
Vol.:(0123456789)

Journal of Physiology and Biochemistry 
https://doi.org/10.1007/s13105-024-01037-8

RESEARCH

Circulating miR‑122‑5p, miR‑151a‑3p, miR‑126‑5p 
and miR‑21‑5p as potential predictive biomarkers for Metabolic 
Dysfunction‑Associated Steatotic Liver Disease assessment

Ana Luz Tobaruela‑Resola1   · Fermín I. Milagro1,2,3   · Mariana Elorz2,4   · Alberto Benito‑Boillos2,4   · 
José I. Herrero2,5,6   · Paola Mogna‑Peláez1   · Josep A. Tur3,7   · J. Alfredo Martínez3,8   · Itziar Abete1,2,3   · 
M. Ángeles Zulet1,2,3 

Received: 12 March 2024 / Accepted: 19 July 2024 
© The Author(s) 2024

Abstract 
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a worldwide leading cause of liver-related associated 
morbidities and mortality. Currently, there is a lack of reliable non-invasive biomarkers for an accurate of MASLD. Hence, 
this study aimed to evidence the functional role of miRNAs as potential biomarkers for MASLD assessment. Data from 55 
participants with steatosis (MASLD group) and 45 without steatosis (control group) from the Fatty Liver in Obesity (FLiO) 
Study (NCT03183193) were analyzed. Anthropometrics and body composition, biochemical and inflammatory markers, 
lifestyle factors and liver status were evaluated. Circulating miRNA levels were measured by RT-PCR. Circulating levels of 
miR-122-5p, miR-151a-3p, miR-126-5p and miR-21-5p were significantly increased in the MASLD group. These miRNAs 
were significantly associated with steatosis, liver stiffness and hepatic fat content. Logistic regression analyses revealed that 
miR-151a-3p or miR-21-5p in combination with leptin showed a significant diagnostic accuracy for liver stiffness obtaining 
an area under the curve (AUC) of 0.76 as well as miR-151a-3p in combination with glucose for hepatic fat content an AUC 
of 0.81. The best predictor value for steatosis was obtained by combining miR-126-5p with leptin, presenting an AUC of 
0.95. Circulating miRNAs could be used as a non-invasive biomarkers for evaluating steatosis, liver stiffness and hepatic fat 
content, which are crucial in determining MASLD.
 
Clinical trial registration   
• Trial registration number: NCT03183193 (www.​clini​caltr​ials.​gov).
• Date of registration: 12/06/2017.
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Key Points
• Circulating miRNAs were significantly increased in the MASLD 

group.
• Steatosis degree, liver stiffness and hepatic fat content are key 

MASLD determinants.
• Combining miRNAs with leptin or glucose provides diagnostic 

values for liver variables.
• Circulating miRNAs can be used as non-invasive biomarkers for 

MASLD assessment.

Extended author information available on the last page of the article

Introduction

One of the leading causes of liver-related associated mor-
bidities and mortality is non-alcoholic fatty liver disease 
(NAFLD), which is characterized by an excess storage of 
triglycerides (TG) and fatty acids in the hepatocytes [55]. 
In recent years, the incidence of this disease has increasing, 
reaching a global prevalence about 30% [63]. This disease 
encompasses a wide range of histopathology that goes from 
simple hepatic steatosis to non-alcoholic steatohepatitis 
(NASH), and can reach into fibrosis, cirrhosis and cellular 
hepatocarcinoma (HCC) [55].

In June 2023, a multi-society Delphi consensus state-
ment introduced a new terminology, replacing NAFLD 
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and Metabolic Dysfunction Associated Fatty Liver Disease 
(MAFLD) with Metabolic Dysfunction-Associated Steatotic 
Liver Disease (MASLD). Similarly, NASH was replaced 
with Metabolic Dysfunction-Associated Steatohepatitis 
(MASH). These new terms encompass the presence of at 
least one to five cardiometabolic risk factors in their diag-
nostic criteria [51]. Even with the revised definition, about 
99% of patients previously diagnosed with NAFLD meet the 
diagnostic criteria for MASLD [28].

Due to interactions among genetic, metabolic, and envi-
ronmental factors, there is an interindividual variation in 
the MASLD phenotype and its progression, which currently 
remain unclear [66]. MASLD is strongly associated with 
chronic liver disease, cardiovascular disease (CVD), type 2 
diabetes mellitus (T2DM), obesity, insulin resistance (IR), 
hypertension, hyperlipidemia, and metabolic syndrome [55, 
62].

Liver biopsy continues to be the reference technique for 
the diagnosis and prognosis of the disease. However, it car-
ries a risk for the patient because it is an invasive proce-
dure, and it can cause complications, as well as errors in the 
sample [30]. Imaging modalities such as ultrasonography 
(US), computed tomography (CT), and magnetic resonance 
imaging (MRI) provide non-invasive options for detecting 
MASLD. However, these techniques are frequently associ-
ated with significant time consumption and high costs [57]. 
There is a need for improved non-invasive tools that facili-
tate the diagnosis and staging of MASLD, along with the 
development of methods to identify those at risk of disease 
progression [30].

MASLD involves many signaling molecules contributing 
to hepatic metabolism, inflammatory, oxidative, and fibrotic 
processes, making it quite complex [45]. These include 
microRNAs (miRNAs), which are small non-coding RNAs 
that play important roles in the regulatory processes of gene 
expression and target numerous genes involved in the glu-
cose and lipid metabolism, inflammation, cell proliferation, 
apoptosis and necrosis, in turn involved in the pathogenesis 
of MASLD [10, 11].

Although it is not fully understanding the exact molecular 
drivers and biological pathways responsible for disease pro-
gression, genetic variations likely play a role in the complex-
ity and differences observed in the disease phenotype [48]. 
Alteration in circulating miRNAs play an important role 
in hepatocyte function, liver injury, viral hepatitis, ALD, 
MASLD, liver fibrosis progression, and HCC [43]. Moreo-
ver, miRNAs regulate multiple signaling pathways involved 
in lipid accumulation, IR, oxidative stress, and inflamma-
tory responses, thereby contributing to the development 
and advancement of MASLD [37]. MiR-122, a key liver-
specific miRNA, plays a role regulating liver metabolism 
and maintaining fatty acid balance, previously correlated 

with steatosis severity in MASLD [5], playing an important 
role in MASLD pathogenesis as well as miR-21 and miR-
192 [60]. In addition, miR-126-5p could impact on patho-
genesis of liver fibrosis and it is associated with T2DM, 
obesity, metabolic syndrome [4], adiposity, lipid and glu-
cose metabolism and inflammation as well as miR-222 [8]. 
Additionally, miR-151 which is linked to TNF-α [40], and 
miR-15b-3p and miR-29b-3p, which are especially related 
with high expression in hepatic stellate cells, have been 
associated with liver tumor development, suggesting their 
involvement in hepatic lesions [31, 60].

