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Abstract
The gene inhibin subunit beta B (INHBB) encodes the inhibin βB subunit, which is involved in forming protein members 
of the transforming growth factor-β (TGF-β) superfamily. The TGF-β superfamily is extensively involved in cell prolifera-
tion, differentiation, adhesion, movement, metabolism, communication, and death. Activins and inhibins, which belong 
to the TGF-β superfamily, were first discovered in ovarian follicular fluid. They were initially described as regulators 
of pituitary follicle-stimulating hormone (FSH) secretion both in vivo and in vitro. Later studies found that INHBB is 
expressed not only in reproductive organs such as the ovary, uterus, and testis but also in numerous other organs, includ-
ing the brain, spinal cord, liver, kidneys, and adrenal glands. This wide distribution implies its involvement in the normal 
physiological functions of various organs; however, the mechanisms underlying these functions have not yet been fully 
elucidated. Recent studies suggest that INHBB plays a significant, yet complex role in tumorigenesis. It appears to have 
dual effects, promoting tumor progression in some contexts while inhibiting it in others, although these roles are not yet 
fully understood. In this paper, we review the different expression patterns, functions, and mechanisms of INHBB in 
normal and tumor tissues to illustrate the research prospects of INHBB in tumor progression.

Key points
• INHBB is a gene that encodes the inhibin βB subunit, which forms part of the TGF-β superfamily of proteins that 
regulate various cellular processes.

• INHBB was initially discovered as a regulator of FSH secretion in reproductive organs, but it was later found to be 
expressed in many other organs and involved in their normal physiological functions.

• INHBB has an emerging role in tumorigenesis, but the direction of this role is unclear and may vary depending on 
the tissue type and context.

• This paper reviews the different expression patterns, functions, and mechanisms of INHBB in normal and tumor tis-
sues, and suggests future research directions for INHBB in tumor progression.

Keywords  INHBB · Activin · Inhibin · Cancer · Tumor progression

Received: 20 September 2023 / Accepted: 30 July 2024
© The Author(s) under exclusive licence to University of Navarra 2024

Inhibin subunit beta B (INHBB): an emerging role in tumor progression

Ying Liu1,2,3  · Qing Zhou4  · Guoying Zou5  · Wenling Zhang1,3

1 3

http://orcid.org/0009-0004-1607-6648
http://orcid.org/0000-0002-0069-559X
http://orcid.org/0000-0003-0719-9975
http://orcid.org/0000-0002-1586-6363
http://crossmark.crossref.org/dialog/?doi=10.1007/s13105-024-01041-y&domain=pdf&date_stamp=2024-8-23


Y. Liu et al.

Introduction

Activins and inhibins are members of the transforming 
growth factor-β (TGF-β) superfamily that have significant 
roles in reproduction and development [35, 100]. They 
were first discovered in ovarian follicular fluid and have 
been found to function as regulators of pituitary follicle-
stimulating hormone (FSH) secretion in vivo and in vitro 
[57, 101], essential for follicular development. Activins can 
promote the production of FSH, while inhibins can inhibit 
it. However, in addition to the regulation of reproductive 
biology [115], there has been evidence that activins and 
inhibins exist in a variety of tissues, participating in various 
biological processes, such as cell proliferation, differentia-
tion, and invasion, to promote the formation and function 
of many human tissues and organs [5]. More importantly, 
they appear to play an emerging role in tumor progression 
[19, 46, 94, 133]. Activins and inhibins are dimeric proteins 
formed through the disulfide linkage of two inhibin sub-
units. These inhibin subunits include the inhibin α subunit 
and various β subunits, specifically βA, βB, βC, and βE sub-
units. Inhibins are heterodimers composed of one α subunit 
and one β subunit, including inhibin A (α/βA) and inhibin 
B (α/βB). Activins, on the other hand, are homodimers or 
heterodimers formed by two β subunits. The activins that 
have been isolated to date include activin A (βA/βA), activin 
B (βB/βB), activin AB (βA/βB), activin C (βC/βC), and 
activin E (βE/βE) [63, 104, 110, 116].

The gene inhibin subunit beta B (INHBB) is located on 
chromosome 2q14.2. It encodes the inhibin βB subunit, 
which is involved in the formation of activin B (βB/βB), 
activin AB (βA/βB), and inhibin B (α/βB) (Fig. 1). On the 
one hand, INHBB can promote growth and invasion in clear 
cell renal cell carcinoma [106] and hepatocellular carci-
noma [20]. On the other hand, it can inhibit metastasis and 
promote apoptosis in nasopharyngeal carcinoma [140]. This 
suggests that it not only has the effect of promoting cancer 
but also has the effect of inhibiting cancer, similar to TGF-β 
[7, 25].

In the current article, we reviewed the structure, signal 
pathways, and regulatory mechanisms of INHBB, and com-
pared the different expression patterns of INHBB in nor-
mal and tumor tissues to clarify the role of INHBB in tumor 
progression.

INHBB signaling mechanism

Like all other members of the TGF-β superfamily, the syn-
thesis of activins begins with a larger precursor. The struc-
ture of the activin β-subunit precursor includes a signal 
peptide, a pro-region, and a mature domain, which together 
determine the synthesis, processing, and function of activ-
ins. The signal peptide, located at the N-terminus of the 
protein sequence, directs the newly synthesized activin pre-
cursor to the endoplasmic reticulum and is cleaved at the 

Fig. 1  Synthesis of inhibins and activins
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appropriate site to facilitate entry into the cell secretory 
pathway. Following the signal peptide is the pro-region, a 
longer sequence crucial for the correct folding of the pro-
tein. Its hydrophobic interface promotes a conformation 
suitable for dimerization assembly. The mature domain is 
located at the C-terminal of the protein and contains impor-
tant functional domains, which are key regions for generat-
ing biological activity. At the same time, cysteine residues in 
the mature domain promote protein stability and activity by 
forming intramolecular and intermolecular disulfide bonds. 
The mature domain is formed after the precursor protein is 
cleaved, at which point the dimer is stabilized by disulfide 
bonds and then released through the cellular secretion path-
way to the extracellular space, where it binds to its recep-
tors, triggering downstream signaling pathways [109–111].

