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Abstract
The anti-aging protein Klotho has been associated with cardiovascular health protection. Nevertheless, the protective mecha-
nism remains unknown. The present study is aimed at exploring the effect of Klotho on cardiac remodeling and its potential 
mechanism in mice with myocardial infarction (MI). We used left anterior coronary artery descending ligation to develop 
an MI model for in vivo analyses. In contrast, H9C2 cells and cardiac fibroblasts were used to establish the oxygen–glucose 
deprivation (OGD) model in in vitro analyses. In vivo and in vitro models were treated with Klotho. Compound C, an AMPK 
signaling inhibitor, was used to determine whether Klotho’s effects are mediated through the AMPK/mTOR signaling path-
way. Echocardiography, Masson trichrome staining, immunofluorescence, immunohistochemistry, real-time polymerase chain 
reaction (RT-PCR), and western blot were used to detect the related indicators. The findings of the in vivo model indicate 
that Klotho treatment improved the mice’s cardiac function, reduced cardiac fibrosis, and attenuated myocardial inflam-
matory factors, ferroptosis, and oxidative stress. The results of the in vitro model were in line with the findings of in vivo 
modeling. An AMPK inhibitor, Compound C, reversed all these effects. In conclusion, Klotho potentially improves cardiac 
remodeling in MI mice by regulating AMPK/mTOR signaling, demonstrating Klotho as an effective MI therapeutic agent.
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Introduction

Myocardial infarction (MI) is a severe cardiac disorder asso-
ciated with high rates of hospitalization and death [1]. Even 
with medication and coronary intervention, the prognosis for 
patients with MI remains poor at the moment [2]. Cardiac 
remodeling, including cardiac fibrosis [3], inflammatory 
cytokine–induced inflammation [4], ferroptosis [5], and oxi-
dative stress [6], plays a significant role in the development 
of heart failure following MI.

Klotho, an anti-aging protein discovered in 1997, has 
been linked to the aging process in humans [7]. Klotho 
has been shown to protect against vascular calcification in 
chronic kidney disease [8]. Besides, Klotho is associated 
with diabetes mellitus [9]. Recently, multiple pieces of 
evidence revealed that Klotho has cardioprotective effects. 
Chen et al. found that its deficiency impairs Nrf2-GR path-
way activity, resulting in heart aging [10]. Furthermore, 
it could protect the heart from hyperglycemia-induced 
injury by inhibiting reactive oxygen species (ROS) and 
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NF-κB-mediated inflammation [11]. Our previous study 
also confirmed the cardioprotection of Klotho by inducing 
autophagy [12]. However, the effects of Klotho on mice with 
MI are rarely investigated.

The AMPK/mTOR signaling pathway is closely related to 
cardiac remodeling after MI [13]. Lu et al. revealed that acti-
vating AMPK signaling can modulate myocardial contractil-
ity and reduce myocardial infarct size [14]. Besides, promot-
ing AMPK phosphorylation may reduce cardiac apoptosis 
and infarction area and improve mice’s heart function in 
acute MI [15]. In addition, by targeting the AMPK-mTOR 
signaling pathway, cardiac dysfunction following myocardial 
infarction could be improved [16]. However, it is unknown 
whether Klotho can improve cardiac remodeling after MI 
by regulating AMPK/mTOR signaling. The present study 
investigates the role of Klotho on cardiac remodeling and 
possible mechanisms in mice with MI.