Despite some associations between those miRNAs and 
MASLD, a comprehensive understanding of the complex 
involvement of miRNAs in the disease is needed. In this 
context, the aim of the present study was examining the 
functional role of miRNAs as hepatic status biomarkers 
using simple samples such as serum for the diagnosis and 
management of MASLD.

Material and methods

Study participants

This research is a cross-sectional analysis that include the 
evaluation of baseline measurements of 55 subjects with 
overweight or obesity (BMI ≥ 27.5 kg/m2 < 40 kg/m2) with 
MASLD (diagnosed by ultrasonography) obtained from a 
randomized controlled trial, the FLiO (Fatty liver in obe-
sity) study (www.​clini​caltr​ials.​gov; NCT03183193), and 
45 subjects with normal-weight (BMI < 25 kg/m2) without 
MASLD (confirmed by ultrasonography) obtained from the 
EHGNA study (a FLiO study continuation). From them, 
miRNAs circulating levels have been obtained. The exclu-
sion criteria have already been described previously [42].

The study protocol was approved by the Research Ethics 
Committee of the University of Navarra (ref. 54/2015). Eve-
ryone gave written informed consent before enrolling in the 
study. All procedures were performed in compliance with 
significant national regulations, institutional policies, and in 
accordance with the Declaration of Helsinki and following 
the CONSORT 2010 guidelines.

Anthropometric and body composition evaluation

Anthropometric measurements (BW and waist circumfer-
ence) and body composition (Lunar iDXA, enCORE 14.5, 
Madison, WI) were determined under fasting conditions 
in the Nutritional Intervention Unit of the University of 
Navarra, according to standardized procedures [14]. Body 
Mass Index (BMI) was calculated as BW divided by height 
squared (Kg/m2).
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Biochemical determinations

Blood samples were collected, processed and stored at -80 
degrees, until further analysis [18]. Biochemical determi-
nations such as blood glucose, glycosylated hemoglobin 
(HbA1c), triglycerides (TG), total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-c), alanine ami-
notransferase (ALT), aspartate aminotransferase (AST) 
and gamma glutamyl transferase (GGT) were measured 
in a Pentra C-200 autoanalyzer (HORIBA ABX, Madrid, 
Spain) Spain) with specific commercial kits and following 
the manufacturer’s instructions (Cobas 8000, Roche Diag-
nostics, Switzerland). Low-density lipoprotein (LDL-c) 
levels were calculated using the Friedewald formula [25]: 
LDL-c = TC—HDL-c—TG/5. The Castelli’s Risk Index 
(CRI) was calculated with the formula: Total cholesterol/
HDL-c, as previously described [23]. The fatty liver index 
(FLI) was calculated using serum TG, BMI, waist circumfer-
ence, and GGT concentrations, as mentioned [6]. FLI val-
ues < 30 rule out hepatic steatosis, and values ≥ 60 indicate 
hepatic steatosis. Concentrations of insulin, leptin, chemerin, 
retinol-binding protein (RBP4) and adiponectin were meas-
ured using ELISA kits (Demeditec; Kiel-Wellsee, Germany) 
in a Triturus autoanalyzer (Grifols, Barcelona, Spain). Leu-
kocyte cell-derived chemotaxin-2 (LECT2) was analyzed 
using the Triturus Autoanalyzer (Grifols, Barcelona, Spain) 
with specific kits (Biovendor LLC, North Carolina, United 
States). Insulin resistance was estimated through the Home-
ostasis Model Assessment Index (HOMA-IR), which was 
calculated using a previously described formula [14].

Imaging techniques in the evaluation of liver status

The liver status assessment was carried out under fasting 
conditions at the University of Navarra Clinic by highly 
qualified personnel. To determine the presence of hepatic 
steatosis, ultrasonography was performed (Siemens ACU-
SON S2000 and S3000), according to the methodology 
already described [9]. To determine liver fat content and 
hepatic volume, magnetic resonance was used (Siemens 
Aera 1.5  T, Erlangen Germany), applying the DIXON 
technique [9]. Multi-echo T2 corrected single breath-hold 
spectroscopy (Histo) of a single voxel and multi-echo 3D 
gradient echo imaging with Dixon reconstruction and T2 
correction were included by quantitative sequences [18]. 
ARFI elastography was performed to determine liver stiff-
ness, using the value obtained from 10 valid ARFI measure-
ments of each subject as the mean value [9].

Dietary intervention and lifestyle

Dietary intake was assessed with a semiquantitative food 
frequency questionnaire (FFQ) with 173 items, validated in 

Spain for daily energy and nutrient intake [22]. Daily food 
consumption was estimated by multiplying the portion size 
by the consumption frequency and dividing as described 
elsewhere [46]. The nutrient composition of the specified 
serving size for each food was estimated using Spanish 
food composition tables [46]. Adherence to the Mediterra-
nean diet (MedDiet) was assessed with a 17-item screening 
questionnaire, with a final score ranging from 0 to 17, with 
a higher score indicating better MedDiet adherence [26]. 
Physical activity was estimated using a validated Spanish 
version of Minnesota leisure-Time Physical Activity Ques-
tionnaire [42]. The physical activity was classified into four 
different categories (sedentary, light, moderate or vigorous) 
based on the International Physical Activity Questionnaire 
(IPAQ) [41].

