faircloth (2017). We followed Forthman et al.'s (2019) 
enrichment protocol for seven samples, and we followed 
Forthman et al.'s (2020) touchdown enrichment protocol 
for nine (Table S1). For the remaining 36 samples, we 
made the following modifications to Forthman et  al.'s 
(2020) touchdown enrichment protocol: (1) a hybridization 

mixture with 1/4 or 1/2 volume of baits was used (for dried 
or fresh material, respectively); (2) baits hybridized with 
library pools at 65 °C for 12 h followed by 12 h at 62 °C 
and then by 12 h at 60 °C; and (3) bait-target hybrids 
were bound to Dynabeads M-280 Streptavidin beads and 
washed four times at 60 °C (Table S1). Enriched library 
pools were quantified with Qubit, pooled in equimolar 
amounts, and sequenced on a single Illumina HiSeq3000 
lane (2 × 100) at the University of Florida’s Interdiscipli-
nary Center for Biotechnology Research. New and previ-
ously published sequence read data were processed fol-
lowing Forthman et al. (2019) and assembled into contigs 
using SPAdes v3.13.0 (single-cell and auto coverage cutoff 
options) (Prjibelski et al., 2020).

The procedure in Forthman et al. (2019) was followed to 
identify and align UCEs from contigs. We generated locus 
alignments with at least 50% and 70% of taxa (referred to as 
“50p” and “70p” datasets, respectively) and also subsampled 
each dataset for the 25% most parsimony-informative UCEs 
since this filtering strategy can improve topological support 
for UCEs, as these loci often have limited variation (Hosner 
et al., 2016; Meiklejohn et al., 2016). Thus, four datasets 
were generated for analyses.

Phylogenetic inference

A recent phylogenomic study of the subfamily Coreinae 
found concatenation and multispecies coalescent approaches 
to be largely congruent, but there were still differences in 
topology and support for some nodes (Forthman et  al., 
2020). Thus, we analyzed our data using both concatena-
tion and coalescent approaches to make robust phylogenetic 
inferences about the AHP clade. Unless otherwise stated, 
default settings were used in analyses.

For concatenation, locus alignments were concatenated 
in PHYLUCE v1.5.0 (Faircloth, 2016) for each dataset. 
We used IQ-Tree v2.0.3 (Minh et al., 2020) to estimate 
the best partitioning scheme and models of evolution for 
each partition (settings: -m MF + MERGE, -rcluster 10)  
(Kalyaanamoorthy et al., 2017). However, where the propor-
tion of invariant sites and gamma-distributed rate param-
eters were both included in a partition’s model, we excluded 
the former as it is not independent from the latter (Sullivan  
et al., 1999; Yang, 2006). For each partitioned dataset, three 
separate maximum likelihood analyses were performed 
in IQ-Tree (-p option; Chernomor et al., 2016), with the  
Shimodaira-Hasegawa-like approximate likelihood ratio test 
(SH-aLRT) on 1000 replicates (-alrt; Guindon et al., 2010) 
and 1000 ultrafast bootstrap replicates (-B; Hoang et al., 
2018) further optimized by nearest neighbor interchange 
based on bootstrap alignment (-bnni). For each partitioned 
dataset, the analysis that resulted in a topology with the best 
log-likelihood was selected. We also performed the above  
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analysis after removing partitions violating stationarity and/
or homogeneity assumptions (–symtest-remove-bad; Naser-
Khdour et al., 2019).