Material and methods

Animals and experimental design

A total of 27 male C57BL/6 mice (6 weeks) were obtained 
from Weitong Lihua Limited Company (Beijing, China) 
and acclimatized for 1 week. A 12-h light–dark cycle was 
maintained at 22–24 °C, and all animals had unrestricted 
access to food and water. After 1 week of adaptation, the MI 
surgery was performed on 22 mice, while the sham surgery 
was performed on five mice. The surgical procedure was per-
formed as previously described [1]. Briefly, mice were anes-
thetized with pentobarbital sodium (45 mg/kg). The heart 
was then exposed by opening the chest at the second and 
third intercostal muscles. Arterial ligation of the left ante-
rior descending coronary (LAD) artery was performed with 
silk sutures of 7–0 gauge. In sham mice, simulated surgical 
procedures were performed on mice without LAD ligation. 
After a week, all mice with a sham MI operation survived, 
whereas 17 mice with an MI operation survived. Then, we 
performed echocardiography to confirm the success of the 
model. The mice were randomly divided into the sham group 
(n = 5), the MI group (n = 6), the MI + K group (n = 5), and 
the MI + K + CC group (n = 6). Sham mice and MI mice 
were given 5 mL/kg saline intraperitoneally every other 
day for 28 days. According to a previous study [17], mice 
in the MI + K group were given 20 μg/kg Klotho protein 
(R&D, cat. number: 1819-KL-050) intraperitoneally every 
other day for 28 days. An aqueous solution of Klotho protein 
(4 μg/mL) was dissolved in sterile water. Compound C, an 
AMPK signaling inhibitor, was used to determine whether 
Klotho’s effects are mediated by AMPK/mTOR signaling. 
MI + K + CC group mice were given 20 μg/kg Klotho protein 
and 5 mg/kg Compound C (APExBIO, cat. number: B3252) 

intraperitoneally every other day for 28 days. The dose of 
Compound C was selected based on a previous study [18].

Echocardiography

The cardiac function indicators, including left ventricular 
ejection fraction (LVEF) and left ventricular fractional short-
ening (LVFS), were obtained 1 week and 5 weeks after MI. 
All mice were anesthetized with isoflurane, and echocardio-
graphic measurements were conducted using the Vevo3100 
Echocardiography System (VisualSonics, Toronto, Canada). 
Echocardiography parameters were obtained based on a pre-
vious study [19].

Histology and immunohistochemistry

At the end of the study, all mice were euthanized with an 
overdose of pentobarbital sodium (200 mg/kg). We collected 
left ventricular (LV) tissues and blood samples. A portion of 
LV tissues was fixed in formalin and processed for histology 
and immunohistochemistry. Another portion of LV was used 
for western blot and real-time PCR. We cut formalin-fixed 
paraffin-embedded mid-transverse LV sections in 5-µm-thick 
slices. Then, the 5-μm-thick specimens were stained with 
Masson trichrome staining and examined under the light 
microscope for myocardial fibrosis. A blinded method of 
observation and counting myocardial fibrosis was employed 
by two observers independently in five randomly selected 
fields. The ratio of collagen surface area to the total surface 
area was used to calculate the extent of cardiac fibrosis in 
the left ventricular peri-infarct region [1]. Collagen I (Coll-
1) antibodies (Proteintech, China, 1:500) were used in the 
immunostaining of paraffin-embedded heart sections, as pre-
viously reported [20]. The sections were then incubated with 
secondary antibodies. After incubation with a peroxidase 
substrate (DAB) kit, the visual fields of each section were 
photographed and analyzed with the ImageJ software. Col-
lagen I expression area ratios were calculated by dividing the 
collagen I area by the total visual field area [21].

Cell culture

The rat cardiomyocyte H9C2 cells, provided by Cell Bank 
(Shanghai, China), were cultured in 10% FBS-containing 
DMEM. As described previously, MI was mimicked in vitro 
using an oxygen–glucose deprivation (OGD) model [22]. We 
divided H9C2 cells into the sham, the OGD, the OGD + K, 
and the OGD + K + CC group. The Klotho protein was dis-
solved in sterile water at a concentration of 0.4 nmol/L 
[12, 17]. Klotho was administered at 0.4 nmol/L 30 min 
before OGD induction in the OGD + K group. Klotho and 
Compound C were administered to the OGD + K + CC 



343Klotho improves cardiac fibrosis, inflammatory cytokines, ferroptosis, and oxidative stress…

1 3

group 30 min before OGD induction, at a concentration of 
0.4 nmol/L and 10 µM, respectively [23].

Cardiac fibroblast isolation and culture

Cardiac fibroblasts (CFs) were isolated from the hearts of 
C57BL/6 mice (aged 1–3 days) using a previously described 
differential adhesion technique [24]. Briefly, hearts were 
extracted from neonatal mice and cut into small pieces under 
aseptic conditions. The cardiac tissue was then digested 
with a 0.25% trypsin solution at 37 °C, followed by dis-
sociation with collagenase type 2. Cell suspensions were 
filtered through 200-mm cell strainers before centrifugation 
at 1000 rpm for 5 min.