RNA isolation, reverse transcription and Real‑Time 
PCR (RT‑PCR)

Serum was isolated from whole blood by centrifugation at 
1100 g at 4 °C for 15 min (Modelo5415R, Eppendorf AG, 
Hamburgo, Germany) and then, samples were frozen (-80 
ºC) until RNA reverse transcription. After RNA extraction, 
total RNA of the serum sample was isolated with RNeasy 
Serum/Plasma Advanced Kit (Qiagen, Hilden, Germany) 
following manufacturer’s instructions. For the procedure, 
absolute ethanol (1L) and Isopropanol (2-Propanol, gradient 
HPLC grade) were used. cDNA was synthesized using 4 μl 
of miRNA sample, miRCURY LNA RT Kit (Qiagen, Hilden, 
Germany), which allowed the detection of the miRNAs of 
interest. Once the reverse transcription was realized, the 
protocol for the expression of miRNA isolated from serum 
was carried out. Quantitative PCR (qPCR) was performed 
with the CFX384 Touch Real-Time PCR system (Bio-Rad, 
Hercules, CA, USA) using the miRCURY SYBR® Green 
PCR Kit (Qiagen, Hilden, Germany). Finally, miRNAs 
Relative Quantities (RQs) were calculated with the formula 
2−ΔCt. Normalization factor (NF) was calculated using the 
geometric mean of RQs of all expressed miRNAs per sample 
and the normalized relative quantities were obtained divid-
ing RQs by the sample specific NF as previously described 
[44]. The values were expressed as fold change (FC) of each 
miRNA with respect to the exogenous reference gene Unisp6 
[44], the spike-in used to assess the quality of the cDNA 
synthesis and qPCR process.

In Silico evaluation

Based on scientific literature, we selected the miRNAs 
that have been previously associated with MASLD and 
its comorbidities [12, 35, 66]. The association between 
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miRNAs, validated target genes and diseases focusing on 
those miRNAs showing significant differences between 
control and intervention groups were analyzed. Once the 
relevant miRNAs were identified, we linked them to previ-
ously validated genes in humans by utilizing all publicly 
available database through miRWalk (http://​mirwa​lk.​umm.​
uni-​heide​lberg.​de/; accessed on 11/06/2023). Among the 
genes associated with our miRNAs, we selected those with 
significant results. Subsequently, we specifically chose 
genes associated with MASLD or fatty liver disease, rely-
ing on the data provided by the DisGeNet (https://​www.​
disge​net.​org; accessed on 26/06/2023) database. To inves-
tigate interactions between the selected miRNAs and their 
target genes a network was created using miRNet (https://​
www.​mirnet.​ca/​acces​sed on 28/06/2024). We amplified 
and highlighted in black those target genes that are shared 
between our specific miRNAs, which were marked in blue. 
The genes were obtained through miRTaBase v8.0 and 
TarBase v8.0 (ID type miRbase). Furthermore, to dis-
cover metabolic pathways and biological process from 
validated target genes associated with each miRNA, we 
used GeneCodis (https://​genec​odis.​genyo.​es/; accessed on 
28/06/2024), choosing homo sapiens as a main organism.

Statistical analyses

The normality of the variables was evaluated using Sha-
piro–wilk test. Data presentation depended on distribu-
tion (mean ± standard deviation (SD) or median ± inter-
quartile range (IQR)). Differences between groups were 
assessed using the Student’s t test or the Mann–Whitney 
U test and categorical variables with X2 test. Differences 
between miRNAs were presented as median ± (SE). The 
association between variables was evaluated using the 
Pearson correlation coefficient or Spearman's rho (p), 
as appropriate.

Univariate and multivariate logistic regressions anal-
yses were performed with liver steatosis, liver stiffness 
or hepatic fat content variables as dependent variables 
and miRNAs and other covariables as independent vari-
ables. Receiver Operating Characteristic Curve Analyses 
(ROC) and the areas under the ROC curve (AUROC) were 
calculated to assess the predictive power of circulating 
miRNAs and their combinations with hepatic steatosis 
degree, liver stiffness and hepatic fat content. Regression 
models were adjusted by potential cofounders including 
sex, age, physical activity and inflammatory and biochemi-
cal markers related to MASLD (adiponectin, RBP4, TG, 
glucose, LECT2, leptin and chemerin). For the regres-
sions analyses, steatosis degree was categorized into two 
groups (without steatosis vs mild, moderate and severe 

steatosis) and liver stiffness (m/s) (≤ 1.31 vs > 1.31) and 
hepatic fat content (%) (≤ 4.4 vs > 4.4) according to the 
median. Optimism-corrected value was used to validate 
the results obtained using the Tibshirani´s enhanced boot-
strap method described previously [29].

Statistical analyses were carried out with the statistical 
program Stata version 15.0 (StataCorp 2011, College Sta-
tion, TX, USA). All p values presented were two-tailed. 
Differences were considered statistically significant when 
p < 0.05.

Generative IA and IA‑assisted technologies 
in the writing process

During the preparation of this work the author used OpenAI 
in order to enhance readability and language of the manu-
script. After using this tool, the author reviewed and edited 
the content as needed and take full responsibility for the 
content of the publication.

Results

Overview of baseline characteristics

Characteristics of MASLD (n = 55) and control (n = 45) 
groups are shown in Table 1. Significant differences were 
found between both groups in body composition, anthro-
pometric measures and biochemical determinations, clearly 
proving worse health status in MASLD group (Supplemen-
tary Fig. 1). Hepatic transaminases such as ALT and GGT, 
hepatic fat content, hepatic volume and steatosis degree 
were significantly increased in MASLD (p < 0.001). LECT2, 
chemerin, RBP4 and leptin were significantly increased in 
MASLD group, nevertheless adiponectin was significantly 
lower (p < 0.001). Lipid profile including total cholesterol, 
HDL and LDL was significantly lower in MASLD group 
than controls, although CRI was significantly higher in 
MASLD group as well as TG. MedDiet adherence score was 
significantly lower in MASLD group compared to controls 
(p < 0.001). No significant differences were found in physical 
activity between both groups.

Analyses of circulating miRNAs levels and their 
associations with MASLD and metabolic factors

Eight miRNAs related with MASLD were selected and its 
circulating levels were analyzed (miR-21-5p, miR-151a-3p, 
miR-192-5p, miR-15b-3p, miR-29b-3p, miR-126-5p, miR-
222-3p and miR-122-5p). Only circulating miR-122-5p, 
miR-151a-3p, miR-126-5p and miR-21-5p levels were 
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significantly higher in MASLD group in comparison with 
control group (Fig. 1).

Although they were not strong, positive associations were 
found between variables such as hepatic fat content, steato-
sis degree and liver stiffness and circulating miRNAs such 
as miR-122-5p, miR-151a-3p, miR-126-5p and miR-21-5p 
(Fig. 2).