We also inferred species trees under the multispecies coa-
lescent using individual gene trees for each dataset (Degnan 
& Rosenberg, 2006, 2009). IQ-Tree was used to select the 
best-fit model of sequence evolution for each locus align-
ment (-m TESTONLY). We used GARLI v2.01 (Zwickl, 
2006) to perform 10 maximum likelihood optimal gene tree 
searches using the models selected by IQ-Tree (excluding 
the invariant site parameter when the gamma parameter was 
included in the model), with zero-length gene tree branches 
collapsed into polytomies (Zhang et al., 2017). We inferred 
species trees from optimal gene trees in ASTRAL-III v5.7.7 
(Mirarab et al., 2014; Sayyari & Mirarab, 2016; Zhang et al., 
2018), with local posterior probabilities to assess clade sup-
port (Sayyari & Mirarab, 2016). We additionally excluded 
gene trees based on loci that violated stationarity and/or 
homogeneity assumptions (using IQ-Tree’s symtest), and 
then re-estimated the species tree as described above.

Lastly, two taxa in the subfamily Pseudophloeinae 
(Bathysolen nubilus  (Fallén, 1807) and Coriomeris nig-
ricornis  (Stål, 1870)) were recovered in a few different 
positions in our resulting phylogenies (see “Results”). We 
believed these results could be due to poor UCE locus recov-
ery in these taxa compared to others included in this study, 
which is likely attributable to the old and degraded qual-
ity of these pinned museum samples (Table S1). Thus, we 
performed the above analyses after excluding both taxa to 
determine if phylogenetic relationships would become more 
stable across analyses.

Results

For the 52 newly sequenced taxa in our study, 47.43% of 
the targeted UCE loci were recovered on average per taxon 
(range: 20–1,598 loci per taxon; median = 1,400 [52.38%] loci 
per taxon; Table S2, Online Resource 2). Two dried museum 
samples yielded drastically fewer UCE loci compared to all 
other taxa sampled (the latter group having ≥ 723 loci for a 
given taxon): B. nubilus (20 UCE loci) and C. nigricornis 
(23 UCE loci). The number of parsimony-informative sites 
and number of UCE loci in each concatenated and summary 
coalescent dataset are given in Tables S3 and S4, respectively 
(Online Resources 3 and 4, respectively). Given that our 
analyses excluding B. nubilus and C. nigricornis had results 
largely congruent with our full taxon sampling, we report the 
results from the latter and only reference results from analy-
ses excluding taxa when relevant; for phylogenetic trees from 
analyses with the reduced taxon sampling, see the “Data avail-
ability” section.

Across all analytical methods and data filtering strategies, 
we recovered Alydidae, Hydarinae, and Pseudophloeinae as 
a clade (i.e., the AHP clade) (Figs. 2, S1–S15), consistent 
with Forthman et al. (2019). Support for this relationship 
was consistently high (100%). This AHP clade was sister to 
the Coreinae + Meropachyinae with moderate to high sup-
port (see “Data availability” section for supplementary tree 
files). Within the AHP clade, Hydarinae were consistently 
recovered as the sister group to the remaining members of 
the AHP clade with robust support.

In all analyses, the family Alydidae was paraphyletic. The 
monophyletic subfamily Alydinae was more closely related 
to a monophyletic coreid subfamily, Pseudophloeinae, than 
to the other alydid subfamily, Micrelytrinae, with high sup-
port. This Alydinae + Pseudophloeinae clade was recovered 
as the sister group to the Micrelytrinae with low to high 
support (though support was often high). Within the Pseu-
dophloeinae, we also found consistent, high support for the 
monophyly of both tribes (Clavigrallini and Pseudophloeini).

Relationships within the Hydarinae (except in one 
ASTRAL analysis (Fig. S13)) and Micrelytrinae were con-
gruent across analyses. Relationships within the Alydinae 
were also largely congruent among most of our analyses 
with low to high support (often high), but six analyses (five 
based on our reduced taxon dataset) recovered three alterna-
tive topologies with similar support (Fig. S13; also see “Data 
availability”). These alternative relationships (mostly from 
summary coalescent analyses) largely involved a different 
phylogenetic placement of Apidaurus, as well as the place-
ment of the Tenosius + Heegeria + Nariscus + Melanacan-
thus clade and the relationships within it.