Members of the TGF-β family signal through pairs of 
transmembrane serine/threonine protein kinases called type 
I and type II receptors. The mammalian genome encodes 
seven type I receptors and five type II receptors, as well as 
eight small mother against decapentaplegic (SMAD) pro-
teins. In the same manner as other members of the TGF-β 
superfamily, activins function by activating receptor type 
I and type II serine/threonine kinases. For activins, type II 
activin receptors (ActRII) are activin A receptor type 2 A 
(ACVR2A) and activin A receptor type 2B (ACVR2B). 
Type I activin receptor (ActRI), also called activin receptor 
like kinase (ALK), phosphorylates SMAD proteins in the 
cytoplasm, which form complex and then translocate to the 
nucleus, where there, they interact with various other tran-
scription regulators and control the transcription of target 
genes. Type I receptors of activins are mainly ALK 4 (also 
known as ACVR1B). Once the activin binds to the type II 
receptor, the type I receptor is phosphorylated in a juxta 
membrane domain referred to as the GS box and recruited 
[9, 13]. In addition, recent studies have also shown that 
another type I receptor, ALK 7 (also known as ACVR1C), 
can transmit activin B and activin AB signals, and is insen-
sitive to activin A [9, 99]. Generally, type I receptors ALK 4, 
ALK 5, and ALK 7 activate the SMAD 2/3 pathway, while 
type I receptors ALK 1, ALK 2, ALK 3, and ALK 6 activate 
the SMAD 1/5/8 pathway [123]. Recent studies have also 
shown that activins can activate the SMAD 1/5/8 pathway 
through bone morphogenetic protein (BMP) receptor ALK 
2 and ALK 3 signaling [83]. Phosphorylated SMAD 2/3 or 
SMAD 1/5/8 form a complex with SMAD 4 and then enter 
the nucleus to affect gene expression (Fig. 2). As for inhib-
ins, which are heterodimers composed of an α subunit and 
a β subunit, the β subunit of inhibin competitively binds to 
the ActRII receptor. This binding prevents the recruitment 
of ActRI and the subsequent activation of downstream sig-
naling cascades, thereby participating in the antagonism of 
activin activity [55, 94]. Although typical activin signaling 

acts through the activation of the SMAD signaling pathway, 
more and more studies show that there are many other sig-
naling pathways involved in the role of activins and inhibins 
[61, 72, 81], including RhoA [32, 70, 112, 113, 134, 135], 
MAPK [6, 50, 118, 121, 138] and JNK [10, 95, 136] signal 
pathways.

INHBB in human physiology

In the normal function of INHBB, activins, inhibins, and 
follistatin could regulate FSH production from the pituitary 
gland. This triad also affected GnRH secretion from hypo-
thalamic neurons and GnRH receptor expression in pituitary 
gonadotropes, ultimately regulating LH and FSH secretion. 
FSH and LH work together to stimulate ovarian follicular 
development, and ovulation, as well as estrogen and pro-
gesterone production [94]. Through the ERK-Elk1 signal-
ing pathway, activin B stimulates hair matrix cell growth, 
and through the ERK-Cyclin D1 pathway, it accelerates the 
transition of hair matrix cells from the G0/G1 to the S phase 
[96]. The RhoA-mDia1 pathway may enhance mesenchy-
mal stromal cell migration induced by activin B by promot-
ing membrane ruffling, microtubule morphology, and focal 
adhesion signaling dynamics. There is evidence that Cdc42 
is related to activin B-induced Golgi complex polarization 
[113]. Activin B induces RhoA activation by activating the 
ROCK-MEKK1-JNK-C-JUN pathway. In addition, activin 
B also induces p38 activity in a MEKK1-dependent path-
way through a mechanism independent of RhoA. These 
pathways jointly lead to actin cytoskeleton recombination 
and control of epithelial cell migration, thus promoting the 
physiological and pathological effects of activin on epithe-
lial morphogenesis [134]. Furthermore, activin B can effec-
tively promote the proliferation of keratinocytes and hair 
follicle cells on wound surfaces, as well as the healing of 
epithelial wounds [135]. Activin B signal transduction also 
contributes to the transformation of normal fibroblasts into 
scar fibroblasts [24]. Together, they participate in the pro-
cess of activin B-mediated wound healing (Fig. 2).

It is found that INHBB was expressed in both hepatic 
endothelial cells and Kupffer cells in LPS-treated liver [47]. 
Under inflammatory conditions, activin B expression in the 
liver is stimulated. Activin B can induce hepcidin synthe-
sis [31]. Activin B signaling activates SMAD 1/5/8 signal 
and hepcidin expression through its typical type II receptor, 
binding to BMP I receptor and co-receptor HJV [18]. Given 
the important role of hepcidin in iron homeostasis [80], the 
association of INHBB with hepcidin also suggests its role in 
inflammation and immunity (Fig. 2).

Furthermore, activin B and its inhibitor follistatin play 
a role in pancreatic ontogeny. Activin B co-expressed with 
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Inhibins were found earlier than activins and can nega-
tively regulate pituitary function, contrary to the action of 
activins [67]. The inhibin contains a β subunit, which can 
compete with activins and bind ActRII to block the action 
of activins, thereby blocking the recruitment of type I recep-
tor [40, 141]. However, the affinity of inhibins for ActRII is 
about 10 times lower than that of activins. The low affinity 
of inhibins for ActRII does not support the explanation of 
its high potency as an activin antagonist [23, 63]. Moreover, 
there are a large number of cell types in which inhibins can 
not antagonize the action of activins, indicating that the sin-
gle competitive binding ActRII model is incomplete [11]. 
Later studies have also shown that there may be inhibin 
receptors that selectively bind inhibin components. Betagly-
can is a membrane-anchored proteoglycan. It has been dem-
onstrated that it also binds inhibins and can mediate inhibin 
action. The affinity of inhibins binding to cell membranes 
co-expressing ActRII and betaglycan was about 30 times 
higher than that of cell membranes only expressing ActRII 
[37]. Inhibins compete to bind ActRII more efficiently and 

glucagon in forming islets, serving as a key regulator of 
endocrine pancreas formation [64]. Adipocytes express 
high levels of INHBB and activin B receptors, suggesting a 
local effect on adipose tissue. By down-regulating adipose 
triglyceride lipase and hormone-sensitive lipase expression, 
recombinant activin B decreased lipolysis and increased 
intracellular triglyceride content [62]. The role of INHBB 
in glucose metabolism and lipid metabolism underscores its 
significant impact on regulating human metabolism.

Regulation of INHBB function

The expression of INHBB is notably widespread, being 
detected in the uterus, ovaries, prostate, testes, brain, spinal 
cord, liver, kidneys, and adrenal glands [4, 44, 53, 97, 103]. 
Given the pleiotropy and extensive expression of INHBB, 
there are many mechanisms to regulate its bioavailability 
and participate in the role of INHBB (Fig. 3).

Fig. 2  Activin B binds to receptors on the cell membrane and affects multiple physiological processes in the cell through both SMAD-dependent 
and SMAD-independent pathways
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that binds and neutralizes activins with high affinity, and the 
binding is nearly irreversible due to its slow dissociation 
rate [41]. Meanwhile, the follistatin-related gene (FLRG), 
also referred to as follistatin-related protein (FLRP) or fol-
listatin-like 3 (FSTL3), is similar in structure and function 
to follistatin. It is considered to be an important circulating 
activator-binding protein [98].

