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Abstract

Known for its remarkable biodiversity and high levels of endemism, the Brazilian Atlantic Rainforest has been
characterized as one of the most threatened biomes on the planet. Despite strong interest in recent years, we still lack
a comprehensive scenario to explain the origin and maintenance of diversity in this region, partially given the
relatively low power of analyses involving few independent genetic loci. In this study, we examine a phylogenomic
dataset of five ant species to investigate phylogeographical patterns across the Brazilian Atlantic Forest. We sequenced
ultraconserved elements to generate hundreds of loci using a bait set developed specifically for hymenopterans. We
analyzed the data using Bayesian and maximum likelihood approaches of phylogenetic inference. Results were then
integrated with environmental niche modeling of current and past climates, including the Last Glacial Maximum and
the last interglacial period. The studied species showed differentiation patterns that were consistent with the north/
south division of the Atlantic Rainforest indicated in previous studies for other taxa. However, there were differences
among species, both in the location of phylogeographic breaks and in the pattern of genetic variation within these
areas. Samples from southern localities tended to show recent genetic structure, although a site in Tapirai (state of Sao
Paulo) repeatedly showed an intriguing older history of differentiation. All species experienced shifts in areas of
suitability through the time. Our study suggests that distinct groups may have responded idiosyncratically to the
climatic changes that took place in the Brazilian Atlantic Forest. The amount of intraspecific genetic structure was
related to the inferred geographical distribution of habitat suitability according to current and past times. Also, a
parallel between the amount of Quaternary climatic suitability and the level of interspecific differentiation was detected
for four species. Finally, despite strong contractions at the northeastern region of the forest, the remaining areas appear
to have been able to act as refugia.

Keywords Biogeography - Environmental niche modeling - Hymenoptera - Sequence capture - Ultraconserved elements -
Quaternary refugia
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(https://doi.org/10.1007/s13127-019-00409-z) contains supplementary
material, which is available to authorized users. The remarkable plant and animal diversity in the Brazilian
Atlantic Forest had a profound impact on the young Charles
Darwin in 1832, leading him to note in his diary from the
voyage on the HMS Beagle that “no art could depict so stupen-
dous a scene” (Darwin and Keynes 2004). Indeed, the Brazilian
Atlantic Forest has been estimated to harbor the equivalent of
50-60% of the species richness of the entire Amazon Forest,
despite only encompassing less than one fourth of its geograph-
ical extent (Silva and Casteleti, 2003; Silva et al. 2005; Ribeiro
et al. 2009). Such elevated diversity and endemism have led the
Brazilian Atlantic Forest to be recognized among the world’s
biodiversity hotspots (Myers et al. 2000), yet the evolutionary
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processes that led to such high diversity remain unclear. For
instance, diversity hotspots have been identified across the
Brazilian Atlantic Forest for a variety of taxa, including birds
(Silva et al. 2004; Giraudo et al. 2008), mammals (Costa et al.
2000), and plants (Murray-Smith et al. 2009; Ledo et al. 2014),
but the apparent lack of congruence in the location of these
hotspots calls into question whether diversification has been
mediated through vicariance, or perhaps instead through pro-
cesses more idiosyncratic to species, such as dispersal ability
(Smith et al. 2014).