Fig. 2   Maximum likelihood best tree generated from the 50p con-
catenated ultraconserved element alignment containing all parti-
tions (outgroups and representatives of the subfamilies Coreinae and 
Meropachyinae pruned for visualization; see “Data availability” for 
tree with all taxa). Values at nodes represent Shimodaira-Hasegawa-
like approximate likelihood ratio test/ultrafast bootstraps support 
where at least one of these measures is less than 100%. Dorsal habitus 
images of select representatives of higher-level taxa (not to scale): 1, 
Hydarella chiangdaoensis Brailovsky, 1994; 2, Maduranoides chem-
saki Brailovsky, 1988; 3, Micrelytra fossularum (Rossi, 1790); 4, Duli-
chius trispinosus Stål, 1866; 5, Leptocorisa bipunctata Costa, 1863; 
6, Stenocoris furcifera (Westwood, 1842); 7, Hyalymenus pulcher 
(Stål, 1854); 8, Apidaurus conspersus Stål, 1870; 9, Burtinus luteo-
marginatus Maldonado, 1953; 10, Alydus pilosulus Herrich-Schӓffer, 
1847; 11, Nariscus cinctiventris (Germar, 1838); 12, Melanacanthus 
sp.; 13, Clavigralloides acantharis (Fabricius, 1803); 14, Clavigralla 
pusilla Dolling, 1979; 15, Clavigralla elongata Signoret, 1861; 16, 
Vilga westwoodi (Kolenati, 1845); 17, Myla sp.; 18, Mevanidea hystrix 
(Gerstaecker, 1873); 19, Psilolomia brunneofusca Dolling, 1986; 20, 
Pseudomyla cornuta (Hsiao, 1965); 21, Ceraleptus obtusus (Brullé, 
1839); 22, Nemocoris fallenii Sahlberg, 1848; 23, Arenocoris waltlii 
(Herrich-Schӓffer, 1835); 24, Bathysolen nubilus (Fallén, 1807); 25, 
Strobilotoma typhaecornis (Fabricius, 1803); 26, Coriomeris denticu-
latus (Scopoli, 1763)

◂
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We also observed several incongruences within the Pseu-
dophloeinae. Within Clavigrallini, many analyses resulted 
in a moderately to highly supported Clavigralla (Figs. 2, 
S1–S9, S11–S13), but five of our analyses (mostly from 
summary coalescent analyses) found relatively low sup-
port for the paraphyly of the genus with respect to Clavi-
gralloides + Gralliclava (Figs.  S10, S14, S15; also see 
“Data availability”). With respect to the Pseudophloeini, 
three alternative relationships were recovered within the 
Mevanieda + Myla + Paramyla clade, all with low to mod-
erate support and without one topology being predomi-
nately recovered. One large clade, in particular, had sev-
eral different phylogenetic hypotheses recovered, i.e., the 
Anoplocerus + Arenocoris + Bathysolen + Ceraleptus +  
Coriomeris + Nemocoris + Strobilotoma clade. In our full 
taxon dataset, the incongruences we observed in this clade 
involved the phylogenetic placements of Bathysolen and 
C. nigricornis. Excluding these two poor quality samples 
resulted in relationships within this clade that were congru-
ent to that found in Fig. 2, except for one analysis that recov-
ered a slightly different position for the Anoplocerus + Aren-
ocoris clade.

