
E-mail: vijibond2000@gmail.com

Rotation based secure multicast key management for batch rekeying operations

P. Vijayakumar1,2(), S. Bose1, A. Kannan3

1. Department of Computer Science and Engineering, Anna University Chennai, Chennai, Tamilnadu-600025, India
2. Department of Computer Science and Engineering, University College of Engineering Tindivanam, Villupuram, Tamilnadu-604001, India

3. Department of Information Science and Technology, Anna University Chennai, Chennai, Tamilnadu-600025, India

Received: 2 May 2011/Revised: 16 June 2011/Accepted: 16 July 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Abstract Many emerging security-rich network applications such as pay-per-view, video broadcasting,
video on demand and videoconferencing are based on multicast communication. Thus, securing
multicast communications is an important Internet design issue in most of the network applications.
In such a scenario providing high security for multicast group members using a common group key is
a challenging task. Most of the previous literature describes key tree approaches to distribute the
multicast group key in which the rekeying cost is high for batch joining or leaving operations. The
marking algorithms proposed in the past focus on batch join and batch leave requests. However,
merging and batch balanced algorithms consider batch join more and do not focus much on batch
leave operations. In this paper, we present rotation based key tree algorithms to make the tree
balanced even when batch leave requests are more than batch joins operations. These proposed
algorithms not only maintain a balanced key tree, but also reduce the rekeying costs in comparison with
the existing algorithms when batch leave operation is higher than batch join operation (JM < LM).
Our simulation result shows that this proposed scheme reduces 20%  30% rekeying cost compared to
the existing approaches.

Keywords rotation algorithms, rekeying operation, group key, balance factor, multicast security

1 Introduction

Multimedia services, such as pay-per-view, videoconferences,
some sporting event, audio and video broadcasting are based
on multicast communication where multimedia messages
are sent to a group. In order to provide security for such
multicast communications, the existing systems encrypt
the multimedia data using a Group Key and are sent to the
set of group members. As group membership is dynamic,
this group key is updated and redistributed securely to
all group members whenever there is a change in the
membership in order to provide forward and backward
secrecy. Forward secrecy means that a leaving member can-
not obtain information about future group communication
and backward secrecy means that a joining member cannot
obtain information about past group communication. The
operation for updating the group key is known as rekeying.

The Group Controller (GC) is responsible for updating the
group key when there is a change in the group membership.

Various key management schemes have been proposed
in the past [1  5] for updating the keys using single rekeying
operation in an efficient way. In key tree based approach,
each member is assigned a set of keys based on his/her
location in the key tree. The rekeying cost of the key tree
approach increases logarithmically with the increase in
group size for a join or depart request. The rekeying cost
denotes the number of messages that need to be distributed
to the members in order for them to obtain the new group
key. When more number of users join/depart from the
multicast service its performance decreases gradually. Group
centre and group members are assigned to perform more
rekeying operation rather than making use of the service.
Batch rekeying [6  10] has been proposed to improve these
problems. In this scheme, the GC does not perform rekeying

Netw Sci (2012) 1: 39–47
DOI 10.1007/s13119-011-0001-8

 RESEARCH ARTICLE

Vijayakumar et al. / Networking Science / Vol. 1, Nos. 1–4 40

immediately; instead, it consolidates the total number of
joining and leaving members during a time interval before
performing the rekeying. We refer the algorithm used in
[6  8] as marking algorithm in this paper. The algorithm
used in [9] is referred as merging algorithms and [10] as
batch balanced algorithm in this paper. Level homogeneous
key tree based key management scheme was proposed [21]
to reduce computation and storage complexity. Threshold
based rekeying used for wireless channel was also proposed
[23] to reduce the communication cost. A key tree is con-
sidered balanced if the difference between the heights of its
two subtrees is at most 1. For a balanced key tree with N
members, the height from the root to any leaf node is logdN,
where d is the maximum number of children of a node of
the key tree. If the tree is unbalanced some of the members
might need to perform N  1 decryptions in order to get the
group key. Furthermore, in an unbalanced key tree, some of
the members might need to store N keys, whereas remaining
members might need to store only few keys.