Various external stimuli, such as hormonal changes and 
environmental stressors, have been shown to regulate the 
activity of INHBB. For example, hypoxia has been reported 
to upregulate the expression of activin B [107]. The level 
of extracellular uric acid can affect the sensitivity of pros-
tate cancer cells to activins [93]. For instance, expression 
of INHBB was up-regulated by cortisol and estradiol in 
RL-95-2 cells, a type of human endometrial carcinoma cell 
[105]. There are also reports that expression of INHBB was 
up-regulated in melanoma cells treated with riluzole, which 
may be involved in the regulation of SMAD protooncogene 
function in advanced melanoma [1].

One thing worth noting is that some proteins can affect 
the expression of INHBB from the level of transcription 
or epigenetics. H3K27me3, or trimethylation of lysine 27 
on histone H3, is an epigenetic mark typically associated 
with gene repression. This modification is crucial for regu-
lating gene expression by modifying chromatin structure, 
thereby controlling the accessibility of transcription factors 
to the DNA [28]. EZH2 (Enhancer of Zeste 2 Polycomb 
Repressive Complex 2 (PRC2) Subunit) targets INHBB 
and other genes during the epithelial-mesenchymal transi-
tion (EMT) in lung cancer A549 cell lines. Through its role 

inhibit the action of activins through its binding to ActRII 
and the co-receptor betaglycan.

Bone morphogenetic protein and activin membrane-
bound inhibitor (BAMBI) is a transmembrane glycoprotein. 
Since BAMBI is highly homologous to the TGF-β super-
family type I receptor, it is considered to be a pseudo-recep-
tor and negative regulator of the TGF-β signaling pathway 
[21]. BAMBI negatively regulates TGF-β family signaling 
through a regulatory mechanism of signaling receptor-pseu-
doreceptor interactions [84].

Cripto is a co-receptor that belongs to the epidermal 
growth factor/Cripto-1/FRL-1/Cryptic (EGF-CFC) family 
[36, 49]. It forms a complex with the activin and ActRII that 
is mutually exclusive with the activin–ActRII–ALK com-
plex, and it inhibits activin signaling [38]. In addition, the 
antagonistic effect of Cripto on activin B can be reversed by 
the anti–CFC domain Cripto antibody that blocks Cripto-
ALK 4 binding [2].

At the same time, there is also an inhibitor SMAD 7 in 
the SMAD signaling pathway which acts at the post-recep-
tor level [3, 137]. Activins induce SMAD 7 mRNA expres-
sion and SMAD 7 is a potential negative regulator of activin 
response in the pituitary [12]. This is also considered to be 
a negative feedback regulation of the activin itself. By pre-
venting SMAD 2 and SMAD 3 from being phosphorylated, 
it blocks the entire downstream pathway.

Another regulator of activin signaling is follistatin. Fol-
listatin was originally isolated as a component of follicu-
lar fluids with the ability to suppress FSH secretion from 
pituitary cells. It is a monomeric glycosylated polypeptide 

Fig. 3  Regulation of INHBB function. Activin binds to ActRII and 
recruits ActRI, which phosphorylates SMAD 2/3. SMAD 2/3 and 
SMAD 4 assemble into a complex in the nucleus to regulate gene tran-
scription. Cripto binds to activin B and blocks the recruitment of type 
I receptors. BAMBI competes with type I receptors to bind activin B 
and block downstream signals. Inhibin B competes to bind ActRII with 
the help of receptor betaglycan. Follistatin and FSTL3 form a complex 

with activin B, which prevents activin B from binding to the receptor. 
TGF-β inhibits activin B expression. Cortisol, estradiol, riluzole, and 
hypoxia promote activin B expression. The deletion of menin caused 
the recruitment of EZH2, increased the methylation of the INHBB pro-
moter, and inhibited the expression of INHBB. SOX 9 promotes the 
transcription of INHBB by directly binding to the enhancer of INHBB
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Endometrial cancer

INHBB was labeled in normal, hyperplastic, and malignant 
endometrium [78, 79]. In normal endometrium, INHBB 
mainly locates in the stroma and changes with the menstrual 
cycle thereby playing an important role in the maturation of 
the endometrium [76]. The expression of INHBB exhibits 
a distinct cyclical pattern throughout the menstrual cycle. 
Samples from the endometrium were categorized based 
on clinical and histological assessments into the prolifera-
tive phase (days 1–14), early secretory phase (days 15–22), 
and late secretory phase (days 23–28). Initially, during the 
early proliferative phase, INHBB levels are low, gradu-
ally increasing as the cycle advances towards ovulation. 
Notably, INHBB expression peaks in the late secretory 
phase. This expression trend underscores the critical role 
of INHBB in regulating the endometrial environment and 
facilitating conception [76, 91].

Compared to endometrial cancer, hyperplastic tissue 
showed a higher level of tagging for the presence of INHBB, 
suggesting a significant role in endometrial carcinogenesis 
and a significant function in endometrial pathophysiology 
[78]. INHBB was highly expressed in endometrial cancer 
G3 compared with G2 and G1, where G1 represents well-
differentiated, G2 moderately differentiated, and G3 poorly 
differentiated carcinomas as per the World Health Organ-
isation (WHO) histological classification, indicating its 
effects on the progression of endometrial cancer [79, 117]. 
Clinically, endometrial carcinoma can be divided into two 
types according to its pathogenesis and biological behavior. 
Type I endometrial carcinoma is also called endometrioid 
adenocarcinoma. It is related to long-term estrogen stimula-
tion. The patients are younger in age, lower in malignancy, 
and better in prognosis. Type II endometrial carcinoma, 
also known as non-endometrioid adenocarcinoma (estro-
gen-independent), is highly malignant. INHBB was more 
likely to be expressed in uterine non-endometrioid cancer 
compared with endometrial cancer [79]. Also, in patients 
with uterine non-endometrioid cancer, there is a signifi-
cant correlation between low expression of INHBB and a 
significantly better cause-specific survival probability, and 
INHBB appeared to be an independent prognostic indicator 
[73]. The prognostic significance and clinical implications 
of the INHBB in uterine endometrioid adenocarcinomas 
remain unclear; however, the immunolabelling intensity of 
the INHBB was associated with a slightly worse survival 
expectation, but not significantly [74]. In summary, INHBB 
has the potential as a tumor biomarker related to the progno-
sis of endometrial cancer, but histological subtypes must be 
considered. Clinically, Type II endometrial cancer accounts 
for 30% of cases, but 75% of deaths, partly because it tends 
to metastasize. So it is very useful to study the mechanism of 

in methylating histone H3 on lysine 27 (H3K27me3) at the 
promoter of the INHBB gene, EZH2 facilitates the suppres-
sion of INHBB expression [54]. What is more, in endocrine 
pancreatic and testicular tumors, the loss of Menin is directly 
related to activin B-induced expression, it is related to the 
Menin protein encoded by tumor suppressor gene MEN1. 
H3K27me3 marks on the INHBB locus directly regulate 
activin B expression in Menin-KO cell lines. Menin binding 
to the promoter of INHBB may promote the recruitment of 
EZH2 through the indirect mechanism of AKT phosphory-
lation [33]. In liver cancer, Sox9 can promote the transcrip-
tion of INHBB by directly combining with the enhancer of 
INHBB [20].