Moreover, transaminases which are involved in 
MASLD, such as ALT (r = 0.46), AST (r = 0.38) and 
GGT (r = 0.47) were very positively correlated with miR-
122-5p levels (p < 0.001) (Supplementary Tables 1, 2). 
Similarly, body composition and anthropometric meas-
ures were significantly associated with all miRNAs pre-
viously mentioned as well as HOMA index. Insulin was 

Table 1   Body composition, 
biochemical determinations, 
lifestyle parameters, 
inflammatory markers and 
hepatic status of the Control and 
MASLD groups of the study

Values are expressed as mean (SD) or median (IQR), according to the data distribution. Abbreviations: 
MASLD, Metabolic Dysfunction-Associated Steatotic Liver Disease; BMI, Body Mass Index; VAT, Vis-
ceral Adipose Tissue; MedDiet, Mediterranean Diet; FLI, Fatty Liver Index; ALT, Alanine aminotrans-
ferase; AST, Aspartate aminotransferase; GGT, Gamma-glutamyl transferase; HbA1C, Hemoglobin A1C; 
HOMA-IR, Homeostatic model Assessment for Insulin Resistance; TC, Total Cholesterol; HDL-c, High 
Density Lipoprotein cholesterol; LDL-c, Low Density Lipoprotein cholesterol; CRI, Castelli Risk Index; 
LECT2, Leukocyte cell-derived chemotaxin-2; RBP4, Retinol Binding Protein

Control group (n = 45) MASLD group (n = 55) P-value

Body composition and lifestyle markers
  Weight (kg) 65.6 (12.0) 94.6 (14.5)  < 0.001
  BMI (kg/m2) 23.1 (21.5–24.9) 32.3 (30.2–35.8)  < 0.001
  VAT (kg) 0.2 (0.1–0.7) 2.1 (1.6–2.7)  < 0.001
  Body fat (%) 31.7 (27.0–37.4) 40.7 (36.3–45.9)  < 0.001
  Waist circumference (cm) 78.1 (71.3–85.5) 108.7 (102.0–116.0)  < 0.001
  Fat mass (Kg) 19.3 (5.7) 37.8 (8.8)  < 0.001
  MedDiet adherence score 9.9 (2.4) 5.8 (2.3)  < 0.001
  Total energy (kcal/day) 2155 (1759–2607) 2590 (2154 -2895) 0.008
  Physical Activity 1.26 (1.0) 1.03 (1.0) 0.265

Hepatic status
  Steatosis degree 0 (0–0) 1 (1–2)  < 0.001
  Hepatic fat content (%) 2.9 (2.4–3.4) 9.2 (5.7–13.9)  < 0.001
  Liver vol. (ml) 1276.0 (1127.0–1494.5) 1697.0 (1409.0–2002.0)  < 0.001
  Liver stiffness (m/s) 1.1 (1.0–1.4) 1.5 (1.1–2.3)  < 0.001
  FLI index 8.4 (5.1–21.3) 84.5 (73.7–92.3)  < 0.001
  ALT (IU/L) 16.2 (12.5–26.8) 30.0 (21.0–43.0)  < 0.001
  AST (IU/L) 20.9 (16.9–26.8) 24.0 (19.0–28.0) 0.110
  GGT (IU/L) 17.0 (12.0–24.0) 30.0 (20.0–44.0)  < 0.001

Biochemical determinations and inflammatory markers
  Glucose (mg/dL) 89.3 (85.8–96.1) 102.0 (92.0–109.0)  < 0.001
  Insulin (mU/L) 4.2 (2.7–5.0) 16.3 (12.0–20.9)  < 0.001
  HbA1c (%) 5.1 (5.0–5.3) 5.6 (5.4–5.9)  < 0.001
  HOMA-IR 0.9 (0.6–1.1) 4.2 (2.9–5.7)  < 0.001
  TC (mg/dL) 218.0 (40.2) 188.7 (37.0)  < 0.001
  HDL-c (mg/dL) 65.7 (53.1–83.8) 51.0 (41.0–60.0)  < 0.001
  LDL-c (mg/dL) 133.5 (32.3) 110.0 (33.1)  < 0.001
  CRI (mg/dL) 3.1 (2.6–3.7) 3.54 (3.0–4.2) 0.029
  Triglycerides (mg/dL) 73.0 (58.0–93.0) 123.0 (86.0–150.0)  < 0.001
  Chemerin (ng/ml) 174.0 (151.0–214.0) 207.0 (191.0–230.0)  < 0.001
  LECT2 (ng/ml) 23.8 (9.0) 41.3 (10.5)  < 0.001
  RBP4 (mg/L) 26.9 (23.3–30.4) 33.0 (28.2–41.6)  < 0.001
  Leptin (ng/mL) 11.6 (4.0–21.7) 26.8 (15.8–41.4)  < 0.001
  Adiponectin (μg/mL) 13.1 (9.7–18.6) 6.6 (5.6–8.9)  < 0.001
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also positively associated with miR-122-5p, miR-151a-3p 
and miR-126-5p, and LECT2 was significantly corre-
lated with miR-122-5p and miR-151a-3p. MiR-21-5p was 

also negatively associated with the MedDiet adherence 
score and adiponectin and was positively associated with 
chemerin.

Fig. 1   Differences in circulating  miRNAs  levels between MASLD and control group. Values are expressed as median (SE). Abbreviations: 
MASLD, Metabolic Dysfunction-Associated Steatotic Liver Disease; miRNA, microRNA. P-value: p < 0.01**

Fig. 2   Correlation plots between liver stiffness, hepatic fat content, 
steatosis degree and miRNAs. Liver stiffness and (A) miR-122-5p, 
(B) miR-151a-3p, (C) miR-126-5p and (D) miR-21-5p. Hepatic fat 

content and (E) miR-122-5p, (F) miR-151a-3p, (G) miR-126-5p 
and (H) miR-21-5p. Steatosis degree and (I) miR-122-5p, (J) miR-
151a-3p, (K) miR-126-5p and (L) miR-21-5p
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Logistic regression analyses for MASLD and related 
variables

Univariate analysis between hepatic fat content, steatosis 
degree and liver stiffness as dependent variables and miR-
NAs as independent variables (Tables 2, 3 and 4), demon-
strated a moderate capacity to predict steatosis degree and 
liver stiffness (AUROCs 0.62–0.68). Furthermore, miR-
21-5p was able to predict hepatic fat content with a moderate 
capacity (AUROC 0.62). MiR-126-5p was the only that did 
not predict liver stiffness (Tables 2, 3 and 4).