The lack of clear evolutionary drivers in the Brazilian
Atlantic Forest is obvious when compared to its better-known
neighbor, the Amazon basin (Haffer 1997; Hayes and Sewlal
2004; Bonaccorso et al. 2006; Oliveira et al. 2017). In fact, one
of the earliest diversification hypotheses for the Brazilian
Atlantic Forest involves the Pleistocene Refugia Model, made
famous for its application to the question of diversification in
the Amazon basin (Haffer 1969; Vanzolini and Williams 1981;
Vanzolini 1992), which posits that Pleistocene climatic cycles
led to vicariance and speciation. However, this model does not
seem applicable to the Brazilian Atlantic Forest because extant
species often considerably predate the Pleistocene and go back
in many cases to the Tertiary (e.g., Simpson 1979; Zamudio
and Greene 1997; Lara and Patton 2000; Pellegrino et al. 2005;
Alvarez-Presas et al. 2014; Thomé et al. 2014; see also Costa
2003). On the other hand, there is evidence that climatic chang-
es during the Quaternary influenced levels of intraspecific ge-
netic variability in the Brazilian Atlantic Forest, with northern
populations often being characterized by higher genetic vari-
ability, presumably caused by relative habitat stability, and
southern populations showing lower genetic diversity associat-
ed with recolonization (e.g., Pellegrino et al. 2005; Grazziotin
et al. 2006; Tchaicka et al. 2006; Martins et al. 2009; Resende
et al. 2010; Ribeiro et al. 2010; Amaro et al. 2012; but see
Batalha-Filho et al. 2012).

In addition to latitudinal effects, climatic fluctuations also
affected species differently depending on their altitudinal dis-
tribution. For instance, the anuran Hypsiboas faber is distrib-
uted from the lowlands up to 1000 m and is likely to have
persisted in the southern Brazilian Atlantic Forest during the
Last Glacial Maximum, while lowland species such as
Hypsiboas albomarginatus and Hypsiboas demilineatus did
not (Carnaval et al. 2009). A similar pattern was detected for
another anuran, Proceratophrys boiei, found across a broad
altitudinal distribution (up to 1200 m), which showed no ev-
idence of population expansion (Amaro et al. 2012). These
results suggest that montane habitats might have facilitated
the maintenance of genetic variability, given that altitudinal
migration could protect local populations from extinction.
Indeed, it has been found that the mountainous region of the
southern Brazilian Atlantic Forest, the Serra do Mar, might
harbor substantial phylogeographic endemism (Carnaval
et al. 2014). These idiosyncratic climatic response patterns
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are now becoming clearer to Brazilian Atlantic Forest
(Prates et al. 2016), even though the underlying mechanisms
for this inconsistency need to be further investigated. For in-
stance, one possibility is that the niche of each species affects
the way they are influenced by the climate and vegetation
changes of the Brazilian Atlantic Forest.

Most phylogeographic studies on the Brazilian Atlantic
Forest have focused on vertebrates. A more comprehensive
view of this region’s diversification should include a variety of
taxonomic groups, particularly invertebrates that potentially
disperse more slowly than vertebrates and can show fine-
scale phylogeographical patterns that could help elucidate a
region’s history (Garrick et al. 2004). Ants (Formicidae) are a
model system already used to investigate phylogeographical
patterns in a wide range of terrestrial ecosystems (e.g., Quek
et al. 2007; Solomon et al. 2008; Leppénen et al. 2011). With
nearly 13,500 described species (Bolton 2019), ants are euso-
cial organisms that display a variety of life histories and have a
wide range of ecological interactions with other organisms
(Holldobler and Wilson 1990). The feature of having fine-
scale and regional biodiversity also makes this group suitable
for phylogeographic studies (e.g., Seal et al. 2015).

The goal of this study is to carry out a comparative
phylogeography with five ant species from the Brazilian
Atlantic Forest. A few studies already used ants to address
phylogeographic questions in this environment (e.g.,
Cardoso et al. 2015; Peres et al. 2015), but here, we use
ultraconserved elements (UCEs) to generate data from hun-
dreds of predominantly unlinked loci using a developed probe
set for Hymenoptera (Faircloth et al. 2015). Compared to mi-
tochondrial DNA, data from hundreds of unlinked loci allow
us to assess the divergence history across the genome, instead
of a single locus. While the benefits of multilocus
phylogeography have been well described, these methods
have not been applied to the Brazilian Atlantic Forest, where
most studies tend to rely on mitochondrial DNA or a few loci
(e.g., Bragagnolo et al. 2015; Batalha-Filho and Miyaki 2016;
Cabanne et al. 2016).

