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Abstract Members of Cnidaria Medusozoa are known for
their wide morphological variation, which is expressed on
many different levels, especially in different phases of the life
cycle. Difficulties in interpreting morphological variations
have posed many taxonomic problems, since intraspecific
morphological variations are often misinterpreted as interspe-
cific variations and vice-versa, hampering species delimita-
tion. This study reviews the patterns of morphological varia-
tion in the Medusozoa, to evaluate how different interpreta-
tions of the levels of variation may influence the understand-
ing of the patterns of diversification in the group. Additionally,
we provide an estimate of the cryptic diversity in the
Hydrozoa, based on COI sequences deposited in GenBank.
Morphological variations frequently overlap between micro-
evolutionary and macroevolutionary scales, contributing to
misinterpretations of the different levels of variation. In addi-
tion, most of the cryptic diversity described so far for the
Medusozoa is a result of previously overlooked morphologi-
cal differences, and there is still great potential for discovering
cryptic lineages in the Hydrozoa. We provide evidence that
the number of species in the Medusozoa is misestimated and

emphasize the necessity of examining different levels of mor-
phological variations when studying species boundaries, in
order to avoid generalizations and misinterpretations of mor-
phological characters.
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Introduction

Following the fundamental work of Darwin (1859), under-
standing the expression of variation in nature has become
essential for the study of evolution, since variation is the basis
for evolutionary change. The interpretation of variation, how-
ever, has changed in recent years to incorporate phenotypic
(developmental) plasticity, in addition to genetic diversity, as
important drivers of evolutionary change (West-Eberhard
1989, 2003, 2005; Price et al. 2003; Schlichting 2004;
Pigliucci 2007; Pfennig et al. 2010). A major concept is that
selection acts on phenotypes and, consequently, phenotypic
variation is selectable variation, whether or not it is initially
associated with genetic variation (West-Eberhard 1989, 2003,
2005). Phenotypic plasticity can, therefore, contribute to mi-
croevolutionary and macroevolutionary processes, emphasiz-
ing the importance of the study of variation at different evo-
lutionary levels.

Cnidaria are known for their great morphological variation
(e.g., De Weerdt 1981; Silveira and Migotto 1991; Dawson
2005a; Griffith and Newberry 2008; Forsman et al. 2009;
Menezes et al. 2013; Ong et al. 2013). Modular growth, char-
acteristic of the polyp stage of many cnidarians, enables a
wide variability of colony form through increased regenera-
tive capacity and varying growth rates, branching, number of
hydranths, and annulations, contributing to morphological
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variation in response to differences in environmental condi-
tions (Hughes 1989; Gili and Hughes 1995; Marfenin 1997).
The expression of alternative life cycle stages in Medusozoa
(Marques and Collins 2004) is another important source of
variation in this group. At the microevolutionary level, intra-
specific variation in life cycles (e.g., Stefani 1959; Bouillon et
al. 1991) has been suggested to have a genetic basis, by means
of a switch mechanism responsible for the expression of alter-
native phenotypes in accordance with environmental cues
(West-Eberhard 1986; Boero and Sarà 1987; Boero and
Bouillon 1989; Cornelius 1990a; Boero et al. 1997;
Bavestrello et al. 2000). At the macroevolutionary level, con-
secutive suppression and reexpression of the medusa stage
during the evolutionary history of the group account for the
interspecific remarkable diversity of life cycles (e.g., Boero
and Sarà 1987; Boero et al. 1992; Cornelius 1992; Boero
and Bouillon 1993, 1994; Piraino et al. 1996; Holst et al.
2007; Miranda et al. 2010; Straehler-Pohl and Jarms 2011).
The origin of a medusa in the lineage leading to the
Medusozoa extends the levels of variation in this group and
reiterates the characteristic modular developmental basis of
Cnidaria, contributing to its widely known phenotypic plas-
ticity (see West-Eberhard 2003; Table 1).