Contributing factors such as adiponectin, RBP4, TG, glu-
cose, LECT2, leptin and chemerin were analyzed to evaluate 
its ability to predict MASLD-associated factors (Supplemen-
tary Table 3). The optimism-corrected values were used to 
validate AUROC results.

Multivariable regressions were performed including the 
contributing factors selected previously. The first model 
(model 1) was adjusted by sex, age and physical activity. The 
rest of the models were created from model 1 and adding dif-
ferent MASLD-related variables such as adiponectin (model 
2), RBP4 (model 3), TG (model 4) and glucose (model 5), 
LECT (model 6), leptin (model 7) and chemerin (model 8).

The most predictive capacity for liver stiffness with a 
moderate capacity was for miR-21-5p or miR-151a-3p both 
with leptin (model 7, AUC 0.76 in both, p < 0.05) (Table 2, 
Fig. 3). Other models with similar predictive capacity were 
miR-21-5p with chemerin, with an AUC of 0.70 and miR-
151a-3p with LECT2 with an AUC of 0.72. Mir-122-5p with 
adiponectin had also predictive capacity but less that the other 
models with an AUC of 0.66. However, miR-126-5p was the 

only miRNA, that had not statistical significance in the predic-
tive capacity for liver stiffness. For hepatic fat, miR-151a-3p 
with glucose (model 5) had the most ability to predict it with 
a high prediction capacity (model 5, AUC 0.81, p < 0.05, 
Fig. 3). In addition, miR-21-5p had also a high ability to pre-
dict hepatic fat with the third model that include RBP4 (AUC 
0.80, p < 0.05,) (Table 3). Finally, the major value for predict 
the presence of steatosis was obtained combining miR-126-5p 
with leptin (model 7) obtaining an AUC of 0.95 (Fig. 3). A 
good capacity of prediction was achieved also using miR-
122-5p, miR-151a-3p or miR-21-5p with adiponectin (model 
2) with an AUC of 0.89 in all of them and miR-151-a3p or 
miR-21-5p with LECT2 (model 6) with an AUCs of 0.90, and 
0.91, respectively (Table 4). We performed combinations of 
miRNAs with factors associated for MASLD (Supplementary 
Tables 4–6), but no combination was able to surpass the pre-
dictive capacity of each individual miRNAs.

In silico evaluation

The in silico analysis to further explore the potential role of 
miRNA in MASLD revealed that several genes associated with 
MASLD are regulated by specific microRNAs (Supplementary 
Table 7). Genes such as CREB1, MAPK1 or PTPN2 are exten-
sively linked to MASLD and regulated by miR-122-5p. Addi-
tionally, miR-126-5p regulates important genes like SORT1 
and PRKAA2, while miR-151a-3p regulates HADH and MCL1, 
as well as others. Furthermore, miR-21-5p regulates genes 
such as CCR7 and DNM1L, including additional ones. All 
these genes are regulated through different signaling pathways 

Table 2   Logistic regressions analyses between liver stiffness as the dependent factors and miRNAs as predictive factors

Abbreviations: AUROC, Area under the Receiver Operating Characteristic Curve; miR, microRNA; m/s, meters per second. † Optimism cor-
rected AUROC value. P-value for the miRNAs in the logistic regression model. Models are adjusted. Model 1: adjusted by sex, age, physical 
activity. Model 2: adjusted by sex, age, physical activity and adiponectin. Model 3: adjusted by sex, age, physical activity and RBP4 (Retinol 
Binding Protein 4). Model 4: adjusted by sex, age, physical activity and triglycerides. Model 5: adjusted by sex, age, physical activity and glu-
cose. Model 6: adjusted by sex, age, physical activity and LECT2 (Leukocyte cell-derived chemotaxin-2). Model 7: adjusted by sex, age, physi-
cal activity and leptin. Model 8: adjusted by sex, age, physical activity and chemerin

Liver stiffness (m/s)

Models MiR-122-5p MiR-151a-3p MiR-126-5p MiR-21-5p

P-value AUROC P-value AUROC P-value AUROC P-value AUROC

Univariate 0.028 0.6321 (0.6246†)  < 0.01 0.6713 (0.6755†) 0.075 0.6620 (0.6585†)  < 0.01 0.6656 (0.6665†)
Multivariate (model 

1 and others 
contributing vari-
ables)

Model 1 0.034 0.6808 (0.636†)  < 0.01 0.7186 (0.6755†) 0.130 0.6751 (0.6299†)  < 0.01 0.7260 (0.6859†)
Model 2 0.038 0.7179 (0.6629†) 0.011 0.7286 (0.6832†) 0.189 0.7049 (0.6504†) 0.014 0.7372 (0.6866†)
Model 3 0.033 0.6585 (0.6206†)  < 0.01 0.7260 (0.6692†) 0.131 0.6776 (0.6143)  < 0.01 0.7312 (0.6854†)
Model 4 0.038 0.6971 (0.6418†)  < 0.01 0.7382 (0.6837†) 0.112 0.7049 (0.6497†)  < 0.01 0.7380 (0.6886†)
Model 5 0.033 0.6813 (0,6183†)  < 0.01 0.7199 (0.6654†) 0.126 0.6788 (0.6141†)  < 0.01 0.7264 (0.6768)
Model 6 0.066 0.7457 (0.7012†) 0.011 0.7695 (0.7215†) 0.161 0.7488 (0.7071†)  < 0.01 0.7488 (0.6972†)
Model 7 0.075 0.8004 (0.7659†) 0.017 0.8048 (0.7683†) 0.201 0.7713 (0.7309†) 0.010 0.7976 (0.76†)
Model 8 0.045 0.7233 (0.6739†) 0.013 0.7525 (0.6974†) 0.181 0.7167 (0.6632†) 0.016 0.7456 (0.7018†)
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Fig. 3   Receiver Operating Characteristic Curves for liver stiffness, hepatic steatosis degree and hepatic fat content with miRNAs. Multivariate 
models. Model 7: adjusted by sex, age, physical activity and leptin (A, B, C). Model 5: adjusted by sex, age, physical activity and glucose (D)

Table 3   Logistic regressions analyses between hepatic fat content as the dependent factors and miRNAs as predictive factors

