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Abstract The correct classification of organisms based on
specific rules is essential in biological sciences.
Traditionally, morphological characteristics such as size,
shape, color, and anatomical structures have been used to
identify and classify species. However, as consequence of
the tremendous advances in molecular technologies during
the last years, new approaches have become available for tax-
onomic research. Various modern high-throughput technolo-
gies allow the detailed characterization of the genome, prote-
ome, metabolome as well as the morphology of an organism.
Furthermore, the open access storage of such comprehensive
data sets as part of an uprising digital cybertaxonomy enables
highly fascinating digital dimensions for modern taxonomy,
including the buildup of virtual collections as well as data sets
for 3D printing techniques that can be used to replicate com-
plete voucher specimens or at least important diagnostic char-
acters. As a result of these advances, we are now able to
document, describe, and identify species much more compre-
hensively than just a few years ago. In this review we provide
an overview about the technical advances in taxonomic re-
search in recent years and discuss their power and limitations.
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Introduction

Taxonomy, derived from Greek taxis (ταξις), meaning
Barrangement or division,^ and nomos (νομία), meaning
Blaw,^ the science of describing and classifying living things,
represents the backbone of biological sciences and can be
understood as Blaws of arrangement and division^ (Enghoff
2009). Despite all the efforts of describing organisms in the
past centuries, there are still many species to be discovered
and described. To date, taxonomy represents a very active and
dynamic field with taxonomists describing 15,000–20,000
new species per year (Polaszek et al. 2005; IISE 2011).
Interestingly, new species descriptions do not only include
arthropods but also large-bodied mammals (e.g., Roos et al.
2008; Thinh et al. 2010; Cozzuol et al. 2013; Hrbek et al.
2014). Current estimates suggest that only about two million
of the expected ca. 10 million eukaryotes on Earth have been
described so far (May and Harvey 2009; Mora et al. 2011). In
order to provide more accurate species descriptions, an inte-
grative approach is preferred which combines morphological
features that were used since the beginning of taxonomic re-
search more than 200 years ago with additional biochemical,
molecular, behavioral, ecological, and/or geographical data
(e.g., Dayrat 2005; Padial et al. 2010; Schlick-Steiner et al.
2010).

The tremendous technological advances in molecular biol-
ogy have significantly revolutionized biological sciences dur-
ing the last decade. New technologies have become available
for the complete acquisition of molecular biological informa-
tion, such as genes, proteins, or small metabolites, and are
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named by appending the common suffix B-omics^ (Greek:
−ομική), as in the term Bgenomics^ for the acquisition of
the complete genetic information of an organism or
Bproteomics^ for proteins. With these high-throughput
methods, it is possible to generate huge amounts of data in a
short period of time and at substantially lower costs than
methods applied just some few years ago. Generated data
are stored in databases and can be analyzed using advanced
bioinformatics tools (Schneider and Orchard 2011). In partic-
ular, various lower priced high-throughput sequencing tech-
nologies make deep transcriptome sequencing and quantifica-
tion as well as whole genome sequencing and resequencing
available to many researchers and projects than ever before
(e.g., Kircher and Kelso 2010; Mardis 2013; van Dijk et al.
2014). Other high-throughput technologies allow a fast and
comprehensive analysis of the proteome or metabolome of an
organism (Fig. 1). For taxonomic research, the application of
such high-throughput technologies improved the quality and
expanded the amount of data that can be applied now as part
of species descriptions (e.g., Stoev et al. 2013; Puillandre et al.
2014). Since molecular data will become more and more pop-
ular in modern biodiversity studies (e.g., Ji et al. 2013;
Cristescu 2014; Orgiazzi et al. 2015), these methods likewise
offer new perspectives in accelerating a correct identification
of specimens, as it is required in ecology (e.g., Leray and
Knowlton 2015; Tang et al. 2015), pest biology (e.g.,
Nicholson and Puterka 2014; Villar et al. 2014; Sherwin
et al. 2015), and many other biological fields.

In this article we provide an overview about current ad-
vances and trends in using high-throughput technologies for
compiling molecular as well as morphological data in modern
taxonomic research and discuss their suitability and limita-
tions to identify specimens as part of an applied taxonomy,
with a focus on metazoans. Furthermore, we highlight various
aspects of the ongoing digitalization of taxonomic data.