The cells were then resuspended in DMEM supple-
mented with 10% FBS and 1% penicillin/streptomycin. Due 
to the different wall adherence durations of CFs and cardio-
myocytes, 1.5 h of differential adhesion was performed to 
obtain CFs. Following a 12-h incubation with a serum-free 
medium, CFs were treated with glucose-free DMEM and 
incubated for 12 h in a mixed gas chamber (0.1%  O2, 94.9% 
 N2, and 5%  CO2) at 37 °C to construct the OGD model [22, 
25]. CFs were treated with Klotho (0.4 nmol/L) and Com-
pound C (10 µM) 30 min before OGD induction.

SOD and MDA activity

Serum was separated from blood samples by centrifugation 
at 3000 rpm at 4 °C for 10 min and then stored at − 80 °C 
for the remaining biochemical analysis. As indicators of 
oxidative stress, superoxidase dismutase (SOD) levels and 
malondialdehyde (MDA) levels were measured. To meas-
ure SOD levels and MDA levels, an appropriate biomedical 
detection (Nanjing Jiancheng Biological Product, Nanjing, 
China) was prepared. In brief, the serum was first mixed 
with the reaction solution and then incubated at 37 °C for 
40 min. The activities of SOD and MDA were measured 
using spectrophotometric methods.

Measurement of ROS

Reactive oxygen species (ROS) were measured in H9C2 
cardiomyocytes. We detected ROS generation in situ using 
dihydroethidium (DHE, Beyotime Institute of Biotechnol-
ogy, China), a fluorescent superoxide-anion probe. The DHE 
assay was performed following the manufacturer’s instruc-
tions. Briefly, DHE was diluted with DMSO to a final con-
centration of 5 µM. After the treatment, the fluorescence 
assay followed 30-min incubation with DHE at 37  °C. 
ROS were detected by excitation at 488 nm and emission 
at 525 nm using fluorescence signals. The cells were then 
analyzed by using a fluorescence microscope. We randomly 

selected 5 fields from each group and used the ImageJ soft-
ware to quantify the fluorescence density.

Immunofluorescence analysis

CFs were seeded in 24-well chambers and allowed to form 
a monolayer. The cells were then fixed in 4% paraformalde-
hyde for 30 min and permeabilized with 0.1% Triton X-100 
for 15 min. We blocked the cells with 10% donkey serum at 
room temperature for 30 min and then incubated overnight 
at 4 °C with primary antibodies against a-SMA (Proteintech, 
China, 1:200). After incubation with the appropriate second-
ary antibody conjugated with HRP, the cells were incubated 
for 1 h at 37 °C the following day. The nuclei were stained 
with DAPI. Six to ten fields of view were selected randomly 
under fluorescence microscopy, and representative images 
were captured.

Real‑time PCR (RT‑PCR)