Material and methods
Sampling and DNA extraction

Genomic DNA was extracted from individuals of the follow-
ing ant species (see details at Table 1): Heteroponera
dentinodis (Mayr, 1887) (Heteroponerinae), Hylomyrma
reitteri (Mayr, 1887) (Myrmicinae), Octostruma rugifera
(Mayr, 1887) (Myrmicinae), Octostruma stenognatha
Brown & Kempf, 1960 (Myrmicinae), Odontomachus
meinerti Forel, 1905 (Ponerinae), Strumigenys crassicornis
Mayr, 1887 (Myrmicinae), and Strumigenys denticulata
Mayr, 1887 (Myrmicinae) from 23 localities covering most
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Table 1 Descriptive statistics of

the ultraconserved elements Species Number of Number of loci  Fragment size Number of parsimony-
obtained in the present study individuals (bp) informative sites
Odontomachus 9 538156 442+155.5 139.3 £ 87.7 (42-424)
meinerti (136-638) (224-3137)
Octostruma 13 594 +101 619+241.3 248 + 54 (124-316)
stenognatha (289-663) (224-2051)
Strumigenys 7 613+29.9 503+174.6 81.5 + 55.6 (4-231)
crassicornis (575-655) (224-1625)
Strumigenys 19 577+98.4 535+209.3 159 £ 7.07 (154-164)
denticulata (240-670) (224-2311)
Octostruma 5 598+55.4 537+197.1 137.5 £ 92.5 (7-470)
rugifera (509-638) (224-1414)
Heteroponera 3 678 +£16.5 719+£309.8 -
dentinodis* (665-697) (224-2586)
Hylomyrma 2 579+30.4 460+129.9 -
reitteri* (558-601) (225-1103)

Values are indicated as mean SD (range)

*It was not possible to calculate the number of parsimony-informative sites for Heteroponera dentinodis and
Hylomyrma reitteri due to the number of sequenced specimens

of the Brazilian coast and the original distribution of the
Brazilian Atlantic Forest, although not all species were obtain-
ed from each location (Fig. 1). We focused on a multispecies
approach given that it is more efficient in providing general
inferences than single-species studies (Bernatchez and Wilson
1998). The sequences from Heteroponera dentinodis and
Hylomyrma reitteri were used to root intraspecific gene trees
for their phylogenetically closest species (see below).
Voucher specimens of ants from the same nest series of all
species were deposited in the myrmecological collection of the

Museu de Zoologia da Universidade de Sao Paulo, Brazil, and
were obtained through of a larger effort to survey the ant fauna of
the Brazilian Atlantic Forest between 1999 and 2003 as part of a
BIOTA-FAPESP initiative. DNA extraction was carried out
using PureLink™ Genomic DNA kits (Invitrogen, USA), and
double-stranded DNA concentration was measured on a Qubit
2.0 Fluorometer (Life Technologies, Inc.) using the dsSDNA High
Sensitivity Assay Kit. The initial DNA concentration for these
samples was highly variable, ranging from < 0.2 ng total DNA to
14.2 ng/ul. DNA quality was checked using agarose gel
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Fig. 1 Location of the sampling sites from which the phylogenetically
studied specimens were obtained. The colored grid shows which species
were sampled in each sampling site. Sampling sites are represented by the
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electrophoresis or using the Bioanalyzer (Agilent Technologies)
depending on the amount of the DNA. Samples with high mo-
lecular weight DNA were sheared by sonication with a Q800R
Sonicator (Qsonica Inc.) using 15 s on—15 s off cycles for 50 s
with 20% amplitude. Highly fragmented samples were not
sheared prior to library preparation.