From single genetic markers to genomes

With the rise of DNA sequencing technologies in the early
1990ths, the utilization of DNA sequence data has become
popular as supplementary markers for species description,
identification, and classification. This is particularly true for
DNA barcoding which represents the most prominent ap-
proach in this context. Here, an app. 650 base-pair fragment
of the mitochondrial cytochrome c oxidase subunit I (COI)
gene was proposed as global standard for the identification
of unknown animal specimens in terms of a given classifica-
tion (Hebert et al. 2003a, 2003b). In spite of the fact that DNA
barcoding has been criticized from its beginning (e.g., Will
et al. 2005; Cameron et al. 2006; Taylor and Harris 2012)
and various problems may affect the use of mitochondrial
DNA, e.g., recent speciation events, heteroplasmy, incomplete
lineage sorting, (introgressive) hybridization as well as the
presence of mitochondrial pseudogenes, DNA barcoding has
been successfully applied in a vast number of taxa (e.g.,
Bucklin et al. 2011; Spelda et al. 2011; Nagy et al. 2012;
Hausmann et al. 2013; Raupach et al. 2014; Hendrich et al.
2015). Consequently, many recently published species de-
scriptions include barcode sequence data (e.g., Chang et al.
2014; Khalaji-Pirbalouty and Raupach 2014; Soldati et al.
2014; Weis et al. 2014). Based on such studies, the so-called
turbo-taxonomy combines DNA barcodes, concise morpho-
logical descriptions by an expert taxonomist, geographical
information, and high-resolution digital imaging in order to
standardize and accelerate the formal description of a large
number of new species (Butcher et al. 2012; Summers et al.
2014). A further improvement of this approach joins open
access web publication and an automated content transfer
from a journal into a fully versioned and dynamic wiki-
framework (Riedel et al. 2013a, b), where descriptions can
be continuously updated or even fully modified (Riedel et al.
2013b). The applications of DNA barcoding are manifold and
have been already adapted in different fields of biological
science including food quality analysis (e.g., Haye et al.
2012; Rasmussen et al. 2013), forensics (e.g., Nelson et al.
2007; Schilthuizen et al. 2011), invasive species biology (e.g.,
Pilgrim and Darling 2010; Chen et al. 2013; Shipway et al.
2014), pest biology (Engstrand et al. 2010; Blacket et al. 2012;
Correa et al. 2012), as well as wildlife monitoring and conser-
vation biology (e.g., Eaton et al. 2010; Yan et al. 2013;

Fig. 1 Modern analytical -omics technologies (left) that allow a charac-
terization of the genome, transcriptome, proteome, and metabolome of an
organism
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Gonçalves et al. 2015). Further, the Food and Drug
Administration (FDA) of the USA accepted DNA barcoding
as official method for seafood identification.

DNA barcodes act a lso as centra l element of
metabarcoding studies using high-throughput sequencing
technologies (Valentini et al. 2009). Metabarcoding can be
applied to DNA from any environment or organism and is
gaining increasing prominence in modern biodiversity studies
(e.g., Ji et al. 2013; Cristescu 2014; Leray and Knowlton
2015; Orgiazzi et al. 2015). Whereas such approaches are
routinely used to characterize microbial communities, its ap-
plication is now being extended more and more on eukaryotic
organisms and opens new perspectives in biodiversity assess-
ment studies (e.g., Orgiazzi et al. 2015; Leray and Knowlton
2015).

As already mentioned, the application of DNA barcodes
and mitochondrial DNA in general can be limited by various
phenomena, including closely related or introgressing species
(Zinner et al. 2009a, 2009b; Haus et al. 2013). In such cases, a
number of studies clearly favor a combined multi-locus ap-
proach of mitochondrial and nuclear sequence data (Yang and
Rannala 2010; Roos et al. 2011; Dupuis et al. 2012; Fujita
et al. 2012; Carstens et al. 2013). Based on the massive tran-
scriptome and/or genome sequence data that will become
available in the near future, new markers, e.g., taxon-specific
single copy nuclear genes or introns, can be easily identified
and applied to delineate even closely related species where
currently applied markers fail (e.g., Perelman et al. 2011;
Wang et al. 2012). In addition to analyzing genes or gene
fragments, other genome-based approaches can become suit-
able tools for species delimitation and specimen identification
as well. Whereas restriction site-associated DNA tag sequenc-
ing (RAD tag, see Baird et al. 2008) is typically applied to
analyze gene flow and population connectivity within a spe-
cies, first studies also demonstrate its potential in species de-
lineation (e.g., Nadeau et al. 2013; Leaché et al. 2014; Pante
et al. 2015). Likewise, single nucleotide polymorphisms
(SNPs) can be suitable markers, particularly for population
or species delineation (e.g., Ferguson et al. 2007).