Discussion

The limited body of cladistic analyses involving the Core-
oidea has not offered clarity on the phylogenetic positions 
of Hydarinae and Pseudophloeinae, which have been 
hindered by a relatively small taxon sampling, either for 
members of these subfamilies and/or across the Coreidae 
and Alydidae more generally. Here, using the largest taxon 
sampling of Coreidae and Alydidae to date, we robustly 
reconstructed relationships among the Hydarinae, Pseu-
dophloeinae, and Alydidae, confirming results of recent 
phylogenomic studies (Forthman et al., 2019, 2020). Our 
study clarified the phylogenetic position of Hydarinae as 
the sister group to a paraphyletic Alydidae + a monophyl-
etic Pseudophloeinae regardless of analytical approach and 
data filtering strategies. We further found robust support 
for the monophyly of the pseudophloeine tribes Clavigral-
lini and Pseudophloeini. It is evident that the taxonomic 
status of the Hydarinae and Pseudophloeinae should be 
evaluated further — with an emphasis on morphologi-
cal studies building off past contributions — to formally 
revise the Alydidae and Coreidae classification. While 
the subfamily and tribal classification of the Coreidae and 
Alydidae appears to be based on highly variable exter-
nal characters (e.g., see Forthman et al., 2019), internal 
morphological studies could provide valuable characters 
to inform future classification changes for these groups 
(e.g., see Pluot-Sigwalt & Moulet, 2020). The rest of our 
discussion focuses on clades of interest.

AHP clade

An AHP clade has been recovered only from recent phy-
logenomic analyses (Emberts et al., 2020; Forthman et al., 
2019, 2020) in contrast to previous cladistic studies (e.g., 
Li, 1997), with the exception of a mitochondrial DNA 
analysis of Pentatomomorpha (Zhao et al., 2018). In eval-
uating a limited number of morphological characters in 
the phylogenomic analysis of Coreoidea, Forthman et al. 
(2019) found only the presence of non-pseudoperculate 
eggs to support the AHP clade (which was coded at higher 
taxonomic levels based on findings from Cobben’s (1968) 
study on heteropteran egg structures).

Several non-cladistic morphological studies, often 
based on very limited taxon sampling among higher taxo-
nomic ranks (as well as within some of these ranks), have 
found similarities among the Alydidae, Hydarinae, and 
Pseudophloeinae that would suggest a potentially close 
relationship among them; however, many of these studies 
have also suggested that similarities observed among these 
taxa are probably plesiomorphic traits and that the Hydari-
nae and Pseudophloeinae are likely early diverging line-
ages within the Coreidae (Schaefer, 1965; Ahmad, 1970; 
Ahmad & Shadab, 1975; but see Kumar (1965), and Pluot-
Sigwalt & Moulet, 2020). Kumar (1965) studied the geni-
talia of several coreoid taxa, in which he concluded that 
the female genital plates and several aspects of the male 
internal genitalia (e.g., the vesica and ejaculatory reser-
voir) in Pseudophloeinae are similar to the Alydidae (or at 
least the Leptocorisini [Micrelytrinae]) (also see Schaefer 
(1964) for a brief, general discussion on the structure of 
the ejaculatory reservoir in Coreoidea). Shadab (1972) 
concluded that the pseudophloeine paramere is more 
similar to Alydidae than to other coreids, while Schaefer 
(1980, 1982) noted some inconsistent similarities in the 
male pygophore of the Alydidae and Hydarinae. Ahmad 
and Shadab (1975) examined external cephalic morphol-
ogy and concluded that the Pseudophloeinae and Alydinae 
have similar sutures that are distinctly different from other 
coreid taxa examined.

Perhaps one of the more investigated internal structures 
within the Coreoidea is the female spermatheca. Ahmad 
(1970) stated that the development of the spermathecal 
coils and the absence of a proximal flange in Hydarinae and 
Pseudophloeinae were conditions different from most other 
coreids. Shadab (1972) also briefly highlighted these simi-
larities between Hydarinae, Pseudophloeinae, and Alydidae. 
Recently, Pluot-Sigwalt and Moulet (2020) documented the 
spermatheca in one of the most broadly and densely sampled 
morphological studies within the Coreoidea. They confirmed 
observations from previous studies (e.g.., Ahmad, 1970; 
Kumar, 1965; Schaefer, 1965) while emphasizing the pres-
ence of a bipartite spermatheca in the Alydidae, Hydarinae, 
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and Pseudophloeinae, a morphological feature yet to be 
documented in other coreid subfamilies and coroeid families 
(these being tripartite). Thus, the spermatheca may become 
a useful character system for exploring putative synapomor-
phies of the AHP clade.