In this section, we explore various regulatory mecha-
nisms that influence the expression and functionality of 
INHBB. These include transcriptional and epigenetic alter-
ations, interactions with other proteins and receptors, and 
the effects of external factors such as hypoxia and hormonal 
fluctuations. Such regulatory processes not only modify the 
expression of INHBB but also adapt its functional effects 
within specific cellular contexts, thereby highlighting its 
roles in a range of physiological and pathological conditions.

INHBB in cancer

In cancer, the role of TGF-β is complex, changing with the 
evolution of the tumor over time and space. It can promote 
apoptosis and inhibit proliferation, acting as an anti-tumor 
role. As tumors progress, deletions or mutations in TGF-β 
can transform its function, promoting tumor cells to acquire 
an invasive phenotype [45, 82, 86]. Undoubtedly, it regu-
lates proliferation, differentiation, adhesion, and migration 
via complex pathways [25]. INHBB seems to play a simi-
lar role in cancer. On the GEPIA (Gene Expression Profil-
ing Interactive Analysis) website (http://gepia.cancer-pku.
cn/index.html), we analyzed the expression of INHBB 
across various tumors using data from the TCGA database 
(Fig. 4A). According to the data collected, mRNA expres-
sion of INHBB was downregulated in five kinds of tumors 
(Fig.  4B) and upregulated in seven (Fig.  4C), which also 
preliminarily confirmed the opposing roles of INHBB in 
different tumors. In the following content, we will discuss 
the existing research progress of INHBB in different tumors. 
It is important to note that some of the studies mentioned 
below have measured the expression of either the INHBB 
subunit protein or RNA without distinguishing between 
inhibin and activin.
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Fig. 4  Data analyses of INHBB expression in tumor samples and 
paired normal tissues using GEPIA (http://gepia.cancer-pku.cn/index.
html). (A) The gene expression dot plot across all tumor samples and 
paired normal tissues; Each dots represent the expression of samples. 
The red dots represent tumor tissues and the green dots represent 
paired normal tissues. (B) and (C) Box plot made on GEPIA. |Log2FC| 
Cutoff = 1, p-value Cutoff = 0.01. The expression of INHBB was sig-
nificantly different between normal and tumor tissues. The red box rep-
resents tumor tissue, and the gray box represents paired normal tissue. 
ACC: Adrenocortical carcinoma; BLCA: Bladder Urothelial Carci-
noma; BRCA: Breast invasive carcinoma; CESC: Cervical squamous 
cell carcinoma and endocervical adenocarcinoma; CHOL: Cholangio-
carcinoma; COAD: Colon adenocarcinoma; DLBC: Lymphoid neo-
plasm diffuse large B-cell lymphoma; ESCA: Esophageal carcinoma; 

GBM: Glioblastoma multiforme; HNSC: Head and Neck squamous 
cell carcinoma; KICH: Kidney Chromophobe; KIRC: Kidney renal 
clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; 
LAML: Acute Myeloid Leukemia; LGG: Brain Lower Grade Glioma; 
LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarci-
noma; LUSC: Lung squamous cell carcinoma; MESO: Mesothelioma; 
OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adeno-
carcinoma; PCPG: Pheochromocytoma and Paraganglioma; PRAD: 
Prostate adenocarcinoma; READ: Rectum adenocarcinoma; SARC: 
Sarcoma; SKCM: Skin Cutaneous Melanoma; STAD: Stomach ade-
nocarcinoma; TGCT: Testicular Germ Cell Tumors; THCA: Thyroid 
carcinoma; THYM: Thymoma; UCEC: Uterine Corpus Endometrial 
Carcinoma; UCS: Uterine Carcinosarcoma; UVM: Uveal Melanoma
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INHBB as a diagnostic marker for malignant tumors and 
have identified it as a potential tumor-specific therapeutic 
target [30].

Cervical cancer

INHBB is expressed mainly in the basal lamina of normal 
squamous epithelial cells of the cervix. INHBB subunits 
were detected in both normal and malignant cervical tis-
sues and cell lines. The expression of INHBB increased 
significantly in cervical intraepithelial neoplasia (CIN) and 
cervical cancer compared to normal cervical tissue. Inter-
estingly, the expression of INHBB in CIN2 and CIN3 was 
significantly higher than in cancer tissues of histological 
grade 1, suggesting a pivotal role for INHBB in the differ-
entiation of cervical cancer [44]. However, it is worth noting 
that, unlike in cervical squamous cell carcinoma, the stain-
ing intensity of INHBB in adenocarcinoma is significantly 
lower than that seen in glandular epithelial cells [17]. The 
role of INHBB in cervical cancer is still unclear, but the syn-
thesis of this subunit in cervical cancer cell lines provides 
the opportunity to better understand its role in cervical can-
cer pathogenesis. The levels of INHBB in different stages 
of cervical cancer do not simply increase or decrease; this 
suggests that its regulatory functions may vary at different 
stages through diverse mechanisms.

Renal clear cell carcinoma

Renal parenchymal carcinoma is an adenocarcinoma that 
originates from renal tubular epithelial cells, with about 
85% being clear cell carcinomas. A mutation in the von 
Hippel-Lindau tumor suppressor gene (VHL) activates 
hypoxia-inducible factor (HIF)-mediated gene transcrip-
tion in clear cell renal cell carcinomas (RCCs). Several 
VHL/HIF targets, such as glycolysis, angiogenesis, cell 
growth, and tumor cell chemotaxis, have been implicated 
in the translational phenotype of RCC. VHL can inhibit 
key features of cell transformation by downregulating HIF-
dependent activin B expression. In VHL-deficient RCC 
cells, activin B expression is suppressed by restoration of 
VHL and upregulated by hypoxia. Activin B expression 
was increased in RCC tumor samples compared to normal 
kidneys. VHL increased cell adhesion to the extracellular 
matrix, promoted cell flattening, and decreased invasive-
ness. Conversely, inhibition of activin B action through 
RNA interference reversed effects of VHL. Thus, activin 
B plays an indispensable role in VHL/ HIF-induced renal 
cell carcinoma transformation [107]. Activin B can medi-
ate the onset of actin stress fiber breakdown, mesenchymal 
cell morphology changes, and invasion, while activation 
of RhoA can counteract these effects and vice versa. This 

invasion and metastasis. In HEC-1B and KLE, uterine non-
endometrioid cancer cell lines, activin B treatment upregu-
lated integrin β3 expression through the SMAD 2/3-SMAD 
4 pathway, leading to an increase of cell migration, inva-
sion, and adhesion to vitreous [120]. This also explains why 
patients with high expression of INHBB demonstrated poor 
prognosis. Additionally, activin B treatment significantly 
decreased E-cadherin expression in KLE and HEC-50 cells. 
However, knockouts of SMAD 2, SMAD 3, or SMAD 4 
did not inhibit this phenomenon. The suppressive effects of 
activin B on E-cadherin were instead mediated by Snail pro-
duction induced by MEK-ERK1/2. This signal mechanism 
independent of the SMAD pathway further confirmed the 
role of INHBB in endometrial cancer.