Since steadily sinking sequencing costs will make the anal-
ysis of complete genomes increasingly attractive, multi-locus
approaches will probably be used only temporarily. The incor-
poration of genome size and complete genome sequence data
into taxonomy and systematics has already taken place for
bacteria and archaea (Richter and Rosselló-Móra 2009;
Serrano et al. 2010; Thompson et al. 2014; Chun and Rainey
2014) and obviously will follow for eukaryotes in the near
future, even if the large genome size within some taxa (e.g.,
of some crustaceans and orthopterans within the Arthropoda)
represents a challenging task (Dufresne and Jeffery 2011). For
animals, a first study combining genomic data with phyloge-
netic and taxonomic aspects of the Darwin finches of
Galapagos was recently published (Lamichhaney et al.

2015). The presented genomic data reveal significant discrep-
ancies with the phenotype-based taxonomy for some species,
recommending a revision for the sharp-beaked ground finch
species Geospiza difficilis Gould, 1837 and the large cactus
finch Geospiza conirostris Ridgway, 1890 (Lamichhaney
et al. 2015).

However, the analysis of whole genomes is not restricted to
single specimens. Some pioneering studies demonstrate the
possibility to recover and assembly partial or full mitochon-
drial or even nuclear genomes from a bulk of samples as part
of biodiversity studies (Zhou et al. 2013; Tang et al. 2014,
2015; Andújar et al. 2015; Crampton-Platt et al. 2015). Such
so-called genome skimming approaches show that high-
throughput sequencing analysis provide a solid phylogenetic
framework to estimate species diversity. Whereas additional
developments in bioinformatics and molecular biology are
required, metagenome skimming constitutes a powerful appli-
cation of high-throughput sequencing technologies for mod-
ern community ecology (Papadopoulou et al. 2015).

Transcriptomics

As long as assembling full genomes remains a difficult task,
transcriptome sequencing constitutes an attractive alternative
for the characterization of non-model species (Pop and
Salzberg 2008; Riesgo et al. 2012). In spite of the fact that
the transcriptome of an organism is subject to change as a
result of its environment, life stage, and/or lifestyle,
transcriptomic data have been successfully applied to compar-
ative genomics (e.g., Romiguier et al. 2014), studies of gene
expression (e.g., Eichner et al. 2011; Costa-da-Silva et al.
2014; Schunter et al. 2014), venom evolution (Rendón-
Anaya et al. 2012; von Reumont et al. 2014), phylogenetics
(e.g., Dunn et al. 2008; Struck et al. 2011; Oakley et al. 2012;
von Reumont et al. 2012; Misof et al. 2014), and others during
the last few years. Transcriptome data might be even funda-
mental when DNA information alone does not help to differ-
entiate among taxa. In a population genomics study on crows
it was recently demonstrated that small differences in gene
expression are sufficient to maintain the phenotypic differ-
ences between carrion and hooded crows, although there is
some gene flow between the two taxa still given (Poelstra et al.
2014).

Until now, the application of transcriptomes in taxonomic
studies is almost absent. However, a first pioneering study
combining transcriptomic data, DNA barcodes, and micro-
computed tomography (micro-CT) images as part of a eukary-
otic species description has been published recently (Stoev
et al. 2013). Transcriptomes may represent a time and cost-
effective substitute to whole genome sequencing for non-
model organisms with a lack of reference genomes, producing
large amounts of gene sequence data that can be applied as
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taxonomic traits (Stoev et al. 2013). In our view, it is evident
that as a result of the continuous improvement of high-
throughput sequencing technologies transcriptome data will
become an important and extending element in taxonomic
studies of eukaryotes in the near future.