Difficulties in interpreting the morphological variations of
Medusozoa have led tomany taxonomic problems and are still
a source of disagreement among taxonomists on the impor-
tance of morphological characters used to diagnose species
(e.g. Boschma 1948; De Weerdt 1984 [Hydrozoa,
Milleporidae]; Gershwin 2001; Dawson 2003 [Scyphozoa,
Aurelia]; Cornelius 1982, 1990b; Cunha et al. 2015
[Hydrozoa, Campanulariidae]; Hirano 1997; Miranda et al.
2009 [Staurozoa, Haliclystus]; Miglietta et al. 2009
[Hydrozoa, Hydractiniidae]). These disagreements occur
mainly because intraspecific morphological variations are of-
ten misinterpreted as interspecific variations or vice-versa, and
consequently, the diversity of the group is frequently
misestimated. In many taxa that show some degree of devel-
opmental plasticity, intraspecific variation of adaptive traits
often parallels interspecific variation (e.g., Badyaev and
Foresman 2000; West-Eberhard 2003; Gomez-Mestre and
Buchholz 2006). For taxonomy, the definition of species’ di-
agnostic characters may be confounded by these factors if
different levels of variation are not initially considered. For
this reason, the variation of morphological diagnostic charac-
ters should be carefully examined, and generalizations should
be treated with caution.

Considering the phenotypic plasticity ofMedusozoa and its
importance in the evolutionary history of the group, in this
study we reviewed the patterns of morphological variation
known for Medusozoa. We specifically evaluated how differ-
ent interpretations of the levels of morphological variation
may influence the understanding of the patterns of diversifi-
cation of the group. We offered an overview of the different

levels of morphological variation in Medusozoa based on in-
formation from the literature and unpublished results, includ-
ing morphological and genetic data. In addition, we present an
analysis based on data from GenBank in order to provide an
estimate of the potential cryptic diversity in Hydrozoa.

Material and methods

Levels of morphological variation in Medusozoa were
assessed by compiling information from the literature on in-
traspecific and interspecific variation, as well as the occur-
rence of cryptic species. Additionally, the range of variation
of several morphological characters on a case study with
Orthopyxis sargassicola (Nutting, 1915) were evaluated
(Online Resource 1) in order to illustrate some particular
points in the discussion regarding intraspecific variation (com-
parison between intracolony and population-level variation).
This species was chosen because of the large availability of
data from different populations in Brazil, which were for the
most part included in the molecular phylogeny of the genus
Orthopyxis previously published (Cunha et al. 2015).

In order to estimate the potential cryptic diversity in
Hydrozoa based on genetic data, we compiled information
on COI haplotype sequences deposited in GenBank from sev-
eral species (Online Resource 2). Genetic distance among
haplotypes was calculated as the inverse of the minimum val-
ue of similarity recorded by pairwise comparisons of the se-
quences of each species, using BLAST (Altschul et al. 1990).
We also calculated the geographical distance among haplo-
types based on geographical coordinate information provided
with the sequences metadata. When geographical coordinates
were not provided, they were estimated based on the name of
the sampling location. Species were then classified in accor-
dance with their life cycles (holoplanktonic/pleustonic or ben-
thic/meroplanktonic) based on literature information. With
this data, we fitted a Linear Model (LM) including geograph-
ical distance and life cycle strategy as explanatory variables in
relation to genetic distance among haplotypes, using R pro-
gramming language (R Core Team 2015). Continuous vari-
ables were log10(x+1) transformed to meet the assumptions
of the LM. All data for each species included in this analysis
are available in Online Resource 2.

Microevolutionary morphological variation:
intraspecific variation

Intraspecific variation is the variation found within a species,
including not only variation between conspecific populations
but also individual variation, such as ontogenetic variation and
polymorphisms (see Mayr 1973). Intraspecific variation may
result from phenotypic plasticity when more than one
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phenotypic alternative is produced in response to environmen-
tal factors (West-Eberhard 1989, 2003). Genotype-specific al-
ternatives are usually referred to polymorphisms (Mayr 1973;
West-Eberhard 1989). The term polymorphism, however, has
been used in many different contexts, sometimes including
aspects of phenotypic plasticity (see Clark 1976 and discus-
sion by West-Eberhard 2003: 378). In the case of marine co-
lonial organisms, polymorphisms are defined as discontinuous
variations in the morphology of zooids within a colony
(Boardman and Cheetham 1973; Harvell 1994). They are con-
sidered an important evolutionary innovation in the Hydrozoa,
which evolved independently in multiple lineages within the
Hydroidolina (Cartwright and Nawrocki 2010; Maronna
et al. 2016).