Sequence capture of UCEs

We prepared libraries with the KAPA HyperPrep Kit (Kapa
Biosystems) adjuvant with a bead technique (Fisher et al.
2011), which was used instead of solid-phase reversible im-
mobilization (SPRI) beads (Rohland and Reich 2012). When
possible, we used 30 ng of total starting DNA. Between 20
and 30 ng, we used all the available DNA, whereas samples
below 20 ng were discarded. Each sample was individually
labeled using the iTru dual-indexing adapter system (Glenn
et al. 2016), which is similar to the TruSeq layout barcodes
(Faircloth and Glenn 2012). We obtained adapter-ligated
DNA for all samples with 12—16 PCR cycles (more cycles
were performed with low-concentration samples). If neces-
sary, a dual-SPRI cleanup of the samples was performed to
remove fragments that were either too long or too short for
sequencing.

We then carried out target enrichment (Gnirke et al. 2009) to
isolate UCEs that occur in Hymenoptera (Faircloth et al., 2015)
using a protocol from Faircloth and Glenn (2012). We created
pools of eight samples, and each pool was concentrated to
147 ng/ul in a vacuum centrifuge and enriched for a set of
1510 UCEs using RNA probes (myBaits®, Arbor Biosciences).
We assessed the size of the captured UCE products using a
Bioanalyzer (Agilent Technologies), followed by quantification
of library concentration with real-time PCR with a Kapa Library
Quantification Kit (Kapa Biosystems, Inc.). The resulting pools
were combined at equimolar ratios and sequenced on an Illumina
HiSeq2000 sequencer, using 100-bp paired-end reads at the,
Genome Technology Center, University of California Santa
Cruz. Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad k200rt4.

Bioinformatic processing of UCE data

After sequencing, we converted the BCL files into FASTQ
and demultiplexed samples using Illumina bcl2fastq
Conversion software (v1.8.4). FastQC 0.11.3 (Andrews
2010) was used to assess the sequencing quality. The
Trimmomatic tool (Lohse et al. 2012) implemented in
[lumiprocessor (Faircloth 2013) was applied to remove low-
quality regions, barcodes, and adapters. The assembly was
carried out with Trinity (Grabherr et al. 2011) as implemented
in the PHYLUCE pipeline (Faircloth 2015) and using the pre-
set parameters. The resulting contigs were also processed with
PHYLUCE (Faircloth 2015) to recover UCE loci, which were
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aligned using MAFFT (Katoh and Standley, 2013), and irreg-
ular edges were automatically cleaned. All the post-assembly
processing was done together for all species and following the
default settings of PHYLUCE (Faircloth 2015).

We pruned the resulting data to generate complete
concatenated matrices (without any missing locus for any
specimen) and incomplete concatenated matrices (75% com-
pleteness needed to retain a locus). Trees from the obtained
sequences were inferred using maximum likelihood with
RAxXxML (version 8.0.0) (Stamatakis 2014) with an
unpartitioned, GTRGAMMA nucleotide substitution model.
To root the trees, we used the phylogenetically closest species
for which the largest number of loci was available because not
all loci were amplified for each species. A locus that was
successfully amplified for one species might not be available
for the phylogenetically closest species. We built a concatenat-
ed alignment using only the shared loci by selecting the lon-
gest sequence in the corresponding outgroup species and locus
and analyzed the resulting alignment using RAXML. The ob-
tained placement of the outgroup was then used to root the
original trees. We also obtained chronograms using a relaxed
lognormal clock model in BEAST (version 1.8.4)
(Drummond et al. 2012), with MCMC runs of 100 million
generations, trees sampled every 1000 generations with
GTR + I nucleotide substitution model, and a Yule tree prior.
Convergence was checked on Tracer v1.6 (e.g., ESSs > 200),
and a burn-in of 10% was applied.