Proteomics

The proteome is the complete set of proteins expressed by a
genome in a cell, tissue, or an organism at a specific point of
time, linking the genotype with the phenotype of a specimen
(Diz et al. 2012). In the past, 1D and 2D gel electrophoreses
were routinely employed methods for the characterization of
the proteome of an organism. Today, modern gel-free mass
spectrometric approaches (MS) revolutionized the field of
proteomics and offer a much higher sensitivity, speed, quan-
titative dynamic range, and ease of use in which hundreds of
proteins from a tissue are analyzed in parallel (e.g., Sehrawat
and Gakhar 2014). Moreover, new imaging technologies al-
low a 3Dmolecular analysis of a tissue sample or entire organ
(Oetjen et al. 2015). Modern mass spectrometry can be also
applied to taxonomic questions, being able to investigate even
century-old tissue samples. In combination with morphologi-
cal and ancient DNA analysis, high-throughput proteomics
based on MS revealed that a widely accepted syntype of the
Asian elephant Elephas maximus Linnaeus, 1758, which rep-
resents one of the most iconic and well-known mammalian
species, is actually an African elephant of the genus
Loxodonta (Cappelini et al. 2014).

In terms of species identification and classification in micro-
biology, the matrix-assisted laser desorption/ionization time-of-
flight (MALDI-TOF)-MS has emerged as routinely applied
high-throughput technique to characterize bacteria based on
species-specific proteome fingerprints (e.g., Welker and
Moore 2011; De Bruyne et al. 2011; Fournier et al. 2013). In
MALDI-TOF-MS analyses, samples are spotted onto a target
plate with a suitable matrix (Karas and Hillenkamp 1988).
Afterwards a brief laser impulse irradiates a spot on the sample,
resulting in ablation of a small volume of the matrix and de-
sorption of the embedded analyte molecules (Sauer and Kliem
2010). The ionized molecules are accelerated and drift along a
vacuum tube, surrounded by a strong electrical field. Based on
the flight time, the different molecule masses which typically
range between 1000 and 20,000Dalton are represented as spec-
tra. The advantages of MALDI-TOF-MS are rapidity, low
costs, accuracy, and its suitability for high-throughput studies.
Various pioneering studies demonstrate the capability of
MALDI-TOF-MS as an efficient and a fast identification sys-
tem for non-microorganisms, e.g., various insect species
(Cvačka et al. 2006; Feltens et al. 2010; Kaufmann et al.
2011), crustaceans (e.g., Riccardi et al. 2012; Laakmann et al.
2013), mollusks (Puillandre et al. 2014), and fish (Mazzeo et al.

2008; Volta et al. 2012). In the case of marine calanoid cope-
pods, the analyzed proteome fingerprints of whole animals
were accurate for species clusters irrespective of a high intra-
specific variability of mitochondrial sequence data (COI), in-
cluding significant differences between early developmental
stages as well as adults (Laakmann et al. 2013).

So far, studying the proteome has played a less prominent
role in evolutionary and ecological analysis compared to ge-
nome and transcriptome data (Karr 2008; Gotelli et al. 2012;
Diz et al. 2012). However, proteomic spectra represent valuable
data for the taxonomic analysis of a vast number of specimens,
in particular small insects, midges, crustaceans, or others as part
of comprehensive surveys. Considering that different life stages
of an organism as well as tissues express different proteomes,
analysis protocols have to be standardized to guarantee compa-
rable proteome spectra for larger animals. This is also true for
data banks storing these spectra sets. Nevertheless, proteome
fingerprints can become valuable traits for species descriptions
and accelerated specimen identification upon the scientific
community manages to buildup reference databases that are
based on commonly accepted protocols.

Metabolomics

In addition to the favored high-throughput sequencing-based
approaches, other, so far less applied molecular fingerprinting
methods may become more important in animal taxonomy in
the near future, for example the chromatographic analysis of
secondary metabolites of a specimen. In this context, high-
performance liquid chromatography (HPLC) represents a
popular method of choice. Finding its origin in analytical
chemistry, HPLC is a technique that focuses on the separation,
quantification, and identification of known organic molecules
and ions within a sample which is forced to pass a column
with a solid absorbent material at high pressure. Due to the
fact that each component in the sample interacts somewhat
differently with the absorbent material, components can be
separated by different flow rates as they leave the column
(e.g., Hanai 1999; Skoog et al. 2006). Whereas HPLC and
related approaches are routinely applied to differentiate plants
and fungi (e.g., Zapata et al. 2004; Lu et al. 2005; Frisvad et al.
2008), taxonomic studies focusing on animals are still limited
but promising (e.g., Wilson and Alewood 2006; Ivanisěvić
et al. 2011; Erpenbeck et al. 2012; Wilson et al. 2013).