Abbreviations: AUROC, Area under the Receiver Operating Characteristic Curve; miR, microRNA. † Optimism corrected AUROC value. 
P-value for the miRNAs in the logistic regression model. Models are adjusted. Model 1: adjusted by sex, age, physical activity. Model 2: 
adjusted by sex, age, physical activity and adiponectin. Model 3: adjusted by sex, age, physical activity and RBP4 (Retinol Binding Protein 4). 
Model 4: adjusted by sex, age, physical activity and triglycerides. Model 5: adjusted by sex, age, physical activity and glucose. Model 6: adjusted 
by sex, age, physical activity and LECT2 (Leukocyte cell-derived chemotaxin-2). Model 7: adjusted by sex, age, physical activity and leptin. 
Model 8: adjusted by sex, age, physical activity and chemerin

Hepatic fat content (%)

Models MiR-122-5p MiR-151a-3p MiR-126-5p MiR-21-5p

P-value AUROC P-value AUROC P-value AUROC P-value AUROC

Univariate 0.064 0.6272 (0.615†) 0.053 0.6366 (0.6343†) 0.647 0.5955 (0.5689†) 0.031 0.6276 (0.6272†)
Multivariate (model 

1 and others 
contributing vari-
ables)

Model 1 0.288 0.7580 (0.7236†) 0.127 0.7573 (0.7179†) 0.963 0.7510 (0.7095†) 0.096 0.7660 (0.7405†)
Model 2 0.365 0.8405 (0.8097†) 0.216 0.8467 (0.8146†) 0.484 0.8392 (0.8102†) 0.312 0.8416 (0.8138†)
Model 3 0.202 0.8322 (0.7885†) 0.052 0.8367 (0.7993†) 0.708 0.8159 (0.7773†) 0.043 0.8408 (0.8098†)
Model 4 0.360 0.8180 (0.7776†) 0.061 0.8363 (0.7996†) 0.848 0.8171 (0.7744†) 0.097 0.8228 (0.7835†)
Model 5 0.453 0.8421 (0.8116†) 0.034 0.8541 (0.8198†) 0.703 0.8404 (0.8071†) 0.080 0.8528 (0.8248†)
Model 6 0.808 0.8491 (0.8246†) 0.477 0.8545 (0.819†) 0.913 0.8479 (0.8199†) 0.260 0.8612 (0.8391†)
Model 7 0.437 0.8393 (0.806†) 0.209 0.8422 (0.8144†) 0.634 0.843 (0.817†) 0.118 0.8522 (0.834†)
Model 8 0.372 0.7826 (0.7445†) 0.276 0.7772 (0.7341†) 0.736 0.7788 (0.7372†) 0.232 0.7892 (0.7553†)
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including JAK-STAT, PI3K-Akt, TNFα, chemerin, NOD-like 
receptor, mTOR, among others (Supplementary Tables 8–11). 
Additionally, the top 10 metabolic pathways according to 
p-adjusted value were depicted for the target genes associated 
with each miRNA in the Supplementary Fig. 2. Furthermore, a 
network of interactions between our specific miRNAs and their 
target genes were generated. The network shows a high density 
of interactions, with 4042 target genes identified. Some genes, 
such as CALD1, CCNG1, TNPO1, PURB, MYCBP2, MTPN, 
SNTB2, CBX5, CREBRF, BRWD1 and RBM12 were shared by 
miR-122-5p, miR-151-3p, miR-21-5p and miR-126-5p (Sup-
plementary Fig. 3).

Discussion

MASLD is becoming a global health challenge, and there is 
a need for newer disease prediction and prognosis biomarker. 
Liver biopsy is the reference technique for diagnosis and 
prognosis of MASLD, however it has limitations and carries 
a risk for the patient because it is an invasive and complex 
method [30], so in this sense, the need arises to continue 
investigating new methods allowing to know the stage of the 
disease in a simple and more informative way.

Non-invasive imaging techniques like ultrasound, CT, MRI, 
and proton magnetic spectroscopy aim to replace biopsies but 
depend on operator skills and costly equipment. Ultrasound 
lacks objective analysis, while quantitative methods like pro-
ton density fat fraction (PDFF) require specialized equipment. 
Transient elastography (TE), the most common non-invasive 
MASLD diagnostic tool, has significant sampling variability, 

with probe positioning affecting results in over 30% of patients 
[58]. ARFI can have diagnostic accuracy comparable to that 
of TE, indicating its potential as a valuable tool in liver assess-
ment. However, ARFI has limitations, including the require-
ment for the operator to define the region of interest and obtain 
a series of liver stiffness measurements (LSM) [33].

Despite the intricate biological complexity of miRNAs, 
they serve as reliable circulating biomarkers for MASLD 
diagnosis across various disease stages [39]. These small 
non-coding RNA molecules, typically ≤ 25 nucleotides long, 
regulate gene expression post-transcriptionally by binding 
to the 3' untranslated region of their target mRNAs [43]. 
MASLD is associated with alterations in hepatic miRNA 
expression patterns across early, intermediate, and advanced 
stages. Specific miRNA species are implicated in steatosis 
development and the progression of MASL to MASH and 
cirrhosis [30]. MiRNAs are excellent biomarkers due to their 
high stability, protected by vesicles and proteins, enabling 
resistance to external insults. Detection techniques based on 
PCR are extremely sensitive, capable of identifying even a 
single molecule [17]. Additionally, miRNAs can be detected 
in various bodily fluids including serum, plasma, whole 
blood, urine, and saliva. These miRNAs remain stable under 
different conditions such as temperature, pH variations, and 
over time, making them easy to measure, making them use-
ful as diagnostic and prognostic indicator for diseases [11].

In the present study, we were able to observe that those 
participants with MASLD, whom had hepatic steatosis 
proven by ultrasonography, clearly had higher fat content 
and liver stiffness than in the control group, whom had lack 
of the disease. Elevated values of liver transaminases such 

Table 4   Logistic regressions analyses between steatosis degree as the dependent factors and miRNAs as predictive factors

Abbreviations: AUROC, Area under the Receiver Operating Characteristic Curve; miR, microRNA. † Optimism corrected AUROC value. 
P-value for the miRNAs in the logistic regression model. Models are adjusted. Model 1: adjusted by sex, age, physical activity. Model 2: 
adjusted by sex, age, physical activity and adiponectin. Model 3: adjusted by sex, age, physical activity and RBP4 (Retinol Binding Protein 4). 
Model 4: adjusted by sex, age, physical activity and triglycerides. Model 5: adjusted by sex, age, physical activity and glucose. Model 6: adjusted 
by sex, age, physical activity and LECT2 (Leukocyte cell-derived chemotaxin-2). Model 7: adjusted by sex, age, physical activity and leptin. 
Model 8: adjusted by sex, age, physical activity and chemerin