Ovarian cancer

Among ovarian tumors, epithelial tumors are the most 
common, including serous tumors and mucinous tumors. 
Specific immunostaining of tumor cells from mucinous ade-
nomas and malignant cystic tumors showed expression of 
inhibin subunits α, βA, and βB. It was also noted that muci-
nous adenocarcinoma tumor cells were negative for the α 
subunits but positive for the βA and βB subunits. Similarly, 
in the serous tumors such as benign adenomas, borderline 
malignant cystic tumors, and adenocarcinomas, the α sub-
unit did not stain, while the βA and βB subunits were seen 
to stain positively in the serous tumor cells. These results 
not only indicate differences in activin and inhibin expres-
sion across different tissues, but also suggest that the dis-
appearance of α subunits in mucinous carcinoma indicates 
an anti-tumor role for inhibin, whereas activin may play a 
pro-tumor role [125]. Specific immunostaining revealed the 
presence of the βB subunit in both Leydig and Sertoli tumor 
cells of ovarian sex cord-stromal tumors, whereas the α sub-
unit was exclusively found in Leydig cells. mRNA expres-
sion of INHBB was confirmed in both granulosa cell and 
Sertoli-Leydig cell tumors. Serum dimeric inhibin B con-
centrations were measured in ovarian cancer patients using 
an enzyme-linked immunosorbent assay (ELISA), which 
demonstrated elevated levels prior to surgery with a grad-
ual decrease postoperatively. These findings highlight the 
potential of serum dimeric inhibin B as a tumor marker in 
this specific patient population [124]. What is more, expres-
sion of inhibin α and βB subunits is positive in malignant 
germ cell tumors of the ovary and testis [22]. These stud-
ies demonstrate that INHBB is widely expressed in ovarian 
cancer, but the role of activin and inhibin is still not clear 
due to insufficient research on related dimers. In ovarian 
cancer patients, Kaplan-Meier analyses demonstrated a 
gradual decline in the 5-year survival rate with increasing 
levels of inhibin B [108]. Previous studies have recognized 
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INHBB in NPC, Zou et al. mimicked the high metastatic 
characteristics of NPC and induced high metastatic cells. 
Anoikis is a specific form of programmed cell death origi-
nating from the extracellular matrix (ECM), and resistance 
to anoikis is a primary condition for tumor invasion and 
metastasis. Anoikis resistance enables tumor cells to re-
adhere within heterogeneous tissues and organs. The ability 
of nasopharyngeal carcinoma (NPC) cells to resist anoikis 
also signifies their highly metastatic characteristics. Zou et 
al. induced anoikis-resistant cells under non-adherent con-
ditions in NPC cell lines, thereby establishing a model of 
NPC cell anoikis resistance. In these anoikis-resistant cells, 
INHBB was either overexpressed or knocked down. In the 
INHBB-overexpressing cells, there was an increase in apop-
totic cells, a decrease in S phase cells, and a downregulation 
of vimentin, matrix metalloproteinase-9, and vascular endo-
thelial growth factor A, accompanied by an upregulation of 
E-cadherin expression. Conversely, knocking down INHBB 
in these cells produced opposite effects. Furthermore, 
INHBB inhibited anoikis resistance and migration of NPC 
cells through the TGF-β signaling pathway and reduced p53 
expression. These phenomena also suggest the possibility 
of INHBB as a biomarker of nasopharyngeal carcinoma 
metastasis and prognosis [140].

Prostatic cancer

In vitro experiments have demonstrated that prostate can-
cer cell lines were inhibited by activin B [68]. As prostate 
tumor grade increases, activin B expression increases and 
activin C expression decreases [88]. Increased activin B and 
decreased activin C expression is associated with increasing 
prostate tumor grade. Notably, there is an increase in activin 
B expression following androgen deprivation therapy 
(ADT), the first-line treatment for recurrent and metastatic 
prostate cancer. In a mouse model of ADT-induced sarcope-
nia, Pan et al. detected an increase in activin B expression, 
suggesting a potential association between activin B levels 
and the therapeutic effects of ADT [85]. It has been shown 
that activin B expression is reduced in high-grade prostate 
cancer [93]. In prostate cancer, through a comprehensive 
aCGH approach, after excluding germline copy number 
polymorphisms, Lee et al. identified 35 regions of recurrent 
alterations, including INHBB [114]. Epigenetic dysregula-
tion on chromosome 2q14.2 distinguishes normal tissues 
from prostate cancer and provides a new regional panel of 
DNA methylation cancer biomarkers, including localized 
DNA hypermethylation INHBB [26]. The association of 
INHBB with ADT therapy and its genetic profile in prostate 
cancer suggests that INHBB could be a potential marker and 
therapeutic target for prostate cancer.

indicates that the two pathways are inversely related. Fur-
thermore, the action of activin B requires the synergistic 
action of Rac1. Activation of Rac1 triggers the loss of actin 
stress fibers and promotes the invasion of activin B knock-
out cells. These studies underscore the importance of activin 
B signaling in promoting an aggressive phenotype in clear 
cell renal cell carcinoma [106].

Breast cancer

A study of involving 16,175 women of European ancestry 
revealed that the locus INHBB strongly correlated with 
breast cancer, estrogen regulation, and breast development 
[29], indicating that INHBB is an important genetic factor 
in normal breast development. In later studies, INHBB was 
reported to be an established ER-negative breast cancer locus 
associated with breast cancer risk [14] and single nucleotide 
polymorphisms in INHBB may contribute to the associa-
tion [58]. Moreover, the results of immunohistochemistry 
showed that In normal breast tissue, fibrocystic disease, and 
benign neoplasms, INHBB was weakly positive whereas its 
expression was negative in carcinoma cells [27]. Further-
more, metastatic lymph nodes exhibited lower INHBB than 
primary tumors [77], confirming that INHBB may have anti-
tumor effects in breast cancer. The growth of breast cancer 
cells was inhibited by activin B when expressed in the cell 
culture [2]. The inhibitory effect is mediated by ligands 
ALK 4 [2] and ALK 7 [71, 132]. At the same time, some 
molecules regulating the INHBB mechanism have also been 
found. Activin B induces growth inhibition in breast can-
cer cells. Cripto, which is a glycosylphosphatidylinositol-
linked (GPI-linked) membrane protein, antagonizes the 
effects of activin B by directly interacting with it [2]. In 
addition, estrogen has been reported to inhibit the produc-
tion of activin B by MCF7 breast cancer cells. These studies 
suggest the importance of activin-estrogen interactions in 
breast cell growth and carcinogenesis [15]. In conclusion, 
studies to date have demonstrated that the role of INHBB 
in tumor suppressor in breast cancer, and the restoration and 
promotion of its effect may be a new direction of breast can-
cer treatment.