Coupled gas chromatography-mass spectrometry (GC-MS)
represents another, more frequently used technique to charac-
terize the metabolome of an organism. Here, the analysis of
species-specific cuticular hydrocarbons (CHCs) using GC-MS
is increasingly applied to delimit insect species (see review of
Kather and Martin 2012). CHCs are expressed on an insect’s
cuticle and are one of the major factors allowing insects to
identify members of their own species. In terms of taxonomic
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research, many cryptic species can be identified by their unique
CHC profiles despite of being morphologically indistinguish-
able (e.g., Martin et al. 2008; Guillem et al. 2012).

Finally, the automated usage of spectroscopic methods
based on the interaction of matter and radiated energy be-
comes more and more attractive for species identification
and taxonomy. For the Metazoa, non-invasive near-infrared
spectroscopy (NIRS) has been utilized for the identification
of a variety of insect species during the last years (see review
in Rodríguez-Fernández et al. 2011). NIRS is based on the
measurement of the wavelength and intensity of absorption
of near-infrared light (800 nm–2.5 μm) by a sample
(Pasquini 2003). Typically, it is employed for the quantitative
measurement of functional organic groups, such as O–H, N–
H, or C=O bonds. In the case of insects, each species has a
unique absorbance characteristic of its cuticular layers,
representing a Bmetabolomic fingerprint^ (Lockey 1988).
This allows a correct identification even of closely related
species as it has been demonstrated for various insects (see
review in Rodríguez-Fernández et al. 2011).

Like any metabolite composition, the cuticular signature of
individuals can depend on nutrition, gender, age, and sexual
maturity, leading to intraspecies variations in CHC profiles
(Kather and Martin 2012) and NIRS fingerprints (e.g.,
Mayagaya et al. 2009). As a consequence, taxonomists need
to be aware of that specimens varying in their CHCs do not
necessarily belong to different species (e.g., Liang and
Silverman 2000; Arienti et al. 2010; Frentiu and Chenoweth
2010; Kather et al. 2011). Similar to other molecular methods,
it is impossible to define a universal threshold for species
delineation. Moreover, a number of technical problems can
limit the use of CHCs as taxonomic tool, for example the
co-evolution of compounds that belong to the same chemical
family and have the same chain length but differ in the posi-
tion of their double bounds (Kather and Martin 2012).

Still, these methods represent highly innovative high-
throughput approaches for species identification and descrip-
tion with a focus on small organisms, e.g., most arthropod
species, whereas its efficiency for many larger animals, e.g.,
mammals, birds, or reptiles, may be limited. Nevertheless, zo-
ologists should feel motivated and stimulated to test chromato-
graphic and spectroscopic approaches as part of their taxonom-
ic studies. We doubt, however, that metabolic fingerprinting in
taxonomy will ever achieve the wide applications of nucleic
acid and/or protein-based sequencing approaches, not the least
since extraction/analysis protocols and reference databases will
likely always be specialized for particular groups of organisms.

Analyzing the phenotype: imaging and tomography

Until recently, the description of a new animal species has
typically been based on drawings that show characteristic

morphological traits in detail. However, a morphological de-
scription of a new species does not have to rely on drawings
only. Improvements in resolution, suitability, and quality of
modern imaging techniques, among them the confocal laser
scanning microscopy (CLSM) (Fig. 2), magnetic resonance
imaging (MRI), and micro-CT, have led to a remarkable in-
crease in morphological studies that buildup massive amounts
of digital raw data during the last years (see reviews in Ziegler
et al. 2010; Boistel et al. 2011; Faulwetter et al. 2013; Sombke
et al. 2015). Such new high-throughput analyses allow the
digitalization of complete biological specimens or specific
diagnostic structures (Handschuh et al. 2013; Lenihan et al.
2014, Ziegler et al. 2014; Akkari et al. 2015), acting as sup-
plementary traits and making morphological descriptions of a
species significantly more comprehensive and the identifica-
tion of individuals easier. To meet the requirements of the
digital era, these data have to be deposited in public online
data banks, building up a virtual collection of type material as
Bcybertypes^ (Brooker et al. 2012; Faulwetter et al. 2013;
Akkari et al. 2015). Such data may also act as matrix for 3D
printing of specific characteristic structures or even whole
specimens, allowing scientists to assemble a comprehensive
collection of models without loaning highly valuable
museum-stored vouchers (Fig. 3). Furthermore, state-of-the-
art automated 2D mass imaging technologies can provide the
basis to create a virtual global natural Bmetacollection^ of
high-resolution digital images that allow an automated image
analysis (Balke et al. 2013).