Steatosis degree

Models MiR-122-5p MiR-151a-3p MiR-126-5p MiR-21-5p

P-value AUROC P-value AUROC P-value AUROC P-value AUROC

Univariate 0.016 0.6591 (0.6571†)  < 0.01 0.6806 (0.6802†)  < 0.01 0.686 (0.6884†)  < 0.01 0.6626 (0.6598†)
Multivariate 

(model 1 and oth-
ers contributing 
variables)

Model 1 0.029 0.7635 (0.7323†)  < 0.01 0.7661 (0.731†)  < 0.01 0.7675 (0.7348†) 0.013 0.7475 (0.7118†)
Model 2 0.036 0.9116 (0.8938†) 0.010 0.9179 (0.892†) 0.02 0.9202 (0.8983†) 0.107 0.9083 (0.89†)
Model 3 0.012 0.8443 (0.8133†)  < 0.01 0.8859 (0.8591†)  < 0.001 0.8815 (0.8603†)  < 0.01 0.8594 (0.8315†)
Model 4 0.039 0.8283 (0.7925†)  < 0.01 0.8508 (0.8221†)  < 0.01 0.8646 (0.832†) 0.013 0.8307 (0.795†)
Model 5 0.068 0.8476 (0.8162†)  < 0.01 0.8806 (0.8593†)  < 0.01 0.8815 (0.8551†) 0.012 0.8558 (0.8322†)
Model 6 0.165 0.9177 (0.8937†) 0.028 0.9320 (0,9069†)  < 0.01 0.9497 (0.9293†) 0.045 0.9272 (0.9118†)
Model 7 0.385 0.9668 (0.9521†) 0.091 0.9739 (0.9593†) 0.049 0.9722 (0.9556†) 0.217 0.9665 (0.9517†)
Model 8 0.040 0.7883 (0.7471†) 0.013 0.7951 (0.7564†)  < 0.001 0.8815 (0.8588†) 0.040 0.7754 (0.7291†)
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as ALT and GGT, but not AST, were observed in MASLD 
group in comparison with control group. Moreover, it had 
been shown that ALT and GGT are biomarkers of liver dis-
ease, however AST could be more related with alcoholic 
liver or autoimmune diseases [53].

MiRNAs are interrelated to both inflammation and met-
abolic control [38]. HOMA-IR, HbA1c, insulin and blood 
glucose were increased in MASLD group in comparison with 
control group. HOMA-IR had been showed to be a good pre-
dictor for hepatic steatosis and fat content and insulin as a 
risk factor for MASLD [18]. As well, in hepatic IR, insulin, 
continues stimulating lipogenesis, which ends up producing 
hyperglycemia, hyperlipidemia, hepatic steatosis and T2DM 
[10]. MASLD can be associated with disturbances in glu-
cose metabolism, and subsequently, elevated blood glucose 
levels may support the fat accumulation. In hepatic steatosis, 
the hepatic glucose utilization rate is increased, possibly as 
a result of IR and elevated insulin levels in the bloodstream 
[15, 34]. Despite healthier lifestyles, the control group showed 
higher LDL-c and TC levels, not yet reaching pathological 
thresholds [27]. Elevated HDL-c in controls might drive 
the TC increase, while low HDL-c links to MASLD [16]. 
MASLD group exhibited significantly increased TG levels, 
crucial in MASLD pathogenesis by promoting fatty acid dep-
osition, aligning with previous studies considering TG as a 
risk factor for MASLD [65]. Additionally, higher atherogenic 
indices in MASLD suggest elevated cardiovascular risk and 
less favorable lipid profiles compared to controls [23].

A decreasing in adiponectin levels was observed in the 
MASLD group. Adiponectin acts as a protective agent against 
hepatic steatosis, inflammation, and fibrosis [24]. Similarly, we 
found adiponectin to be a protective factor against MASLD, 
predicting hepatic fat content, steatosis degree, and liver stiff-
ness. Additionally, LECT2, leptin, and chemerin levels were 
increased in subjects with MASLD. Previous observations 
indicate a general increase in chemerin and LECT2 levels 
in obesity and IR states [36, 49]. Leptin had been observed 
to increase with the severity of MASLD, suggesting a pos-
sible compensatory mechanism against fat accumulation [49]. 
Recent studies showed that RBP4 levels in adipose and circu-
lating tissue are associated with IR, dyslipidemia and T2DM 
and therefore linked to MASLD [47]. Our results showed that 
RBP4, in addition to being elevated in subjects with MASLD 
compared to the control group, could predict hepatic steatosis 
and hepatic fat content with a moderate capacity.

Furthermore, our miRNAs analyses revealed that only 
miR-21-5p, miR-151a-3p, miR-126-5p and miR-122-5p had 
significantly higher circulating levels in patients from the 
MASLD group compared with controls. Previous studies 
demonstrated that miR-122-5p was increased and positively 
correlated with markers of MASLD severity [66] and with 
body weight, TG, and body insulin insensitivity [2] and 
distinguished MASLD from healthy controls [39]. Similar, 

higher levels of miR-21 are effective biomarkers for MASLD 
diagnosis and play a key role in the development of the dis-
ease [54]. Other study showed that circulating miR-15b-3p, 
miR-21-5p, miR-29b-3p, miR-126-5p, miR-151a-3p and 
miR-192-5p were increased more than twice in a NASH 
group compared with the MASLD group [35], indicating 
a relation between miRNAs and the severity of the disease.

The analysis focused on miRNAs significantly differing 
between groups, finding positive associations between body 
composition, anthropometric measures, and all miRNAs. 
The MASLD group had lower adherence to the MedDiet and 
higher energy intake, aligning with obesity being a key factor 
in MASLD development, consistent with the negative corre-
lation between miRNAs and MedDiet observed in our study. 
It had been shown that a balanced nutrition and moderate 
weight loss were the best therapeutic approach for MASLD 
[3]. Additionally, significant negative correlations were 
observed between our four miRNAs and adiponectin, par-
ticularly evident in miR-21-5p, supporting the documented 
role of miR21 in upregulating adiponectin mRNA expres-
sion [32]. On the other hand, chemerin, which participates 
in regulating angiogenesis, inflammation and cell prolifera-
tion [49], was positively correlated with miR-21-5p, which 
is positively correlated with steatosis, lobular inflammation, 
serum ALT and hepatic activity [66]. LECT2 positively cor-
related with miR-122-5p and miR-151a-3p, paralleling its 
significant levels in MASLD individuals with metabolic 
syndrome components and associations with obesity and 
anthropometric measures [36]. Likewise, liver stiffness, 
steatosis, and hepatic fat content correlated with miR-21-5p, 
miR-122-5p, miR-151a-3p, and miR-126-5p, consistent with 
findings in other studies [7, 20, 50, 64].