Nasopharyngeal carcinoma

INHBB expression is generally low in nasopharyngeal car-
cinoma (NPC) tissues. Studies have shown that INHBB 
expression is associated with a better prognosis. Its expres-
sion was negatively correlated with lymph node metastasis, 
clinical progression, tumor size, and invasion. In patients 
with NPC, the overall survival rate was significantly lower 
in the INHBB-negative group than in the INHBB-positive 
group [140]. To investigate the molecular mechanism of 
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Thyroid cancer

In thyroid cancer research, the expression and function of 
the INHBB gene have gradually revealed its potential role 
in disease progression. The most common type of thyroid 
cancer is papillary thyroid carcinoma (PTC), which is often 
accompanied by mutations in the BRAF gene. In mouse 
models of PTC with BRAF mutations, INHBB expression 
is elevated more than 15-fold compared to normal thy-
roid cells, highlighting its significant role. This substantial 
increase not only highlights its role in the proliferation of 
thyroid cancer cells but also suggests that INHBB could 
promote the phosphorylation of SMAD2/3 by activating its 
receptor ALK4, thereby influencing the cellular behavior in 
thyroid cancer [60]. Furthermore, the co-inhibition of the 
SMAD and MAPK signaling pathways has been found to 
enhance the uptake of radioactive iodine (124I) in BRAF-
mutated thyroid cancers [60], further emphasizing the 
potential of INHBB as a target in thyroid cancer treatment.

Analysis of human PTC samples has shown that INHBB 
expression is inversely correlated with the thyroid differen-
tiation score (TDS) [60], implying that INHBB may play a 
crucial role in the dedifferentiation process of thyroid can-
cer. Additionally, INHBB expression is significantly higher 
in follicular adenomas as well as papillary and follicular 
carcinomas compared to multinodular goiter and normal 
thyroid tissue [65], supporting its potential impact on thy-
roid cancer proliferation and tumor processes.

Oral squamous cell carcinoma

In oral squamous cell carcinoma, activin B is significantly 
associated with regional lymph node metastasis. Activin B 
regulates EMT-related proteins, including decreased levels 
of E-cadherin and Zo-1 and increased levels of Snail, to 
enable oral squamous cell carcinoma cells to acquire char-
acteristics that are easy to invade and metastasize [52]. This 
indicates a direct mechanism by which INHBB contributes 
to cancer dissemination.

Diverse roles of INHBB in cancer: mechanisms and 
implications

We summarize the roles of INHBB in different tumors in 
Table 1, but INHBB plays a role not only in these tumors. 
For example, the INHBB stained positive in normal adrenal 
medullary cells and benign adrenal pheochromocytomas, 
while malignant tumors were almost negative. This sug-
gests that the deletion of INHBB expression in pheochro-
mocytomas may serve as a marker of malignant potential 
[92]. In islet beta cells, activin B promotes dedifferentiation, 
revealing unexpected effects of activin B in the loss of beta 

Colorectal cancer

In colorectal cancer, miR-34a and miR-34b/c are frequently 
silenced. INHBB, one of the targets of miR-34, was upregu-
lated in primary colon cancer and had an association with 
lymph node metastasis [43, 122]. Furthermore, overexpres-
sion of INHBB was confirmed to be related to poor overall 
survival (OS) and recurrence-free survival (RFS) [43, 87]. 
A 9-gene signature, including INHBB, is helpful in predict-
ing postoperative recurrence of stage II/III colorectal cancer 
[119]. Additionally, INHBB expression significantly pro-
moted macrophage infiltration while inhibiting the infiltra-
tion of memory T cells, mast cells, and dendritic cells [131]. 
Thus INHBB may play a cancer-promoting role in colorec-
tal cancer and may become a potential prognostic biomarker 
and a new therapeutic target for colorectal cancer.

The TGF-β pathway, a well-recognized signaling path-
way, is associated with cancer progression, impacting cell 
cycle regulation, proliferation, differentiation, and metas-
tasis formation in colorectal cancer [39]. This underscores 
the vast potential of INHBB, which signals through the 
TGF-β pathway, in colorectal cancer research. Further-
more, INHBB has been identified as a novel biomarker for 
colorectal cancer metastasis, which is highly deregulated by 
methylation and closely linked to metastasis. As an emerg-
ing DNA methylation biomarker for the prognosis of early-
stage colorectal cancer, INHBB requires further clinical 
trials to refine detection methods and guide the treatment 
and diagnosis of cancer patients [39].

Hepatocellular carcinoma

In normal rat liver, INHBB staining was weak and localized 
to parenchymal cells (PC). However, in fibrotic rat liver, 
staining of INHBB was observed in stellate cells (SC). It 
is now known that activation of hepatic stellate cells and 
the hepatic fibrosis of surrounding tissues contribute to the 
progression of hepatocellular carcinoma (HCC). This sug-
gests that differential expression of INHBB in SC is likely 
associated with fibrosis of the liver as well as HCC progres-
sion. It has also been reported that the Sox9/INHBB axis 
is a positive regulator of liver fibrosis, and Sox9 induces 
the expression of INHBB and promotes the production of 
activin B by directly binding to the enhancer of INHBB. 
Further, it could promote the activation of hepatic stellate 
cells through activin B/SMAD signaling [20]. This revealed 
that in HCC, INHBB is closely associated with liver fibrosis 
as well as the progression of HCC.
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Tumors/tumor cells INHBB expression status Role in cancer 
(promoting 
or inhibiting 
cancer)

Mechanism Effects on 
cancer

References

Endometrial cancer Highly expressed in endometrial 
cancer G3 compared with G2 and 
G1; highly expressed in uterine non-
endometrioid cancer compared with 
endometrial cancer.

Promoting Activin B-SMAD2/3-
SMAD4-increase of 
integrin β3;
Activin B-MEK-
ERK1/2-Snail- inhibition 
of E-cadherin

Increase of 
cell migra-
tion, inva-
sion, and 
adhesion to 
vitreous.

[79, 117, 
120]

Ovarian cancer Positive in the mucinous adenoma 
and the cystic tumor with borderline 
malignancy.

Unclear [125]

Cervical 
cancer

Cervical squamous 
cell carcinoma

Positive at the basal lamina of normal 
squamous epithelial cells; significantly 
higher expression in cervical intraepi-
thelial neoplasia (CIN) and cervical 
cancer than that in normal cervical 
tissue.