The extent of functional specialization of polyps varies
among species but generally involves feeding (gastrozooids),
reproduction (gonozooids), and defense (dactylozooids)
(Millard 1975; Bouillon et al. 2004; Mills et al. 2007).
Additional types of polymorphisms are found in particular
groups (e.g., Namikawa et al. 1992; Gravier-Bonnet 2004,
2008), reaching their highest complexity in siphonophores
(Pugh 1999; Bouillon et al. 2004; Dunn and Wagner 2006).
Being distinctive features, many polymorphisms (and their
absence) are important diagnostic characters (e.g., Calder
1988; Boero et al. 1998; Boero et al. 2000; Schuchert 2008
[Hydractiniidae, Milleporidae, Porpitidae, Zancleidae];
Calder 1997; Gravier-Bonnet 2004 [Plumulariidae]).
However, their use as diagnostic characters of supraspecific
taxa may cause some taxonomic inconsistencies, since their
occurrence varies among species (e.g., Clava and
Hydractiniidae, Boero et al. 1998; Schuchert 2004).

Another source of morphological variation is related to
ontogeny. Many species, especially in the medusa stage, have
been described based on ontogenetic differences (Mayer
1910; Bouillon and Boero 2000). This type of variation may
be responsible for considerable differences in bell size and
shape or in the number of tentacles and statocysts, and for
the appearance or disappearance of morphological characters
during development (Russell 1953; Zamponi and Girola
1989; Cornelius 1990b; Lindner and Migotto 2002; Widmer
2004). In the polyp stage of colonial species, such as many
hydrozoans, ontogenetic variation is responsible for changes
in zooid morphology during its development (Boardman and
Cheetham 1973). Variations in internode length, number and
orientation of branches are typical ontogenetic changes found
in polyps within a colony, particularly in species with upright
colonies (e.g., Cornelius 1975, 1990b; Kosevich 2006).
Developmental changes may continue throughout the
colony’s life because of its characteristic modular growth
and may affect many levels of colony organization (Hughes
1989, 2005; Marfenin 1997). Differences associated with col-
ony development (growth and senescence), such as hydranth
budding and stolonal growth, branching and regression are

usually referred to astogeny (Boardman and Cheetham
1973; Hughes 1989) and may be responsible for spatial and
temporal changes in colony morphology (Braverman 1974;
McFadden et al. 1984; Vogt et al. 2011). Although they appear
during the course of development, variations in colony mor-
phology may also result from variations in physiological pro-
cesses (Dudgeon and Buss 1996; Vogt et al. 2008; Bumann
and Buss 2008) and environmental factors (e.g., Vogt et al.
2011; Miglietta and Cunningham 2012).

Intraspecific variation may be triggered by many different
factors, especially in different populations. Notably, individu-
al morphological variation may sometimes parallel variations
found among populations. For instance, experiments with rep-
licated and transplanted colonies of Millepora spp. and
Bougainvillia muscus (Allman, 1863) have shown that colony
growth patterns change from branched forms to more robust,
solid forms with variations in water flow (De Weerdt 1981;
Griffith and Newberry 2008). Similar morphological
variations are found among populations living in habi-
tats with contrasting water movement conditions
(Kaandorp 1999) . In add i t ion , in the fami ly
Campanulariidae, variations in colony size, perisarc
thickness, length of the hydrotheca and gonotheca, and
number of branches and annulations are found among
populations subjected to contrasting water flow, temper-
ature, and substrate type (Naumov 1969; Ralph 1956;
Cornelius 1975, 1982, 1990b; Lindner and Migotto
2002). Many of these variations, however, may also
occur within a single colony (Fig. 1). Although the am-
plitude of variation of morphological characters at the
colony level is not the same as at the population level
(Fig. 2), there may be an overlap of morphological var-
iation produced by different levels of intraspecific
variation.