In this paper, we propose rotation algorithms in which
key tree is rotated once or twice in order to make the tree
to be balanced when batch leave operations are performed.
We call this operation as Rotation once and Rotation twice
operations. Rotation once is classified into RL (Rotation Left)
and RR (Rotation Right). Rotation twice is also classified
into RRL (Rotation in Right and Left) and RLR (Rotation
in Left and Right). This rotation based key tree algorithm
is more suitable for batch leave operations for rotating
the left/right subtrees to balance the tree. These rotation
algorithms not only balance the key tree, but have lower
rekeying costs compared to the existing algorithms. By
reducing the number of rekeying messages required in
order to recover the new group key, the computation time
is also reduced which is discussed in [17  20, 22]. For batch
joining operations merging algorithm is more suitable. For
same numbers of joining and leaving members, our rotation
based algorithms achieve the same rekeying cost as that of
the existing algorithms. The rest of the paper is organized
as follows: Section 2 discuses the rotation based algorithms
and its types. We describe our proposed algorithms in
Section 3. Section 4 discuses the simulated and mathematical
analysis of our proposed work with existing approaches by
comparing the simulated results with them. Section 5 con-
cludes the paper.

2 Rotation algorithms

We now propose two rotation algorithms by redefining the
operations of AVL tree [11] to rotate the subtrees in order
to maintain the balancing condition. There are few major
differences between AVL tree rotation and the rotation
operation proposed in this paper. First, AVL is a binary

search tree and hence the left node has smaller key than
the parent node and right node has greater key value than
its parent node. Therefore the levels need not be updated
after every rotation. On the other hand in our proposed
approach, the tree is only a binary tree and hence the keys
are assigned randomly. Moreover, after every rotation any
one of the tree traversal (level order) method is to be applied
to know the new position of the rotated nodes. This update
is monitored and carried out by GC. GC also computes
balance factor for each node before rotating the tree. Balance
factor of a node is the height of its right subtree minus the
height of its left subtree. Thus each node has a balance factor
of –1, 0, or +1. Consider balanced key tree which is shown
in Fig. 1, in which the balance factors are shown at the top
of each node. Balancing factors of leaf nodes are always
zero. After computing the balance factors it checks all the
nodes whose balance factors are not –1, 0, or +1.

For those nodes rotations are performed in order to make
the tree balanced. When a subtree is rotated, the subtree
side on which it is rotated decreases its height by one node
while the other subtree increases its height by one. This
makes it useful for rebalancing a tree. It is not always possible
to balance the tree structure in single rotation. Therefore
in such cases double rotations are performed in order to
balance the tree. Note that rotations are performed from leaf
node to the root node.

Fig. 1 Balanced key tree

2.1 Rotation once algorithm

Given a batch of join/leave requests, the main task for the
GC is to identify which keys should be added, deleted, or
changed. In individual rekeying, all the keys on the path
from the request location to the root of the key tree have to
be changed [12  16]. When there are multiple join or leave
requests, there are multiple paths to be updated. When
such multiple paths are updated, there may be possibilities
such that the height of one sub-tree may be higher than the
other sub-tree that is the difference between the heights of

Vijayakumar et al. / Networking Science / Vol. 1, Nos. 1–4

41

the two sub-trees is greater than one. In such scenario, users
on one end (sub-tree of height  1) may be in a situation to
perform more rekeying operations comparatively. They also
have to store more keys compared with the users who are
located on other side of the tree. Hence storage complexity
increases for those users. To avoid this situation we introduce
two types of rotation algorithms in this section. They are
rotation once and rotation twice algorithms.

In rotation once algorithm the key tree is rotated only
once to make the tree balanced. Rotation can be done both
in left side and right side. When the height of the left subtree
is greater than the right subtree height RR rotation is
performed. When the height of the right subtree is greater
than the left subtree height RL rotation is performed. After
rotating the tree, the nodes that have no children are removed
from the key tree in order to reduce the rekeying cost.

For example, Fig. 2(a) shows RR rotation in which the
key tree is rotated in the right side. After the rotation key
node K2 will become an invalid node and the result is shown
in Fig. 2(b). In Fig. 2(b) we delete the key node that has no
children. This reduces the rekeying cost for batch leave
operation. Thus the node K2 is removed from the tree and
the resulting tree is shown in Fig. 2(c). Since the resulting
tree is an unbalanced tree again the same RR operation is
performed and the result is shown in Fig. 2(d). The final
result shown in Fig. 2(e) depicts the result of the key tree
after deleting the node K1.