Becoming digital: the perspectives of cybertaxonomy

Cyber-enabled taxonomy, or cybertaxonomy, aims to use the
latest cyber and digital tools to accelerate descriptive taxonomy,
preserving the best of its traditional practices while improving
its efficiency (Wheeler and Valdecasas 2010). Today, we are
still in early days of cybertaxonomy. Data portals like the

Fig. 2 Lateral view of the harpacticoid copepod Evansula pygmaea
(Scott, 1903) based on confocal laser scanning microscopy (CLSM)
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Encyclopedia of Life (EOL; www.eol.org), the Biodiversity
Heritage Library (BHL; www.biodiversitylibrary.org), the
Global Biodiversity Information Facility (GBIF; www.gbif.
org) as well as the current push in several countries to digitize
museum specimens are foreshadows of what is soon to come.
Beyond open access digital archives, it is now possible to
access rare and type specimens remotely (Wheeler et al.
2012). Other initiatives link specimen images and DNA
barcodes from ecological structured species inventories
(Miller et al. 2014). However, this is only the beginning (e.g.,
Rosenberg 2012). The aim, to be reached within a few years,
should be to seamlessly link all natural history museums and
taxonomists in a cyber-enabled Bspecies observatory,^ includ-
ing software that meets the special needs of revisionary taxon-
omy and other aspects. In this process, taxonomists must ex-
plore how to shift taxonomy from the centuries-old single-
scholar producing a monograph once every few decades to an
online knowledge base that is a living, dynamic monograph
reflecting moment to moment advances in theories of species
and apomorphies (e.g., Miller et al. 2012; Riedel et al. 2013b).
Even our best hypotheses about homology, apomorphy, species
status, and phylogeny are subject to repeated testing and refu-
tation. Unless species and characters are constantly critically
tested through additional specimens and evidence, they become
rigid artifacts of past ideas rather than the theories required of
good science. This vision of efficient and dynamic e-
monographies and reviews can be built, aside from certain soft-
ware requirements, from off-the-shelf components almost in-
stantly given the will power of the scientific community and
modest funding.

With a modernization of taxonomy, we can simultaneously
accelerate the inventory of our world’s species and populate a
database of adaptations that can be tapped by inventors, engi-
neers, and entrepreneurs to solve countless problems as part of
an applied taxonomy. Here, natural selection has done the hard
work of weeding out the bad and preserving the good ideas.
But, this vast library of options and opportunities remains
unopened to us if we continue to do a simplified, only
morphological-based taxonomy.

Conclusion and outlook

The now available technologies will allow taxonomy to enter
a new era of quality. The rise of efficient high-throughput
methods, web-based technologies as well as comprehensive
open access data bases have already and will further affect
species descriptions in the near future dramatically. First,
pioneering taxonomic studies clearly demonstrate this revolu-
tion in species descriptions (e.g., Stoev et al. 2013). However,
although such comprehensive species descriptions are desir-
able, the right balance between fast and exhaustive descrip-
tions needs to be found. As a consequence of the tremendous
developments, the rules of nomenclature have to be adapted to
the new requirements of the digital era (Minelli 2013). First
steps have been made already. For example, with the new
amendment of the International Code of Zoological
Nomenclature in September 2012, it is now possible to pub-
lish new names in online-only studies which have to be reg-
istered with ZooBank (Minelli 2013). Nevertheless, more rig-
orous changes, e.g., the acceptance of cybertypes (Faulwetter
et al. 2013), will become necessary to come up with the rapid
technological advances. Similar to the obligatory deposition
of nucleotide sequence data in open access databases as
GenBank (NCBI; www.ncbi.nlm.nih.gov), the European
Molecular Biology Laboratory (EMBL; www.ebi.ac.uk/
embl), or the DNA Data Bank of Japan (DDBJ; www.ddbj.
nig.ac.jp) (but see also Cochrane et al. 2012), it is also
essential to guarantee an efficient long-term storage of tissue
samples and DNA extracts (Savolainen and Reeves 2004;
Corthals and DeSalle 2005; Astrin et al. 2013). Although
nowadays, a mass of data can easily be generated with high-
throughput technologies, there is an increasing demand for
bioinformatic tools, workflows, and statistical methods that
can be applied to manage and analyze huge large data sets.
The buildup of powerful computer facilities as well as the
development of advanced but also user-friendly software rep-
resents one of the most challenging and essential tasks in the
near future. Of course, the main limiting factor for taxonomic
research is still the lack of available funding. However, we
hope that the application of such new technologies as part of
species description and their use for the accelerated identifica-
tion of specimen will promote taxonomic research in the
future.