Paraphyly of Alydidae and the Alydinae + 
Pseudophloeinae clade

The higher taxonomic groups within the Alydidae (i.e., 
currently recognized subfamilies and tribes) have been var-
iously treated as subfamilies and tribes (e.g., Leptocorisini 
treated as Leptocorisinae), but these groups have always 
been considered distinct from one another. However, rela-
tionships among the Alydidae have rarely been tested with 
cladistic approaches and, thus, remained unclear. The main 
support for the monophyly of the Alydidae comes from 
Li’s (1996) morphological phylogenetic analysis of the 
Coreoidea, but he did not list any apomorphic characters 
uniting the taxa within this clade. A monophyletic Aly-
didae has also been supported by molecular phylogenetic 
studies that included few alydid representatives as part of 
a larger sampling testing relationships among other taxo-
nomic groups (Li et al., 2006, 2016; Wang et al., 2016); 
however, none of these included species of Hydarinae 
and Pseudophloeinae, some lacked sampling of the Micr-
elytrinae, and some also recovered conflicting hypotheses 
under different analytical conditions. While Li and Zheng 
(1993) also claimed that their morphological phylogenetic 
analysis supported the monophyly of the family, there is 
no indication of outgroup taxa being included that would 
permit a test of alydid monophyly.

Recently, phylogenetic analyses based on mitogenomes 
(Zhao et al., 2018) and UCE data (Forthman et al., 2019, 
2020) have recovered the Alydidae as poly- or paraphyl-
etic (often with high support). Some non-cladistic stud-
ies have found several differences in the head (Ahmad 
& Shadab, 1975) and male genital morphology (Kumar, 
1965; Schaefer, 1980) among the alydid subfamilies Micr-
elytrinae and Alydinae, leading some authors to state that 
the Alydidae are likely not monophyletic (e.g., Dolling, 
1978; Schaefer, 1980). Our results support the paraphyly 
of Alydidae, which are congruent with Forthman et al.'s 
(2019, 2020) results that found the subfamily Alydinae to 
be more closely related to Pseudophloeinae. In contrast, Li 
(1996) recovered Pseudophloeinae as the sister to all other 
coreoids sampled (i.e., Rhopalidae + Alydidae + Hydarinae  
+ Coreinae + Meropachyinae), but Li (1997), who included 
only Coreidae, recovered Pseudophloeinae as sister to 
all coreids. While the possibility of a close relationship 
between Pseudophloeinae and the family Alydidae has 
been suggested in several non-cladistic studies (Ahmad, 
1970; Cobben, 1968; Kumar, 1965; Pluot-Sigwalt  

& Moulet, 2020; Schaefer, 1965), only one has specifically 
suggested a close relationship between the Pseudophloe-
inae and the subfamily Alydinae based on male genital 
morphology (Kumar, 1965).

The composition of Micrelytrinae has differed among 
workers (e.g., Ahmad, 1965; CoreoideaSF Team, 2021; 
Schaefer, 1999), and the phylogenetic position of the tribes 
Micrelytrini or Leptocorisini within the Alydidae has not 
always been clear (e.g., see Schaefer, 1972, 1980). Our 
results support a monophyletic Micrelytrinae, inclusive of 
the Leptocorisini and Micrelytrini, which is congruent with 
previous morphological cladistic analyses (Li, 1996; Li & 
Zheng, 1993). Furthermore, we find support for the mono-
phyly of each tribe, congruent with Li (1996). Li and Zheng 
(1993) reported several characters uniting the Micrelytri-
nae, most of which were supported by Schaefer (1999) and 
have been incorporated into diagnoses of the subfamily (e.g., 
Schuh & Weirauch, 2020): presence of a deep mid-cephalic 
sulcus, elongated body, slender legs, and M vein basally 
coriaceous in the membrane, as well as several traits of the 
male aedeagus.