To help explain how climate has influenced species, we
applied a niche modeling approach that has been successfully
used in this and other biomes (e.g., Morales et al. 2015;
Nicolas et al. 2016) and that has been confirmed as accurate
even with small numbers of samples (Pearson et al. 2006).
Ecological niche models (ENMs) were used to infer how the
geographical distribution of the ants might have been influ-
enced by the climatic changes during their recent evolutionary
history. We estimated ENMs for Octostruma rugifera,
Octostruma stenognatha, Odontomachus meinerti,
Strumigenys crassicornis, and Strumigenys denticulata.
Records of occurrences were compiled using the Global
Biodiversity Information Facility database. To reduce spatial
sampling bias, we used a randomization approach implement-
ed in the R package spThin 0.1.0 (Aiello-Lammens et al.
2015) to exclude occurrence records separated by less than
15 km apart while keeping the maximum number of records.
We then used the occurrence records to select the extent of the
study region used to model the niches. Our aim was to delimit
an area that was accessible to species via dispersal, a proce-
dure known for improving both model performance and trans-
ferability across time (Barve et al. 2011). Specifically, we
generated minimum convex polygons using the occurrence
records of each species. We then created 300-km buffers
around each polygon. The resulting areas were selected as
study regions for each species.
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We selected a preliminary set of 19 bioclimatic variables at
the spatial resolution of 5 arc minutes from the WorldClim 2
database (Fick and Hijmans 2017). We cropped the variables
according to the extent of the selected study regions and per-
formed a pairwise Pearson correlation test. We retained only
variables with correlation values < 0.80. ENMs were generat-
ed using Maxent 3.4.1 (Phillips et al. 2017). Maxent is one of
the best performing algorithms for modeling species distribu-
tion from presence-only records (Elith et al. 2006). We used
raw output format (Merow et al. 2013) and assessed model
performance using 10-fold cross-validation (Wenger and
Olden 2012). To distinguish present-day suitable and unsuit-
able habitats, we applied a minimum training presence thresh-
old, while excluding the 5% of the localities with the lowest
predicted values (i.e., admitting a 5% omission error; Peterson
et al. 2011; Zwiener et al. 2017). Thresholds were calculated
using the R package ENMGadgets 0.0.12 (Barve and Barve
2016).

To estimate the potential past distribution of the species, we
projected present-day ENMs onto two-time slices: the Last
Glacial Maximum (LGM; ~22,000 years ago) and the last
interglacial (LIG; ~ 120,000-140,000 years ago). Past climate
data used were downloaded from the WorldClim 1.4 database
(Hijmans et al. 2005). LGM climate data are available from
three global circulation models: CCSM4, MIROC-ESM, and
MPS-ESM-P. In this case, we projected present-day ENMs
into each global circulation model and then created a compos-
ite model by averaging the predictions of all models. To dis-
tinguish past suitable and unsuitable habitats, we applied a
minimum training presence threshold, excluding the 20% of
the localities with the lowest predicted values (i.e., admitting a
20% omission error). We chose a relatively high threshold to
avoid overly broad predictions and to emphasize regions with
higher habitat suitability.

Results

Descriptive statistics of UCE loci recovered for each species
are shown in Table 1. The success of the obtained UCE data is
notable given the highly degraded state of some DNA extracts
(observed by gel electrophoresis) and the fact that the UCE
baits were not developed for ants specifically, but for groups
of Hymenoptera. Interestingly, we did not find a significant
relationship between the initial DNA concentration and the
number of obtained loci (R =0.016, P = 0.33), suggesting that
the level of DNA fragmentation might be more important than
the concentration itself in the success of UCE capture.

The trees from concatenated UCE loci for each species are
shown in Fig. 2(a—e). Given that the topologies from ML
(RAXML) and BI (BEAST) are congruent, BI + ML trees will
be discussed further as equivalent, given that the observed
differences between them would not alter our conclusions.