Total RNA was isolated from peri-infarct myocardial tissues 
and H9C2 cells with TRIzol (Invitrogen) as directed by the 
manufacturer. We defined cyanotic tissue and scar tissue as 
areas of myocardial infarction. The tissues surrounding the 
cyanotic tissue and scar tissue were the peri-infarct myocar-
dial tissues. The HiScript II R Transcriptase Kit (Vazyme 
Biotech Co., Ltd. China) was used to R transcribe the total 
RNA into cDNA. Subsequently, the ChamQ SYBR qPCR 
master mix (Vazyme Biotech Co., Ltd., China) was used for 
RT-qPCR. The Ct value of each target gene was normalized 
to the Ct value of GAPDH/β-ACTIN (△Ct). Relative gene 
expression values were calculated as  2−△Ct [26]. The refer-
ence gene was GAPDH or β-ACTIN. The primer sequences 
for mouse were as follows: atrial natriuretic peptide (ANP), 
forward (F) 5′-GCT TCC AGG CCA TAT TGG AG-3′ and 
reverse (R) 5′-GGG GGC ATG ACC TCA TCT T-3′; brain 
natriuretic peptide (BNP), F 5′-GAG GTC ACT CCT ATC 
CTC TGG-3′ and R 5′-GCC ATT TCC TCC GAC TTT TCTC-
3′; collagen I, F 5′-GCT CCT CTT AGG GGC CAC T-3′ and 
R 5′-CCA CGT CTC ACC ATT GGG G-3′; collagen III (Coll-
3), F 5′-CTG TAA CAT GGA AAC TGG GGAAA-3′ and R 
5′-CCA TAG CTG AAC TGA AAA CCACC-3′; GAPDH, F 
5′-AGG TCG GTG TGA ACG GAT TTG-3′ and R 5′-GGG GTC 
GTT GAT GGC AAC A-3′; IL-1β, F 5′-GCA ACT GTT CCT 
GAA CTC AACT-3′ and R 5′-ATC TTT TGG GGT CCG TCA 
ACT-3′; IL-6, F 5'-TAG TCC TTC CTA CCC CAA TTTCC-
3′ and R 5′-TTG GTC CTT AGC CAC TCC TTC-3′; TGF-β1, 
F 5′-CCA CCT GCA AGA CCA TCG AC-3′ and R 5′-CTG 
GCG AGC CTT AGT TTG GAC-3′; TNF-α, F 5′-CAG GCG 
GTG CCT ATG TCT C-3′ and R 5′-CGA TCA CCC CGA AGT 
TCA GTAG-3′; ICAM-1, F 5′-GGC ATT GTT CTC TAA TGT 
CTCCG-3′ and R 5′-TGT CGA GCT TTG GGA TGG TAG-3′; 
VCAM-1, F 5′-AGT TGG GGA TTC GGT TGT TCT-3′ and 
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R 5′-CCC CTC ATT CCT TAC CAC CC-3′; GPX4, F 5′-TTC 
TCA GCC AAG GAC ATC G-3′ and R 5′-CAC TCA GCA TAT 
CGG GCA T-3′; ASCL4, F 5′-GTG CCG CGA AGT TAATG-
3′ and R 5′-CAA AGG TTA GAC GGG ATG A-3′; and SOD-
1, F 5′-GGT TCC ACG TCC ATC AGT -3′ and R 5′-ACA TTG 
CCC AGG TCTCC-3′. The primer sequences for rats were as 
follows: IL-1β, F 5′-CCA CAT CCC TGT TAC CTG A-3′ and 
R 5′-TGA CAC CCT GGT TTG AGA A-3′; IL-6, F 5′-AGG 
AGT GGC TAA GGA CCA AGACC-3′ and R 5′-TGC CGA 
GTA GAC CTC ATA GTG ACC -3′; β-ACTIN, F 5′-TGC TAT 
GTT GCC CTA GAC TTCG-3′ and R 5′-GTT GGC ATA GAG 
GTC TTT ACGG-3′; TGF-β1, F 5′-CCT ACA TTT GGA GCC 
TGG A-3′ and R 5′-CCG GGT TGT GTT GGTTG-3′; TNF-α, 
F 5′-CAG CCA GGA GGG AGAAC-3′ and R 5′-GTA TGA 
GAG GGA CGG AAC C-3′; ICAM-1, F 5′-CCA GCC CCT 
AAT CTG ACC T-3′ and R 5′-CTA AAG GCA CGG CAC TTG 
T-3′; and VCAM-1, F 5′-GAA ATG CCA CCC TCACC-3′ and 
R 5′-GAA TCC CCA ACC TGTGC-3′.

Western blot

Proteins were extracted from peri-infarct myocardial tissue 
and H9C2 cells. We used a BCA kit (Beyotime Institute of 
Biotechnology, China) to determine the protein concentra-
tion. Protein samples were separated by gel electrophoresis 
in 10% SDS–polyacrylamide gel and transferred to polyvi-
nylidene fluoride membranes. After blocking with 5% skim 
milk, the membranes were incubated overnight with primary 
antibodies, including GPX4 (Proteintech, China, 1:2000), 
AMPK (Proteintech, China, 1:2000), P-AMPK (Immuno-
way, China, 1:1000), mTOR (Proteintech, China, 1:5000), 
P-mTOR (Cell Signaling Technology, USA, 1:1000), 
ASCL4 (ABclonal, China, 1:2000), and GAPDH (Pro-
teintech, China, 1:5000). After that, the membranes were 
incubated at room temperature for 2 h with the secondary 
antibody. The blots were analyzed with the ImageJ software.