Our review demonstrates that modern taxonomy is inte-
grating a broad array of genotypic and phenotypic methods
and data that allow the analysis and characterization of a spe-
cies in a multifaceted way (Fig. 4). Taxonomy should not be
restricted to certain types of data (Cook et al. 2010), yet also
utilize more specialized approaches where necessary. This
could include, e.g., flow cytometry (Kron et al. 2007), wing
inference (Shevtsova et al. 2011), or hyperspectral imaging
(Pettersen et al. 2014) as well as Raman spectroscopy (e.g.,
Ashton et al. 2011), Fourier transform infrared spectroscopy

Fig. 3 Dorsal 3D print of a serolid isopod (Crustacea, Peracarida)
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(FTIR; e.g., Wenning and Scherer 2013), PCR electrospray
ionization mass spectrometry (PCR-ESI-MS) (e.g., Sauer
and Kliem 2010), and other methods. Of course, not all ap-
proaches and technologies are useful for all taxa. Whereas
NIRS can be advantageous for the routine identification of
insects and other arthropods, this method may fail analyzing
annelids and others. As consequence, the possible application
of each approach has to be independently evaluated according
to the taxa of focus. Yet, we foresee that beside the phenotype,
the genome, transcriptome, and possibly proteome will be-
come core traits for the description of taxa, facilitating com-
parisons beyond the boundaries of narrow groups.

It is also obvious that the application of these new technol-
ogies should not be restricted on the description of new spe-
cies. Depending on the quality of specimens, some techniques
can be also applied to analyze and revise collection material of
natural history museums (Rowe et al. 2011). Whereas DNA
barcodes have been already successfully generated from old
collection material (e.g., van Houdt et al. 2010; Strutzenberger
et al. 2013; Hebert et al. 2013), high-throughput sequencing
technologies allow the analysis of complete mitochondrial

genomes (Guschanski et al. 2013; Liedigk et al. 2015), nuclear
DNA fragments (Asher and Hofreiter 2006; Bi et al. 2013), or
even complete nuclear genomes (Jónsson et al. 2014). All
these pioneering studies show that museum-preserved sam-
ples constitute an extraordinarily rich source for DNA studies
using modern sequencing technologies.

However, it is important that the taxonomy of the twenty-
first century is not carried away by the fascination intrinsic to
ever-increasing array of methods and the sheer amount of
data. The traditional aims of taxonomy are unchanged and
include, e.g., (i) detailed high-quality descriptions and delim-
itation of species, (ii) a classification that reflects evolution,
(iii) a dynamic nomenclature, and (iv) fast and reliable identi-
fication tools. Although all these new high-throughput tech-
nologies are available now and certainly they are able to pro-
vide additional information for a species, not all these tech-
nologies can be routinely applied due to cost and time inten-
sity. Hence, the scientific community needs to standardize and
simplify species descriptions with the aim to balance between
cost/time and the additional value high-throughput technolo-
gies can bring. It should be also kept in mind that the access to
such approaches is generally limited to academics. For various
taxa (e.g., insects), numerous taxonomic studies are typically
performed by amateurs that have no access to such technolo-
gies. This is also true for most taxonomists in developing
countries. As a consequence, scientists of research institutes
who have the chance to use such technologies should be mo-
tivated to cooperate with themmore than in the past. However,
in spite of the fact that the number of taxonomic works using -
omics technologies will steadily increase in the future, many
studies will still be performed applying classical Bnon-omics^
methods. Anyway, the success of integrative taxonomy will
ultimately be charged qualitatively and quantitatively with
respect to the previously mentioned aims.
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