l GfBS

There were substantial differences in relative timing and geo-
graphic structure among species. The shallowest divergences
within Octostruma rugifera correspond to sites in the southern
Brazilian Atlantic Forest (Morretes, state of Parana, and
Palhoga, state of Santa Catarina; Fig. 2(a)). The oldest diver-
gences in Octostruma stenognatha were found in samples
from the northeastern Brazilian Atlantic Forest (state of
Bahia; Fig. 2(b)). A similar pattern was found on
Odontomachus meinerti (Fig. 2(c)), although with a shallower
divergence and a less prominent geographical structure. Also,
Odontomachus meinerti shows an intriguing result of an old
divergence further south (Tapirai, state of Sao Paulo), an out-
come that is shared with other species (see next). Strumigenys
crassicornis and Strumigenys denticulata presented similar
results with a strong north/south differentiation and recent
divergences in the south. Also, the deep divergence of the
Tapirai is notable in Strumigenys denticulata (Fig. 2(e)).

We estimated relative divergence times between samples,
based on the assumption that UCE loci share similar mutation
rates. Interestingly, there was a correspondence between the
level of intraspecific divergence and the inferred geographical
distribution of habitat suitability according to current and past
ENMs (overall, ENMs showed reliable performance with
AUC >0.79 for all species). For instance, Octostruma
rugifera and Odontomachus meinerti were associated with
the shallowest divergences, followed by Strumigenys
crassicornis, Octostruma stenognatha, and Strumigenys
denticulata, respectively (Fig. 2(a—e)), which tended to corre-
spond to the level of stability in their corresponding areas of
suitability throughout the LIG/LGM/present (Fig. 3). This
combination of results suggests a scenario of population ex-
pansion and/or high dispersal capacity, which could erase any
geographical structure in the observed genetic variability of
these species.

Discussion

Our results provide valuable insight into the history of the
Brazilian Atlantic Forest by exploring genetic structure
and environmental stability in five co-distributed ant spe-
cies. In general, even though our results supported the tra-
ditional north/south division in the Brazilian Atlantic
Forest, we also found substantial differences among spe-
cies in the location of genetic divisions and in the patterns
of genetic variation within areas. These differences suggest
that species responded idiosyncratically to the climatic
changes that took place in the Brazilian Atlantic Forest,
and that a single vicariance scenario might not be sufficient
to describe the dynamics underlying the diversification of
this biome (Batalha-Filho et al. 2012; Raposo do Amaral
etal. 2016). This conclusion also supports a recent study in
the Amazon, in which species showed idiosyncratic
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Fig. 2 Intraspecific relationships within five ant species in the Brazilian
Atlantic Forest based on phylogenomic data from UCEs. Chronograms
also indicating relative timing of divergence of sequences from the

responses to vicariance that related more to their ecology
and dispersal abilities than to the timing of vicariant events
(Smith et al. 2014).

Regarding the ENMs, four of five ant species experienced
large shifts in areas of suitability between the present, the Last
Glacial Maximum, and the last interglacial period. A substan-
tial fraction of suitable habitat was located where the Atlantic
Ocean is today, similar to what was hypothesized by Cabanne
et al. (2016). In the case of Octostruma rugifera, no suitable
habitat was recovered for the southern Brazilian Atlantic
Forest, which might explain the genetic result of shallowest
divergences in this area. In contrast, the congener Octostruma
stenognatha also showed shallow divergence, but niche
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Buraquinho, PB (a)
Areia Branca, SE (C)
Crasto, SE (d)

Porto Seguro, BA (g)
Picinguaba, SP (k)
Crasto, SE (d)

studied species. Pink lines indicate 95% credibility intervals. Letters
after location names are the same letters presented in Fig. 1

results supported a stable suitability area through the LGM.
The highly divergent lineages found in Tapirai, which was
independently uncovered for two species in different genera,
suggest unique conditions in this area that deserves to be in-
vestigated in more detail in future studies.