Assessing morphological variations between popula-
tions may be a difficult task since it involves the pre-
supposition that populations are conspecific, when they
might, in fact, represent different species. Although
many studies have reported intraspecific morphological
variation in the Medusozoa, only a few of them have
attempted to assess the identity of the populations stud-
ied, using phylogenetic inferences or other methods for
detecting reproductive isolation (e.g. Dawson 2005a;
Galea and Leclère 2007). For instance, many studies
have reported variations in the symmetry of medusae
(Scyphozoa and Hydrozoa, Navas-Pereira 1984;
Gershwin 1999; Silva et al. 2003; Nogueira and
Haddad 2006) and stauromedusae (Zagal 2008).
Although these variations are known to originate at the
clonemate level in Aurelia (Gershwin 1999) and may
also be a response to variation in physical factors
(e.g., temperature and salinity, Zamponi and Genzano
1989), the underlying causes of these variations are still

434 A.F. Cunha et al.



unclear, and they may be different depending on the group and
populations studied. As a result, studies of morphological var-
iation may end in questioning the taxonomic affinities of the
populations sampled (e.g., Bolton and Graham 2004).
Considering the complicated taxonomic history of many
groups within the Medusozoa, it is not always easy to delimit
conspecif ic individuals or populat ions based on

morphological characters alone. Individuals from different
species may frequently be regarded as conspecific, particular-
ly since intraspecific morphological variation may extend
from individuals to populations. Obviously, in order to be
confident of the taxonomic level investigated, it is important
to know whether one is dealing with intraspecific or interspe-
cific variations.

Fig. 1 Intracolony variation in
Orthopyxis sargassicola (Nutting,
1915) based on three polyps
randomly sampled from a single
colony (MZUSP4079, see Online
Resource 1). a Measurements (in
μm) of total length of trophosome
(Tr), length of pedicel (Pd),
hydrothecal length (Hd), and di-
ameter at margin (Diam); b mea-
surements (in μm) of maximum
perisarc (Ps) thickness (Thick) of
hydrotheca and pedicel at medial
portion, as well as maximum
number of sinuosities (NS) in
pedicel and number of
hydrothecal cusps (NC ); c, d
polyps of O. sargassicola from a
single colony (both polyps are at
the same position of maximum
perisarc thickness). Note the dif-
ferences in size and shape of the
pedicels (Pd) and hydrotheca
(Hd), as well as the perisarc
thickness (Ps) and sinuosities of
the pedicel (S)

Fig. 2 Mean values (μm) (±standard deviation) of a total length of
trophosome (Tr), length of pedicel (Pd), hydrothecal length (Hd), and
diameter at margin (Diam); and b maximum perisarc (Ps) thickness
(Thick) of hydrotheca and pedicel at medial portion, maximum number
of sinuosities in pedicel (NS), and number of hydrothecal cusps (NC).

Measurements were taken from polyps of the same colony ofOrthopyxis
sargassicola (intracolony variation, MZUSP4161, see Online Resource
1) and from polyps of different populations of the same species from the
states of São Paulo, Espírito Santo, Rio de Janeiro and Santa Catarina,
Brazil (variation among populations, Online Resource 1)
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Macroevolutionary morphological variation:
interspecific variation

Difficulties related to variations in morphological characters
have led taxonomists to search for additional characters that
could contribute to species delimitation. Characters of the
cnidome in many hydroid species (e.g., Östman 1982, 1987;
Marques 1995, 1996; Morandini and Marques 2010), as well
as ecological and behavioral patterns in medusae (e.g.,
Dawson and Martin 2001; Dawson 2005b) have contributed
to the diagnosis of species in these groups, but the difficulties
in assessing and describing these characters have limited their
use in species delimitation. Similarly, advances in molecular
techniques have introduced many new approaches for study-
ing species relationships and have improved our understand-
ing of the evolutionary history and diversification of the
Medusozoa (Collins et al. 2006; Leclère et al. 2007, 2009;
Cartwright and Nawrocki 2010; Kayal et al. 2013; Cunha et
al. 2015). Species delimitation, however, still remains diffi-
cult, and many studies adopt integrative approaches, recogniz-
ing species based not only on genetic divergence but also on
additional characters, such as morphological, ecological, and
behavioral, that could contribute evidence for species bound-
aries (Dayrat 2005; Padial et al. 2010).