Fig. 2 Example of Rotation Right algorithm

2.2 Rotation twice algorithm

Rotation twice is performed whenever one of the subtree
grows in left and right side or right and left side. In such

cases, the tree is rotated twice to balance the tree. If the
subtree had grown in left and right side the rotations to be
performed are RL and RR. The Fig. 3(a) illustrates an example
of rotation twice algorithm in which the tree has grown
both in left and right side. So the tree is rotated in the left
side first. After this rotation, key node K9 becomes the root
node for the key node K4. Next the resultant tree is rotated
in right direction. The resultant tree is a balanced tree which
is shown in Fig. 3(b). In this figure, the node K9 becomes a
parent node of K4 and K2. After the rotation if any key
node (K4, K2) appears under a user node for example K9,
they are simple deleted from the key tree. So the nodes K4
and K2 are deleted and the result is shown in Fig. 3(c)

Fig. 3 Example of RLR rotation

3 Rotation based rekeying algorithms

In this paper, we propose rotation based rekeying algorithms
which are processed by a GC for batch leave requests. This
rotation is applied to the key tree only when the K-key nodes
and U-user nodes are organized as a tree. In a key tree, the
root is the group key, leaf nodes are individual keys, and
the other nodes are auxiliary keys/sub group keys. Rotation
based algorithms are not suitable for key star. Key star [1] is
a special key tree where tree degree equals to the group size.
In both of these methods, the group centre cannot predict
which user may leave/join in to multicast service. So it can
use a rotation algorithm to make the tree to become a
balanced tree in such a way that rekeying operations to be
performed by group members are minimized when group
of members leave from the service. We use the following
notations in this paper.

Vijayakumar et al. / Networking Science / Vol. 1, Nos. 1–4 42

Notation Explanation

JM Number of joining members

LM Number of leaving members

{x}y x is encrypted using y

d Degree of the tree

h Height of the tree

There are four cases to be considered for which the

rotation based algorithm can be applied. But it is more
suitable for the case where LM > JM and JM  0.
Case 1: if JM  LM then,
(1) Find the nodes in the key tree where leaving operation is

going to be performed. Replace all the leaving nodes by
joining nodes as discussed in [6  8].

(2) All the key nodes are updated form the leaf node to the
root node with respect to the leaving point.

(3) Updated rekeying messages are sent to newly established
group members.

Case 2: if JM < LM and JM > 0 then,
(1) Find all the nodes where leaving operation is going to take

place. Out of the LM leaving nodes pick JM shallowest
nodes in the key tree. These selected shallowest nodes
are replaced by the newly joining members.

(2) Remaining LM nodes are simply deleted from the key
tree.

(3) Compute the balancing factors for all leaf and non- leaf
nodes. If the balance factor is not {–1, 1, 0} for any of
the nodes of the key tree a suitable rotation operation is
to be performed.

(4) Update all the keys from the leaf to root where user leave
or join takes place in order to provide forward secrecy.

Consider the key tree in Fig. 4(a) that shows an example
of working case 2 (JM < LM) and JM > 0.The figure consists
of 16 users starting from user U1 to U16 in which six users
(U1, U2, U5, U6, U9, and U10) want to leave the group and
two users (U17, U18) want to join the group. Find all the
six nodes where leaving operation is going to take place.
Out of the six leaving nodes pick two shallowest nodes
in the key tree in order to add newly joining members in
the key tree. So the locations of the key nodes K23 and K24
are used to add the newly joining members U17 and U18
and all the keys K0, K2, K5, and K11 are changed in order
to disallow the newly joining members to view the past
transactions. This provides backward secrecy for the new
users U17 and U18. The remaining four nodes are simply
deleted from the key tree and the result is shown in Fig. 4(b).
Since the resultant tree is an unbalanced tree perform
appropriate rotations to make the tree to be a balanced tree.
The final key tree after the nodes K3, K4, K7 and K9 are
removed is shown in Fig. 4(c). After constructing the balance

tree the key nodes K0 and K1 are updated in order to stop
the users U1, U2, U5, U6 from viewing the future content.
This achieves the forward secrecy. It is very clear to see
that our proposed rotation based algorithm reduces the
rekeying cost from 12 to 10. Moreover it minimizes the
number of decryptions to be performed by group members
from 34 to 30 which is shown in Table 1.