Our ENMs and genetic results agree with a previously pro-
posed northern refugium (Carnaval et al. 2009; Thomé et al.
2010) and recognize patterns found in another ant study that

Fig.3 Environmental niche modeling of climatic suitability in the present P>
time, Last Glacial Maximum (LGM), and last interglacial (LIG) period
for the studied species. Occurrence data for each species are shown as
white diamonds
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shows evidence for very small remnants of forest acting as
small putative refugia for the maintenance of diversity
(Resende et al. 2010). The finding of a northern distinct clade
in our comparative phylogeographic analyses shows that the
Bahia and Pernambuco areas are indeed consistent candidates
to refugia, as previously proposed (Carnaval and Moritz 2008;
Carnaval et al. 2009; Carnaval et al. 2014). It is significant to
point out that we can see a parallel between the Quaternary
climatic suitability intensity and the level of interspecific dif-
ferentiation, and how even strong contractions in the
Northeastern Brazilian Atlantic Forest were still able to act
as refugia. Some authors proposed that glaciation/refugia
had minor effects in Brazilian Atlantic Forest, including the
proposition of a new “Atlantis Forest hypothesis,” meaning a
suitable habitat on the emerged continental shelf (Leite et al.
2016a), and that the fragmentation had small influence on
fluctuations in the size of forested areas (Thomé et al. 2014).
Although the solely “Atlantis” proposition was heavily criti-
cized (Raposo do Amaral et al. 2016; see also Leite et al.
2016b), both articles agree on the need for widely sampled
genomes of a variety of taxa to build a solid understanding
about the history of the Brazilian Atlantic Forest.

We did not find a strong genetic structure in nuclear DNA
from samples in the southern Brazilian Atlantic Forest region,
a pattern also reported by Batalha-Filho and Miyaki (2016) in
birds and with a subtropical spider (Peres et al. 2015).
Although these results could be explained by a delay in the
coalescence of nuclear DNA in relation to mitochondrial
genes (Hare 2001) or by a recent divergence leading to incom-
plete lineage sorting (Maddison et al. 2006), these scenarios
are starting to become less possible as a weaker genetic struc-
ture in the southern Brazilian Atlantic Forest compared to the
northern regions is starting to consistently be found among
different taxa. In our case, we can also hypothesize that gene
flow was possible because of the ant reproductive biology,
given that in general winged males and females fly to a nuptial
encounter and, after the mating, the juvenile queen can be
carried away by the winds before the landing to establish a
new colony (Baer, 2011; Cardoso et al. 2015; Cristiano et al.
2016), but this feature is not exclusive to the southern
lineages.

Finally, our results underscore the potential of using UCEs
as a valuable source of genetic data for shallower timescales
(Smith et al. 2013), especially in ants where they have previ-
ously been used mostly for deeper timescales (Blaimer et al.
2015). There is increasing evidence that more genetic markers
lead to more accurate inferences about phylogenetic and de-
mographic history, but for ants, there have been a limited
number of available loci for Sanger sequencing (but see
Stroher et al. 2013). For instance, a recent phylogeographic
study failed to find nuclear divergences among populations of
the sand dune ant Mycetophylax simplex, and nuclear loci
could not be used in the analyses (Cardoso et al. 2015).

@ Springer

UCEs, meanwhile, allow for a large and orthologous set of
nuclear loci to be captured across diverse species within fam-
ilies, which should provide opportunities for more compara-
tive phylogenetic studies (Smith et al. 2014).

Conclusion

As we reach a decade since the first large-scale phylogeography
studies for the Brazilian Atlantic Forest were published, it is
becoming clear that the natural history of this biome is complex.
Vicariance events have been given prominence in prior hypoth-
eses about diversification but, as our results suggest, appear to be
only part of the story. Niche modeling combined with genetic
data across five ant species suggests that recolonization does not
always explain shallow southern divergences due to low habitat
suitability during glacial periods, as some species are predicted to
have high suitability in the south at the LGM. Our phylogeo-
graphic study also highlights how idiosyncratic patterns are com-
mon and not an exception in the explanation to the history of
diversification at the Brazilian Atlantic Forest. Finally, our results
also underscore the utility of UCEs for carrying out comparative
phylogeography across evolutionarily divergent taxa.
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