Unclear [17, 44]

Cervical 
adenocarcinoma

Lower expression of INHBB in 
adenocarcinoma than that of glandular 
epithelial cells.

Renal clear cell carcinoma Increased expression of activin B com-
pared to that in the normal kidney.

Promoting Mutated VHL-activin 
B- reduced rhoa signal-
ing and promote Rac1 
activity

Aggressive 
phenotype 
and tumor 
growth

[106, 
107]

Breast cancer In normal breast tissue, fibrocystic 
disease, and benign neoplasms, βB 
subunits were weakly positive while 
the expression of βB was negative in 
carcinoma cells.

Inhibiting Cripto- directly inter-
acting with Activin 
B- induced growth 
suppression;
Estrogen- reduce the 
amount of activin B

Growth 
suppression

[2, 15, 
27]

Nasopharyngeal carcinoma Downregulated; INHBB expression 
was negatively correlated with lymph 
node metastasis, clinical progression, 
tumor size, and invasion

Inhibiting INHBB decrease-activate 
TGF-β- SMAD2/3-
SMAD4-tumor growth; 
INHBB decrease-activate 
TGF-β-SNAIL 1/2-EMT

Suppress 
tumor 
growth, 
anoikis 
resis-
tance, and 
migration

[140]

Prostatic cancer Activin B expression was reduced in 
high-grade prostate cancer.

Inhibiting Elevated extracellular 
urate-growth promoting 
in vitro and antagonized 
the growth inhibitory 
effects of activins.

Suppress 
tumor 
growth

[88, 93]

Colorectal cancer Upregulated in primary colon cancer 
and associated with lymph node metas-
tasis; overexpression of INHBB was 
confirmed to be associated with poor 
overall survival (OS) and recurrence-
free survival (RFS).

Unclear [43, 87, 
122]

Hepatocellular carcinoma Upregulated Promoting SOX9-INHBB-activin 
B- SMAD2/3-SMAD4-
the activation of hepatic 
stellate cells and hepatic 
fibrosis in surrounding 
tissues

Hepatic 
fibrosis and 
progression 
of hepa-
tocellular 
carcinoma

[20]

Thyroid cancer Upregulated Unclear [60, 65]

Table 1  Roles of INHBB in different cancers
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Understanding these interactions is crucial for elucidating 
diverse functions of INHBB in hormone-responsive tissues.

In breast cancer cells, activin B suppressed the growth 
of breast cancer cells. The inhibitory effect is related to the 
normal expression and function of the receptors ALK 4 and 
ALK 7 [2]. Cripto is involved, which indicates that differ-
ent expression patterns of receptors and co-receptors will 
also affect the role of INHBB. Currently, there are limited 
studies on INHBB and its receptors in tumors. We con-
ducted a search in The Human Protein Atlas (HPA) (https://
www.proteinatlas.org/) for the type II receptors ACVR2A 
and ACVR2B, as well as the type I receptor ALK4 (also 
known as ACVR1B) of INHBB. The HPA is a comprehen-
sive human protein database that provides information on 
the expression of these receptors in various cancers. For 
ACVR2A, most cancer tissues showed moderate to strong 
cytoplasmic and membranous immunoreactivity, while sev-
eral cases of gliomas were weakly stained or negative. For 
ACVR2B, the majority of cancer tissues showed weak to 
moderate cytoplasmic staining, with additional membranous 
staining in a few cases. Lymphomas, gliomas, and skin can-
cers were negative. For ALK4, hepatocellular carcinoma, 
colorectal cancer and stomach cancer showed moderate to 
strong positivity. Thyroid cancer, pancreatic cancer, breast 
cancer, lung cancer, urothelial cancer and ovarian cancer 
showed weak positivity. The remaining cancer tissues were 
generally negative. This suggests that the distribution of 
INHBB-associated receptors varies among different tumor 
types, which may offer new insights into mechanisms by 
which INHBB plays different roles in different tumors.

INHBB, as a member of the TGF-β family, has homol-
ogy with family members, shares receptors, and regulates 
each other. In nasopharyngeal carcinoma, INHBB reduction 
is through the activation of TGF-β to mediate the anoikis 
resistance characteristics of nasopharyngeal carcinoma cells 
[140]. In non-small cell lung carcinomas, TGF-β can inhibit 
the expression of INHBB [54]. That is to say, INHBB has 

cell maturation, islet plasticity, and the progression of insu-
linoma through its involvement in β-cell dedifferentiation 
[90]. Yang et al. reported that INHBB was upregulated in 
GBM (glioblastoma) and predicted poor survival. INHBB 
was a potential upstream molecule of the EGFR/ERK/AKT 
signaling pathway in GBM, and it promoted the growth, 
migration and stemness of GBM cells [126].

Considering that INHBB is associated with tumor stage 
and prognosis in a variety of tumors, INHBB has the poten-
tial to become a tumor biomarker. In addition, it is not dif-
ficult to find that the research on INHBB in tumors mainly 
focuses on proliferation, apoptosis, invasion, and metastasis, 
but some studies also suggest the possible role of INHBB in 
immunity [130], cell stem [126], and cachexia [139].

Due to extensive involvement of INHBB in the devel-
opment, maturation, and normal physiological functions 
of the reproductive system, and its association with vari-
ous hormonal pathways that play critical roles in regulating 
endocrine balance, the influence of INHBB on reproduc-
tive system tumors is governed by a complex regulatory 
network. While β-subunits are expressed, the expression of 
α-subunits directly means the opposite effect, and endocrine 
factors are also involved, which led to the possibility that 
circulating activin and inhibin were once considered to be 
tumor markers of the reproductive system [16, 42, 69, 75, 
108]. In addition, estrogen can cause a decrease in activin 
B in breast cancer cells [15]. Androgen deprivation therapy 
in prostate cancer leads to an increase of activin B [85]. So 
it may be a promising research direction to link the role of 
INHBB in the reproductive system with the hormone disor-
ders often seen in reproductive system diseases. This indi-
cates that in organs significantly influenced by hormonal 
fluctuations, such as the reproductive system, variations in 
hormonal levels can critically modulate functions of INHBB. 
Specifically, hormonal changes may alter the expression or 
activation of INHBB, thereby affecting its role in processes 
like tumor progression or normal reproductive activities. 

Tumors/tumor cells INHBB expression status Role in cancer 
(promoting 
or inhibiting 
cancer)

Mechanism Effects on 
cancer

References

Oral squamous cell 
carcinoma

Activin B-positive oral squamous cell 
carcinoma is significantly associated 
with regional lymph node metastasis.

Promoting Activin B- decreased 
levels of E-cadherin and 
Zo-1 and increased levels 
of Snail-EMT

Enable oral 
squamous 
cell carci-
noma cells 
to acquire 
character-
istics that 
are easy to 
invade and 
metastasize.