Lastly, morphological and molecular cladistic analyses by 
Li and Zheng (1993), Li (1996), and Forthman et al. (2019, 
2020) have also supported the monophyly of the Alydinae. 
Only one molecular analysis based on cytochrome b and a 
limited sample of Alydinae did not recover this subfamily 
as a clade (Pan et al., 2008). Li and Zheng (1993) listed 
a few hind leg and fore wing characters as supporting the 
Alydinae, while Schaefer (1999) identified several more 
apomorphies for Alydinae based on his re-evaluation of 
Li and Zheng’s (1993) analysis. Forthman et al.'s (2019) 
re-evaluation of Li’s (1996) characters also found several 
apomorphies, including the constricted abdomen, trilateral 
head shape, and closer proximity of the ocelli to each other 
than to the eyes.

Phylogenetic position of the monophyletic 
Hydarinae

The phylogenetic position of the small subfamily Hydarinae 
has been controversial, and few morphological studies have 
included representatives of the subfamily. Hydarinae was 
proposed as an early diverging lineage among coreoids and 
coreids in cladistic and non-cladistic morphological stud-
ies (e.g., Ahmad, 1970; Ahmad & Shadab, 1975; Li, 1996, 
1997; Schaefer, 1965, 1982). From prior morphological phy-
logenetic studies, this subfamily has been recovered as the 
sister group of Rhopalidae + Alydidae + the remaining Corei-
dae (excluding Pseudophloeinae) (Li, 1996) or Coreinae  
+ Meropachyinae (Li, 1997), with few, if any, characters 
listed as apomorphies for these relationships. Phylogenetic 
analyses with mitochondrial DNA have recovered Hydari-
nae in several other positions, including being sister to the 
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Coreinae with weak support (Valero et al., 2017), Alydinae  
+ Pseudophloeinae (Zhao et al., 2018; Bayesian analysis 
with moderate to high support) and the Alydinae (Zhao 
et al., 2018; ML analysis with poor support). Forthman et al. 
(2019, 2020) phylogenomic analyses suggested the Hydari-
nae to be a member of a clade including Pseudophloeinae 
and Alydidae, with weakly supported, conflicting hypotheses 
about the position of the subfamily within it (sister to Aly-
didae + Pseudophloeinae or sister to Micrelytrinae, the latter 
relationship not having any apomorphies in their analysis). 
Here, we find robust, consistent support for the Hydarinae 
as sister to the Alydidae + Pseudophloeinae, congruent with 
some of Zhao et al. (2018) and Forthman et al.'s (2019, 
2020) findings.

While the position of Hydarinae within the Coreoidea 
has been relatively contentious, its status as a monophyletic 
group has not. Despite the uncontroversial recognition of 
Hydarinae as a natural group, there has been disagreement 
on which taxonomic rank should be accorded to it. While 
some modern works have treated Hydarinae as a subfamily 
since Ahmad (1970), there are still others (e.g., Brailovsky, 
1998, 2011; Fernandes et al., 2015; Packauskas, 2010) that 
recognize it as a tribe within the subfamily Coreinae. Our 
phylogenetic findings, as well as others (e.g., Li, 1996, 1997; 
Zhao et al., 2018), provide evidence that the Hydarinae can-
not be considered a tribe within the Coreinae. Until further 
systematic work is done on the AHP clade — hopefully 
leading to a revision of the Alydidae and Coreidae — the 
Hydarinae should be treated as a subfamily of Coreidae.