Our logistic regression analyses demonstrated the predic-
tive capability of miRNAs for MASLD, even after adjusting 
for potential variables related to the disease such as leptin 
or glucose, among others. We obtained that the combina-
tion of miR-21-5p or miR-151a-3p with leptin for predict 
liver stiffness with an AUC of 0.76 for both options, miR-
151a-3p with glucose was also the best combination to 
predict the hepatic fat content with an AUC of 0.81, and 
miR-126-5p with leptin to predict the presence or absence of 
hepatic steatosis and therefore, the disease, with an AUC of 
0.95. Similar results were obtained in other study in which 
miR-122 discriminate subjects with MASLD from controls 
with an AUC of 0.85 [52]. In addition, it had been shown 
that miR-21-5p, miR151a-3p and miR-126,5p individually 
showed a diagnostic accuracy for MASH with an AUC of 
0.73, 0.75 and 0.69, respectively for MASH as well as the 
combination of miR-21-5p, miR-151a-3p, miR-192-5p and 
miR-4449 with an AUC of 0.87 [35]. Furthermore, other 
study included miR-122-5p, miR-1290, miR-27b-3p and 
miR-192-5p with An AUC of 0.85 for MASLD [56]. In our 
study the combination of various miRNAs together does not 
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provide better results than the miRNA individually for the 
diagnosis of our variables associated with MASLD suggest-
ing that each miRNA could had been involved differently 
depending on the stage of the disease and could impact other 
miRNAs by predicting MASLD. Other non-invasive scores 
such as FLI index, Hepatic Steatosis Index (HIS), Steatotest, 
and NAFLD Liver fat Score showed a moderate diagnostic 
performance for MASLD (AUC from 0.68- 0.87), but it is 
important to highlight that the integration of these scores 
into everyday clinical practice is often limited by concerns 
about their diagnostic effectiveness [1]. Our study provides 
evidence of the predictive capacity of miR-122-5p, miR-
151a-3p, miR-126-5p and miR-21-5p for hepatic steatosis, 
hepatic stiffness, and fat content, offering a non-invasive 
and promising method compared to liver biopsy and others 
non-invasive tools with a higher diagnostic performance. 
Furthermore, it integrates multiple diagnostic modalities and 
clinical variables for a comprehensive disease evaluation, 
promoting a personalized approach in medicine.

When we performed the in silico analysis, we found differ-
ent target genes involved in MASLD, which are being regu-
lated by the four miRNAs and which participate and con-
tribute to the development and progression of the disease. In 
general, these genes are implicated in the regulation of lipid 
metabolism, inflammatory response, energy homeostasis and 
apoptosis in the liver through numerous pathways such as 
PI3K-AKT, JAK-STAT, mTOR, AMPK, cAMP, NF-kappa B, 
IL-6 and TNFα signaling pathways, among others [13, 19]. In 
addition, identifying shared target genes is also important as 
it underscores the complexity of gene regulation by multiple 
miRNAs. Such interactions may have significant implications 
for biological processes and disease mechanisms, underscor-
ing the importance of considering miRNA co-regulation in 
molecular studies. Their dysfunctions can contribute to the 
accumulation of hepatic fat, chronic inflammation and meta-
bolic imbalance observed in the development and progression 
of MASLD. Advancing our knowledge about this molecular 
mechanism will provide a better understanding of the dis-
eases and enable the development of more effective thera-
peutic approaches. Studying the expression of miRNAs of 
interest in MASLD is crucial to understand its pathogenesis, 
diagnose the condition, and identify potential therapeutic tar-
gets. Additionally, their expression in various tissues can help 
in the development of miRNA-based therapies and serve as 
biomarkers for disease assessment.

However, the study has some limitations that should be 
acknowledged. First, miRNA level expression was normalized 
with the exogenous Unisp6, suggested by Vigneron et al. [59]. 
Not all studies had been controlled with this reference gene. 
Further evaluations are required using other different stand-
ardized controls in the applications of miRNAs as potential 
biomarkers for MASLD for reducing the technical variability 
among experimental replicates. Secondly, for the evaluation of 

MASLD non-invasive imaging techniques for the assessment 
of hepatic steatosis were used instead of a liver biopsy, which 
is the most reliable method in the detection of MASH or fibro-
sis in MASLD patients. However, this method is an invasive 
procedure, very expensive, with possible error in samples and 
complications that occurs during it procedure [66]. Thirdly, 
in our study, MASLD group consisted of individuals with 
MASLD and obesity, while our controls were subjects with 
normal-weight without MASLD. Although it would have been 
more interesting to have controls without MASLD and with 
obesity, it was challenging because most of the patients with 
obesity that we recruited, had MASLD. Ensuring uniform 
sample characteristics in a scientific study is crucial for main-
taining research quality, result validity, and facilitating other 
researchers; ability to comprehend, replicate, and build upon 
your work, thus advancing scientific knowledge effectively 
and reliably. Fifthly, we only evaluated a few specific miR-
NAs. A comprehensive analysis of the full miRNA profiles in 
the blood could have identified other miRNAs that, alone or 
in combination, might serve as better predictors. Lastly, it is 
worth noting that this study evaluated a sample of patients at 
baseline. MicroRNAs (miRNAs), as epigenetic modifiers, can 
determine not only early disease evaluation but also the risk 
of progression and prognosis. Therefore, it would be highly 
interesting to observe changes in miRNA expression over time 
and assess differential aspects in miRNA expression patterns 
when different diets are applied.

Conclusion

In summary, findings of this study demonstrated that the 
combination of miRNAs including miR-151a-3p or miR-
21-5p or miR-126-5p along leptin and miR-151a-3p with 
glucose can be used as non-invasive biomarker for the 
comprehensive assessment of steatosis, liver stiffness and 
hepatic fat content, which are critical factors in determin-
ing the presence of MASLD. These findings do not only 
highlight the promise of miRNAs as epigenetic regulators 
but also accentuate their application in the early assess-
ment of the disease with potential in precision medicine.
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