The combination of morphological and molecular data for
studying species boundaries contributed to the reevaluation of
several morphological diagnostic characters in Medusozoa,
leading to the description of many new species (e.g.,
Schierwater and Ender 2000; Collins and Daly 2005; Bayha
and Dawson 2010; Collins et al. 2011; Cunha et al. 2015) and
the revalidation of formerly synonymized species (e.g.,
Dawson 2003, 2005c; Schuchert 2005; Miglietta et al. 2007,
2009; Fritz et al. 2009; Lindner et al. 2011; Moura et al. 2012).
Reassessment of morphological characters is showing that
many Bspecies^ previously considered cosmopolitan are in
fact geographically isolated lineages, which often can be
delimited morphologically (Dawson 2003; Miglietta et al.
2007; Bentlage et al. 2010). This means that the underestima-
tion of species diversity in the Medusozoa, in most cases,
results from misinterpretations of species diagnostic charac-
ters, which may explain the historical splitting and lumping of
species that have been common in several groups. The paucity
of morphological characters and poor descriptions in some
groups, as well as the wide morphological variation in others,
have certainly contributed to these misinterpretations.

Morphological variation can be misleading when there is
an overlap between intraspecific and interspecific variations.
Considering the phenotypic plasticity in colony form shown
by species of Millepora in different water movement condi-
tions (e.g., De Weerdt 1981; Kaandorp 1999, see previous
section), molecular and morphological data proved that this
variation is also interspecific and resulted in the delimitation
of two different lineages based on colony growth form

(Meroz-Fine et al. 2003). Moreover, branched and un-
branched forms of species of Aglaophenia, commonly
thought to be a result of phenotypic plasticity (e.g., Andrade
and Migotto 1999), were shown to represent different species
in the North Atlantic (Thorpe et al. 1992). It is clear from these
findings that interspecific variations may easily be
misinterpreted as intraspecific variation.

Once again, the family Campanulariidae is a good example
of the historical splitting and lumping of species owing to
misinterpretations of morphological characters. The validity
of the genus Orthopyxis L. Agassiz, 1862, for instance, is a
frequent source of disagreement among taxonomists, since the
perisarc thickness, regarded by some authors as one of the
diagnostic characters of the genus (Calder 1991; Cornelius
1995; Bouillon et al. 2004), is also thought to be phenotypi-
cally plastic (Millard 1975; Galea et al. 2009). This common
belief prevents the use of perisarc thickness as a diagnostic
character in Orthopyxis, although it may have taxonomic val-
ue for delimiting other species of the family (e.g., Obelia
geniculata (Linnaeus, 1758), Cornelius 1975). Molecular
and morphological data clearly show that intraspecific varia-
tion in perisarc thickness occurs, but the perisarc also shows
interspecific variation, which makes it a reliable character for
species delimitation within Orthopyxis (Cunha et al. 2015).
Additionally, this approach supported the validity of the spe-
ciesOrthopyxis caliculata (Hincks, 1853) (Cunha et al. 2015),
which was long regarded as a synonym of the widespread
species Orthopyxis integra (MacGillivray, 1842) (Cornelius
1982, 1995). The evidence that characters previously regarded
as intraspecifically variable may be diagnostic of different
species in Orthopyxis, support the idea that O. integra might
not have as wide a geographic range as presently thought, and
that the morphological variation assumed for this species is
overestimated (e.g., shape of the gonotheca; see Cornelius
1995; Cunha et al. 2015).

Macroevolutionary phylogenetic signal
with no morphological variation: cryptic species

The existence of species that are morphologically indistin-
guishable has always intrigued taxonomists. These species
were originally termed Bsibling species^ and defined as
Bsympatric forms which are morphologically very similar or
indistinguishable, but which posses specific biological char-
acteristics and are reproductively isolated^ (Mayr 1964: 200).
This morphological indistinctness, however, may prove to be
a result of previously overlooked morphological differences
(Mayr 1976). This may explain the majority of the cryptic
diversity found among the Medusozoa (e.g., Aurelia,
Dawson and Jacobs 2001; Schroth et al. 2002; Dawson
2003; Nemertesia, Moura et al. 2008, 2012; Acryptolaria,
Lafoea, Moura et al. 2011), although in some cases, a
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reassessment of morphological characters has not proved use-
ful for delimiting species (e.g., Cassiopea, Holland et al.
2004; Stylactaria, Miglietta et al. 2009; Cryptolaria
pectinata, Moura et al. 2011).