Monophyly of Pseudophloeinae, Clavigrallini, 
and Pseudophloeini

The monophyly of Pseudophloeinae has not been questioned 
in past studies. Li (1997) identified several apomorphies 
for the subfamily (some of which were not coded in his 
matrix), including abdominal and male genital morphology. 
In Forthman et al.'s (2019) analysis, they identified other 
apomorphies involving the head and abdomen. Other non-
cladistic studies have also suggested a suite of characters 
to separate the Pseudophloeinae from the other members 
of Coreidae, including morphology of the hind wing (Stål, 
1867; Štys, 1977), metathoracic scent glands (Shadab, 1972; 
Stål, 1867), legs (Schaefer, 1965; Stål, 1867), and male and 
female genitalia (Ahmad, 1965; Kumar, 1965; Pluot-Sigwalt 
& Moulet, 2020; Schaefer, 1965), among others (see Dolling 
(1978, 1986) for most recent diagnosis of the subfamily). 
However, some of these traits are not consistently observed 
across all species of Pseudophloeinae (e.g., the antevannal 
vein is absent in five genera (Dolling, 1986)), or restricted to 
the subfamily (e.g., the non-sulcate tibiae (Ahmad, 1970)). 
Furthermore, many of these studies often suffer from poor 
taxon sampling of Pseudophloeinae, with most studies rarely 

sampling species from both subfamilies. As such, many of 
these traits remain to be tested in cladistic analyses with a 
much larger taxon sampling to determine whether they are 
apomorphies of the subfamily.

To our knowledge, no studies have explicitly tested the 
monophyly of each of the tribes within the Pseudophloeinae 
(Li (1997) only included one representative of Clavigrallini 
but did recover a paraphyletic Pseudophloeini; Fig. 1), mak-
ing our study the first cladistic analysis which robustly sup-
ports the monophyly of the Clavigrallini and Pseudophloe-
ini. Dolling (1978, 1986) provided the most comprehensive 
treatments of the tribes to date. In those treatments, Dolling 
reviewed the traits Stål (1873) used to characterize the Clavi-
grallini and Pseudophloeini, identified a few characters that 
together would distinguish Clavigrallini from taxa within the 
Pseudophloeini, and concluded that the Pseudophloeini are 
more difficult to diagnosis due to a lack of universal traits 
among the species and the presence of some characters found 
in the Clavigrallini, which he attributed as plesiomorphies. 
Aside from Dolling’s studies, the only comparative mor-
phological study to have a relatively broad sample of both 
pseudophloeine tribes (compared to other prior morphologi-
cal studies) is Pluot-Sigwalt and Moulet’s (2020) investiga-
tion of the female spermatheca. While both tribes possess a 
“Type II” spermatheca, Pluot-Sigwalt and Moulet’s (2020) 
descriptions of the seminal receptacle and spermathecal duct 
suggested some trait differences among the Clavigrallini and 
Pseudophloeini that may be worth examining further with 
more generic representation and testing in a phylogenetic 
analysis. Given our results and past studies, it is clear that this 
poorly studied subfamily and its tribes should be a focus of 
future morphological studies, which need to include a large 
taxon sampling to better determine and evaluate putative 
synapomorphies of these clades.

Conclusion

Our study, the first phylogenetic analysis to have a broader 
sample of Hydarinae and Pseudophloeinae, found robust 
support for a clade comprised of the Alydidae, Hydarinae, 
and Pseudophloeinae. While we found that many of the 
family-level groupings are monophyletic, it appears that the 
Alydidae are paraphyletic. While previous comparative mor-
phological studies have provided some insights on characters 
that may be apomorphies of the relationships we recovered, 
many of these studies suffered from sparse sampling of our 
ingroup taxa. Such morphological traits, among others, 
should be examined in more species where suitable material 
is available to determine apomorphies that can diagnose the 
AHP clade and clades within it. The results of this study, as 
well as recent phylogenomic analyses highlighting the non-
monophyly of Coreinae and Meropachyinae, indicates that 
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the classification of both the Alydidae and Coreidae needs 
further systematic attention and revision.
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