[52]

Table 1  (continued) 
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research still provides insights. For instance, a bioinfor-
matics analysis in gastric cancer indicated that INHBB 
regulates immune cell infiltration, particularly macrophage 
infiltration, and that patients with high INHBB expression 
and high macrophage infiltration have poorer prognoses. 
Moreover, a positive correlation between INHBB and TGF-
β1 expression suggests that INHBB may facilitate immune 
cell infiltration, thereby promoting the progression of gas-
tric cancer [130]. In colorectal cancer, increased expression 
of INHBB is associated with trends of resistance to immu-
notherapy [127], poorer patient survival rates, and increased 
lymph node metastasis [43]. Furthermore, INHBB is sig-
nificantly linked to the infiltration of immune cells such 
as macrophages, and inhibits the infiltration of memory T 
cells, mast cells, and dendritic cells [131]. These findings 
imply that INHBB could play a role analogous to TGF-β in 
mediating cancer-related immunosuppression, a hypothesis 
that requires further validation through more comprehen-
sive studies.

Discussion and conclusion

After analyzing the role of INHBB in various types of can-
cer, it has been observed that INHBB acts as a tumor sup-
pressor gene in breast cancer, nasopharyngeal carcinoma, 
and prostate cancer. In these cancers, it primarily functions 
by inhibiting cell proliferation and promoting apoptosis. 
Conversely, in cancers such as endometrial cancer, renal 
clear cell carcinoma, hepatocellular carcinoma, and oral 
squamous cell carcinoma, INHBB appears to enhance the 
malignant potential of tumor cells, mainly by promoting 
cell invasion, metastasis, and dedifferentiation [56, 89, 90, 
121]. However, whether INHBB promotes or inhibits tumor 
growth depends not only on the type of tumor but also on 
its subtypes and various stages of progression [22, 34, 125].

Considering that INHBB is the key subunit in the forma-
tion of inhibin B (α/βB) and activin B (βB /βB), the various 
dimeric forms of INHBB may play distinct roles within the 
organism [128, 129]. Just as INHBB in follicular develop-
ment, the expression of activin and inhibin changes with 
time [76], reaching the balance of development. In addi-
tion, the single nucleotide polymorphism and epigenetic 
regulation of INHBB make people suspect that the variation 
of INHBB in the process of tumor progression leads to a 
change in its function [48, 66, 114]. Finally, INHBB acts 
as a member of the TGF-β family, which has a high degree 
of homology with family members [128, 129], and the cor-
responding receptor and effector proteins also cross react 
[25]. This makes the pathway of INHBB not specific, and 
the change of receptor may also lead to the opposite effect 
in the tumor. Moreover, the activation of INHBB is affected 

different effects, which may also be regulated by homolo-
gous ligands.

The regulation of the INHBB function is summarized 
in Fig.  3. In tumors, the expression and role of different 
regulators are different. External stimuli such as TGF-β 
and LPS affect the expression of INHBB. Internal factors 
such as Sox9 and EZH2 regulate the expression of INHBB. 
Inhibitors such as follistatin and inhibin hinder the binding 
of activin and receptor, and co-receptors hinder the trans-
mission of activin signals. These factors may constitute 
the functional differences of INHBB in different types of 
tumors.

INHBB and immune modulation in cancer

As a critical member of the TGF-β family, TGF-β plays a 
crucial role in maintaining immune homeostasis and tol-
erance, significantly impacting both innate and adaptive 
immunity. It directly promotes the proliferation of regula-
tory T cells (Tregs) and inhibits the activity of effector T 
cells, dendritic cells, and natural killer (NK) cells, thereby 
establishing a complex network of immune suppression 
[7]. Within the context of cancer, TGF-β helps to create an 
immunosuppressive tumor microenvironment, facilitating 
tumor immune evasion and affecting the efficacy of cancer 
immunotherapies. The dual role of TGF-β as a tumor sup-
pressor in early-stage cancer and as a promoter of tumor 
progression and metastasis in advanced stages highlights its 
complex nature.

Overall, the signaling transduction of TGF-β fam-
ily members is overlapping. Similar to INHBB signaling, 
TGF-β signaling initiates a cascade of SMAD signaling 
upon binding to its receptors. TGFBR2 first phosphorylates 
and activates TGFBR1, which then phosphorylates SMAD2 
and SMAD3. These receptor-phosphorylated SMADs sub-
sequently form heterotrimeric complexes with SMAD4 and 
enter the nucleus. Within the nucleus, the activated SMAD 
complexes interact with other transcription factors to regu-
late the expression of hundreds of genes.

In the immune system, TGF-β-activated SMAD signal-
ing can promote the expression of FOXP3 in immature 
CD4 + T cells, driving their differentiation towards a reg-
ulatory T cell phenotype, inducing a T helper 17 (TH17) 
phenotype, regulating immunoglobulin class switching in B 
cells, and suppressing several cytotoxic genes in CD8 + T 
cells [7]. These actions highlight the key role of TGF-β in 
modulating the immune system, particularly through regu-
lating the differentiation and function of immune cells with 
significant involvement of SMADs, suggesting a similar 
regulatory potential for INHBB through these pathways. 
Although current studies have not definitively demonstrated 
regulatory effects of INHBB on the immune system, some 
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by many components, including the same family members, 
antagonists, hormones, inflammatory stimulants, and so on. 
The changes in these regulatory factors may change the 
expression of INHBB, resulting in a different expression of 
INHBB and achieving the opposite effect. In normal devel-
opment and cancer, INHBB has a complex mechanism of 
action, in addition to the SMAD signaling pathway, there 
are many non-SMAD pathways [8, 51, 59, 102], but so 
far no research can clarify how different mechanisms are 
selected. The aforementioned mechanisms provide a pre-
liminary explanation for why INHBB may exert completely 
opposing effects in tumors, yet the details therein necessi-
tate further investigation.

The role of INHBB in tumors remains incompletely 
understood, yet its expression during tumor progression 
exhibits certain regularity, thus suggesting the potential for 
INHBB to serve as a novel tumor biomarker. INHBB pri-
marily functions through the common pathways of type I and 
type II receptors, offering avenues for intervening in tumor 
progression by targeting INHBB [2]. However, the variabil-
ity in signaling pathways of INHBB complicates efforts to 
target INHBB for intervention in tumor progression.

INHBB assumes an emerging role in tumors, potentially 
exhibiting both pro- and anti-carcinogenic effects that may 
vary temporally and spatially. Despite the increasing rec-
ognition of its significance across various tumors, further 
research is warranted to elucidate the underlying mecha-
nisms involved. Investigating the mechanisms underlying 
actions of INHBB in tumors can aid in unraveling the intri-
cate network regulating tumor progression.
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