Fig. 4 Working example of the case JM < LM and JM > 0

Vijayakumar et al. / Networking Science / Vol. 1, Nos. 1–4

43

Table 1 Number of decryptions required in group members area

Users

Number of decryptions
performed (without
rotation based approach)

Number of decryptions
performed in rotation
based approach

U3 3 2

U4 3 2

U7 3 2

U8 3 2

U17 4 4

U18 4 4

U11 3 3

U12 3 3

U13 – U16 8 8

TOTAL 34 30

Case 3: JM > LM and LM > 0 then,
(1) Let the number of joining members be JM and the

number of leaving members be LM.
(2) Compute K JM LM, where K represents the number of

remaining joining members for whom insertion points
are to be found.

(3) Out of JM joining members assign the first LM joining
members into the leaving positions in the key tree.

(4) For the remaining “K” joining members, find the insertion
point in the key tree. The insertion point is the shallowest
node where the join does not increase the height of the
key tree. Call this node as insertion node. It may be
located either in left or right subtree depending upon
where leave/join operations had taken place recently.

(5) At that location group centre creates a new intermediate
node, a new member node and promotes the new inter-
mediate node to be the parent of both the insertion node
and the new member node.

(6) Compute the balance factor for all the nodes of the key
tree.

(7) Perform rotation if necessary.
(8) Update the keying information and send it to group

members.
Consider the key tree in Fig. 5(a) that shows an example

of working case 3 (JM > LM) and LM > 0. The figure consists
of 16 users starting from user U1 to U16 in which two users
(U11, U15) want to leave the group and six users (U17,
U18, U19, U20, U21, U22) want to join the group. Find the
two nodes where leaving operation is going to take place.
Select the two leaving points to add the first four newly
joining members (U17, U18, U19, and U20) in the key tree.
For the remaining two joining members the insertion point
is found in such a way that the join does not increase the
height of the key tree. It may be located either in left or right
subtree depending upon where leave/join operations had
taken place recently. Therefore K26 and K30 are selected as

insertion points to insert the remaining two users U21 and
U22 in the key tree and the result is shown in Fig. 5(b).

Fig. 5 Working example of the case JM > LM and LM > 0

Case 4: if JM < LM and JM  0 then,
(1) Delete all the leaf nodes where leave operation had

taken place.
(2) Compute the balance factor for all the nodes of the key

tree.
(3) If the tree has grown in the left side then do RR.

Else do RL.
(4) If the tree has grown in left and right side simultaneously

then do RLR.
 Else do RRL.

(5) Perform rekeying operation.
Figure 6(a) shows an example of the working case 4

algorithm. Consider a tree with d  2 and level  3. Hence
the tree can have maximum of 8 members U1 to U8. But
for simplicity we have taken only six users in the diagram.
In this situation three members U1, U2 and U4 had left the
group (LM  3) and no members would like to join the
group (JM  0).

This structure is shown in Fig. 6(b). This structure does
not satisfy the criteria of a balanced tree at K2 and K3. So
RL rotation is performed with respect to the nodes K2 and
K3 and the result is shown in Fig. 6(c). By doing this rotation

Vijayakumar et al. / Networking Science / Vol. 1, Nos. 1–4 44

Fig. 6 Working example of the case JM < LM and JM = 0

the rekeying cost is reduced from 5 to 3 and number of
decryptions to be performed is reduced from 7 to 4. This
improves 40% rekeying cost for the case JM < LM and
JM  0.
Case 5: if JM > LM and LM  0 then,

(1) Find the insertion point. It is the shallowest leaf node
from the left/right subtree.

(2) Create a new intermediate node and a new member
node and promote the new intermediate node to be the parent
of both the insertion node and the new member node.

(3) Compute the balance factor. Rotate the tree if necessary.
Among all the five cases rotation based algorithms are

suitable for case 2 and case 4.