Current estimates of the total global species richness indi-
cate that the Hydrozoa as a group has an increasing rate of
species discovery and a high proportion of cryptic species,
probably due to the paucity of morphological diagnostic char-
acters (Appeltans et al. 2012). Indeed, our estimate showed
that the amount of cryptic diversity within nominal species of
Hydrozoa is significant (R2

adj = 27.2 %, p<0.001, Fig. 3). The
positive association between geographical and genetic dis-
tances (F=21.0417, p<0.01) indicate that many species of
Hydrozoa may contain cryptic lineages, especially if samples
from different geographical localities are considered.
Schuchert (2014), for instance, showed that Plumularia

setacea is a species complex that is mostly composed of geo-
graphically circumscribed lineages, and the same is true for
other species of hydrozoans (e.g., Obelia geniculata,
Govindarajan et al. 2005; Clytia gracilis and Obelia
dichotoma, A.F. Cunha pers. obs.).

Additionally, the occurrence of species complexes in the
Hydrozoa has frequently been associated with limited dispersal
abilities of species that lack a long-lasting pelagic phase (Moura
et al. 2011, 2012; Schuchert 2005, 2014). Hydrozoans with
holopelagic life cycle stages were shown to be more widely
distributed and have lower species richness than benthic and
meroplanktonic species (Gibbons et al. 2009), corroborating
the prediction that a relatively short period in the plankton is
associated with limited dispersal (Palumbi 1992; Bradbury et
al. 2008). Following these predictions, we also found a signif-
icant relationship when considering different life cycle

Fig. 3 A Linear Model (LM) showing the relationship between haplotype
genetic distance (n≥2) and geographical distance (Km) of specimens with
COI sequences deposited in GenBank (up to January 2013), in accordance
with their life cycle strategy (holoplanktonic/pleustonic or benthic/
meroplanktonic). Both geographical distance and life cycle strategy were
included as explanatory variables. Similarity was calculated using BLAST

by pairwise comparisons of all haplotypes of a single species, and the inverse
of the minimum value of similarity recorded was used as its genetic distance.
The geographical distance was calculated based on geographical information
provided with the metadata for the sequences. See Online Resource 2 for
more details

Fig. 4 Schematic summary of
levels of morphological variation
found in medusozoans, including
the absence of variation (cryptic
species). Clades indicate different
lineages, colors and shades
represent the phenotype in current
time, and the circles represent
individuals. Note that there is
individual variation (arrows) and
it can parallel intraspecific
variation. The same occurs with
interspecific variation, which can
parallel intraspecific variation in b
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strategies, with meroplanktonic/benthic species showing higher
genetic distance between haplotypes than did holoplanktonic
species (F=4.5027, p=0.0379, Fig. 3). This is evidence that
benthic/meroplanktonic taxa have potential for the discovery of
cryptic lineages even over short geographical distances, proba-
bly because of their limited dispersal ability. Studies investigat-
ing species boundaries among taxa with different life cycle
strategies are important to corroborate this hypothesis.
Nevertheless, our results provide evidence that the number of
species in the Hydrozoa, and probably in all the Medusozoa, is
underestimated. Increased sampling, integrative approaches,
and careful investigations of morphological variations will in-
evitably uncover this hidden species diversity.

Conclusion

It is clear that morphological characters have many different
levels of variation or may not vary at all in some cases (summa-
rized in Fig. 4). When morphological variation is present, it may
frequently overlap between microevolutionary and macroevolu-
tionary scales, hampering their use at different hierarchical and
inclusive taxonomic levels. The widespread morphological var-
iation of the Medusozoa, as well as the frequent overlapping
between intraspecific and interspecific variation, indicate that
phenotypic plasticity may play an important role in the diversi-
fication of the group (see West-Eberhard 1989; Pfennig et al.
2010). However, whether alternative phenotypes are, indeed,
environmentally induced or are genetically controlled is an im-
portant question (see Schwander and Leimar 2011) which needs
further investigation. Nevertheless, at the taxonomic level, mor-
phological variation leads to misinterpretations of diagnostic
characters and difficulties in species delimitation. Importantly,
however, the level of variation and amount of overlap may be
different depending on the group studied and its general biology
and life history. In order to minimize the possibility of misinter-
pretations of morphological characters, generalizations should
be avoided, and morphological variation should be interpreted
within the context of each taxon, taking into account its phylo-
genetic relationships and evolutionary history.
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