4 Simulation results

In this section, we discuss the performance in terms of
rekeying cost of our proposed algorithms and compare them
with the marking algorithms described in [6  8], merging
algorithms [9] and batch balanced algorithms [10] which
we have already labeled as Marking, Merging Algorithms
and Batch balanced algorithms, respectively. The rekeying
cost (RC) denotes the total number of rekey messages that
need to be sent to all authorized group members in order
for them to find the new group key. After completing the
rekeying process, the rekeying messages have to be sent to
the remaining group members. These messages should
include two information fields: destination node, rekeying
material. The destination node is the node to which the
message is addressed. This field is used by group members
to decide whether the rekeying message concerns to them
or not. Rekeying messages indicate the updated keying
information which can be used to compute the group key.

Merging algorithms and batch balanced algorithms are
more suitable for batch joining requests. However, rotation
based rekeying algorithm proposed in this paper is suitable
for batch leaving operations. As the number of leaving
members increases, more numbers of rotations are per-
formed to balance the tree from unbalanced state. After
balancing the tree, rekeying operation is performed and
the rekeying cost is analyzed by comparing with marking,
merging and batch balanced algorithms. We simulated this
approach in Turbo C++ for more than 1024 users with
d  2 and compared the results with previous approaches.
The simulator first constructs a balanced key tree for 1024
users. Leaving members are either randomly selected or
specifically selected so as to give either the best or worst case
rekeying costs. Joining members if any are then inserted
into the key tree and the rekeying costs are calculated. This
shows that our proposed algorithms reduces rekeying costs
for the case JM < LM. Figures 7 and 8 show the computed and
simulated best and worst cases rekeying costs for a binary
key tree with d 2. The graph shown in Fig. 7 depicts the best
case rekeying cost results obtained from our simulations.

Fig. 7 Batch balanced algorithm rekeying vs. rotation based
rekeying (best case)

Vijayakumar et al. / Networking Science / Vol. 1, Nos. 1–4

45

From Fig. 7(a), it can be seen that batch balanced algorithm
has the rekeying cost of 1007 for the total number of JM 
500 and LM  1000 from a balanced binary tree with 1024
members for the case JM < LM and JM > 0. On the other
hand, the rotation based algorithms minimizes the rekeying
cost since it try to minimize the number of affected key
nodes by rotating the tree and deleting the key nodes that
have no children. Figure 7(b) shows that the rotation based
algorithm produces the rekeying cost of 998 for the total
number of JM  500 and LM  1000 from a balanced binary
tree with 1024 members. This shows that our proposed
algorithms reduce rekeying costs for the case JM < LM and
JM > 0.

The graphs shown in Fig. 8 illustrate the worst case analysis
of batch balanced algorithm and rotation based rekeying.
In worst case analysis the batch balanced algorithm produces
the rekeying cost of 1066 for 1024 group members which
are shown in Fig. 8(a). In rotation based rekeying, its rekeying
cost value is 1054 for the same number of users and the
result is shown in Fig. 8(b).

Fig. 8 Batch balanced algorithm rekeying vs. rotation based
rekeying (worst case)

In Fig. 9 we compare the worst case analysis of rekeying
cost for rotation based algorithms, marking algorithms and
batch balanced algorithm for the case (JM < LM and JM 
0). For the worst case analysis of the rekeying cost also, the
same balanced tree is constructed with 1024 members of
height h  logdN  1. The leaving members in such analysis
are evenly distributed in the entire sub tree as shown in
Fig. 10(a). For the best case analysis of the rekeying cost a
balanced tree is constructed with 1024 members of height
h and the leaving members concentrate on one area of the
sub tree shown in Fig. 10(b). Then the algorithm is run
several times approximately 10 runs and the performance
is shown below.

Fig. 9 Worst case rekeying cost comparison for the case LM > JM
and JM = 0

Fig. 10 (a) Worst case and (b) best case scenario

Vijayakumar et al. / Networking Science / Vol. 1, Nos. 1–4 46

It is clear to see from Fig. 9 that our proposed algorithm
minimizes the rekeying cost to 1534 for the LM  512 and
N 1024. Whereas the marking and batch balanced algorithm
generates the rekeying cost as 1622, 1540 for the same
number of leaving members with JM  0. The figure shown
in Fig. 11, compares best case rekeying cost analysis of
rotation based algorithms, marking algorithms and batch
balanced algorithm for the case (JM < LM and JM  0). Then
the algorithm is run several times and it is clearly to see
that our proposed algorithm minimizes the rekeying cost to
510 for the LM  512 and N  1024. Whereas the marking
and batch balanced algorithm generates the rekeying cost
as 520, 516 for the same number of leaving members with
JM  0. We have also performed a theoretical analysis for
the rekeying cost of our rotation based rekeying and the
details are given below. This analysis has performed both
for worst and best cases.

4.1 Worst case analysis

The proposed rotation based algorithms has the ability to
control the users join positions. However, they fail to control
leaving positions of the users. Thus, worst case analysis
mainly considers how the locations of leaves affect the GC
cost. In the worst cast analysis all the Leaving members are
spread evenly at leaf nodes. The figure shown in Fig. 10(a)
illustrates the worst case scenario. During the batch leave
operation the numbers of departing members are represented
in terms of the degree of the tree. For simplicity we assume
that LM  dl for some integer l. If LM  dl  r, where r value
lies between 0 and dl then for each of the r leaves the rekeying
cost decreases gradually in the worst case operation by
performing more rotations in the key tree. In order to exhibit
the strength of the proposed algorithm, we have calculated
WRC (worst case rekeying cost) and BRC (best case rekeying

Fig. 11 Best case rekeying cost comparison for the case LM > JM
and JM = 0

cost) for the batch leave operation. The algorithm is found
suitable in both the worst case and best case analysis.
Case 1: (JM  LM)

     

1 1WRC1
1

ldd
d

 (1)

Case 2: (JM > LM)
If LM  dl for some integer l

      

1 1WRC2 [JM LM]
1

ldd d
d

 (2)

Case 3: (JM < LM and JM  0)
If LM  dl for some integer l then,

     
1WRC3 LM[1]
1

ldd d
d

 (3)

Case 4: (JM < LM)

      

1

WRC4 [JM LM]
1

ld dd
d

 (4)

4.2 Best case analysis

In the best case analysis all the leaving members are focused
only one side (either left or right subtree) of the key tree
which is shown in Fig. 10(b). As a result, the rekeying cost
will be minimized in comparison to the other existing
algorithms. The best case rekeying cost analysis for the
case 1 (JM  LM) and case 2 (JM > LM) are the same as that
of the discussion done in the worst case analysis. For the
remaining cases (3 & 4), consider the number of leaving
members LM  dl where d is the degree of the tree and l is
an integer value. In rotation based key tree algorithms, the
value of d is considered as 2.
Case 3: (JM < LM) and JM  0

     

1 1BRC3
1

ldd
d

 (5)

Case 4: (JM < LM)

BRC4 [log log LM] [JM 1]d dd N d    (6)

5 Conclusions

In this paper, a rotation based key tree algorithm has been
proposed for reducing the rekeying cost for batch rekeying
operation in a multicast group. From the simulations carried
out using this algorithm, it has been observed that the
proposed algorithm reduces the tree height by performing

Vijayakumar et al. / Networking Science / Vol. 1, Nos. 1–4

47

rotation operations in the multicast key tree. When the tree
is large then this reduces the rekeying cost by 20%  30% in
comparison with the existing approaches. One limitation
of this proposed approach is that it works better for batch
leave operations are more than batch join operations (JM <
LM). When the batch join operations are more than the batch
leave operations (JM > LM) the performance is degraded.
In those cases, our proposed approach gives the same
rekeying cost as that of the existing algorithms. Hence the
rotation based algorithms can be combined with merging
and batch balanced algorithms to improve the efficiency.

References

[1] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group com-
munications using key graphs,” IEEE/ACM Trans. Netw., vol. 8,
no. 1, pp. 16  30, Feb. 2000.

[2] W. Trappe, J. Song, R. Poovendran, and K. J. R. Liu, “Key
management and distribution for secure multimedia
multicast,” IEEE Trans. Multimedia, vol. 5, no. 4, pp. 544  557,
Dec. 2003.

[3] P. Vijayakumar, S. Bose, A. Kannan, and S. S. Subramanian,
“An effective key distribution protocol for secure multicast
communication,” in IEEE Int. Conf. Advanced Computing,
Chennai, India, 2010, pp. 102  107.

[4] M. Ramkumar, “The subset keys and identity tickets (SKIT) key
distribution scheme,” IEEE Trans. Inf. Forens. Security, vol. 5,
no. 1, pp. 39  51, Mar. 2010.

[5] P. Vijayakumar, S. Bose, A. Kannan, and S. S. Subramanian, “A
secure key distribution protocol for multicast communication,”
in Communications in Computer and Information Science
vol. 140, Control, Computation and Information Systems, P.
Balasubramaniam, Ed. Heidelberg: Springer, 2011, pp.
249  257.

[6] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam, “Batch
rekeying for secure group communications,” in Proc. 10th Int.
Conf. WWW, Hong Kong, China, 2001, pp. 525  534.

[7] J. Pegueroles and F. Rico-Novella, “Balanced batch LKH: new
proposal, implementation and performance evaluation,” in
Proc. IEEE Symp. Computers and Communications, 2003, pp.
815  820.

[8] X. B. Zhang, S. S. Lam, D.-Y. Lee, and Y. R. Yang, “Protocol
design for scalable and reliable group rekeying,” IEEE/ACM
Trans. Netw., vol. 11, no. 6, pp. 908  922, Dec. 2003.

[9] W. H. D. Ng, H. Cruickshank, and Z. Sun “Scalable balanced
batch rekeying for secure group communication,” Comput.
Secur., vol. 25, no. 4, pp. 265  273, Jun. 2006.

[10] W. H. D. Ng, M. Howarth, Z. Sun, and H. Cruickshank,
“Dynamic balanced key tree management for secure multicast
communications,” IEEE Trans. Comput., vol. 56, no. 5, pp.
590  605, May 2007.

[11] M. A. Weiss, Data Structures and Algorithm Analysis in C, 2nd
ed. Boston, USA: Addison-Wesley, 2008, pp. 126  139.

[12] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner,
“The versakey framework: Versatile group key management,”
IEEE J. Sel. Areas Comm., vol. 17, no. 9, pp. 1614  1631, Sept.
1999.

[13] A. Perrig, D. X. Song, and J. D. Tygar, “ELK: A new protocol for
efficient large group key distribution,” in Proc. IEEE Symp.
Security and Privacy, 2001, pp. 247  262.

[14] P. P. C. Lee, J. C. S. Lui, and D. K. Y. Yau, “Distributed
collaborative key agreement protocols for dynamic peer groups,”
in IEEE Int. Conf. Network Protocols (ICNP), Paris, France,
2002, pp. 322  333.

[15] L. Xu and C. Huang,“Computation-efficient multicast key
distribution,” IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 5,
pp. 1  10, May 2008.

[16] B. Bruhadeshwar and S. S. Kulkarni, “Balancing revocation and
storage trade-offs in secure group communication,” IEEE Trans.
Depend. Secure Comput., vol. 8, no. 1, pp. 58  73, Jan. 2011.

[17] B. Bruhadeshwar and K. Kothapalli, “A family of collusion
resistant symmetric key protocols for authentication,” in Proc.
9th Int. Conf. Distributed Computing and Networking, Kolkata,
India, 2008, pp. 387  392.

[18] B. Bruhadeshwar, K. Kothapalli, and M. S. Deepya, “Reducing
the cost of session key establishment,” in Proc. 6th Int. Conf.
Availability, Reliability and Security, Fukuoka, Japan, 2009,
pp. 369  373.

[19] B. Bruhadeshwar, K. Kothapalli, M. Poornima, and M. Divya,
“Routing protocol security using symmetric key based techniques,”
in Proc. 6th Int. Conf. Availability, Reliability and Security,
Fukuoka, Japan, 2009, pp. 193  200.

[20] S. S. Kulkarni and B. Bruhadeshwar, “Key-update distribution in
secure group communication,” Comput. Commun., vol. 33, no. 6,
pp. 689  705, Apr. 2010.

[21] D.-H. Je, J.-S. Lee, Y. Park, and S.-W. Seo, “Computation-and-
storage efficient key tree management protocol for secure
multicast communications,” Comput. Commun., vol. 33, no. 2,
pp. 136  148, Feb. 2010.

[22] A. T. Sherman and D. A. McGrew, “Key establishment in large
dynamic groups using one-way function trees,” IEEE Trans.
Softw. Eng., vol. 29, no. 5, pp. 444  458, May 2003.

[23] J. H. Cho, I.-R. Chen, and M. Eltoweissy, “On optimal batch
rekeying for secure group communications in wireless networks,”
Wireless Netw., vol. 14, no. 6, pp. 915  927, Dec. 2008.