Statistical analysis

The data were presented as mean ± standard error. GraphPad 
Prism software (GraphPad Software, USA) was used to ana-
lyze the data. One-way analysis of variance (ANOVA) was 
used for statistical analysis, followed by Tukey’s multiple 
comparison test. Statistics were considered significant when 
the P value was < 0.05.

Results

MI caused adverse cardiac function

Echocardiography was performed 1  week after MI to 
determine whether the mouse model in this study had 

been successfully established. MI mice, MI + K mice, and 
MI + K + CC mice had significantly lower EF and FS than 
sham mice. Furthermore, there were no differences in EF 
and FS between the MI, MI + K, and MI + K + CC groups. 
Figure 1A–C represents cardiac function from mice assigned 
to these groups prior to being treated with the Klotho and 
Compound C. All of these indicated the establishment of a 
successful MI model.

Effects of Klotho on cardiac function in mice with MI

Five weeks after MI, five mice survived in each of the four 
groups (sham, MI, MI + K, and MI + K + CC). The MI 
group significantly had decreased EF and FS compared to 
the sham group. Nonetheless, mice in the MI + K group had 
higher EF and FS than mice in MI and MI + K + CC groups 
(Fig. 1D–F). Furthermore, when the MI and MI + K + CC 
groups were compared, the expression of ANP and BNP 
mRNA in MI + K mice was lower (Fig. 1G, H).

Effects of Klotho on myocardial fibrosis in mice 
with MI

Masson trichrome staining and Coll-1 immunohistochem-
istry were used to assess the degree of myocardial fibrosis 
5 weeks after MI. In contrast to sham mice, MI mice and 
MI + K + CC mice had significant myocardial fibrosis as 
determined by Masson staining, while the degree of car-
diac fibrosis was significantly reduced by Klotho treatment. 
The Coll-1 immunohistochemistry results were consistent 
with the Masson staining results. In addition, MI + K mice 
had lower levels of Coll-1 and Coll-3 mRNA than MI and 
MI + K + CC mice (Fig. 2).

Effects of Klotho on inflammatory factors 
and oxidative stress in mice with MI and effects 
of Klotho on the ROS of H9C2 cells

In the present study, we measured the levels of TGF-β1, 
TNF-α, VCAM-1, MCP-1, ICAM-1, IL-1β, and IL-6 
mRNA. The MI and MI + K + CC groups had higher lev-
els of inflammatory factors (IL-1β, IL-6, TGF-β1, TNF-α, 
VCAM-1, and ICAM-1) than the MI + K and sham groups 
(Fig. 3A, B). To explore the level of oxidative stress, we 
measured SOD, MDA, and ROS expression. Compared to 
the MI and MI + K + CC groups, the MI + K group had sig-
nificantly higher SOD and SOD-1 mRNA levels. However, 
compared to the MI + K and sham groups, there was a signif-
icant increase in the MDA levels in the MI and MI + K + CC 
groups (Fig. 3E–G). In addition, compared to the OGD and 
OGD + K + CC groups, Klotho treatment reduced the ROS 
fluorescence intensity (Fig. 3C, D).
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Effects of Klotho on ferroptosis and AMPK/mTOR 
signaling in mice with MI

The expression of ACSL4 and GPX4 presents the levels of 
ferroptosis. The effect of Klotho on ferroptosis in MI mice 
was investigated in the present study. According to western 

blot results, the MI and MI + K + CC groups had higher 
ASCL4 expression than the MI + K and the sham groups. 
Furthermore, the GPX4 expression in MI + K mice was 
higher than that in MI and MI + K + CC mice (Fig. 4A, B).

Similarly, the mRNA level of ASCL4 was consistent with 
the western blot results. MI + K mice had higher expression 

Fig. 1  Results of echocardiogra-
phy in mice 1 week and 5 weeks 
after MI. A Representative 
echocardiographic image of the 
left ventricular at 1 week post-
MI. B Left ventricular ejection 
fraction 1 week after MI. C Left 
ventricular fractional shorting 
1 week after MI. One week 
after MI, there were 5, 6, 5, and 
6 mice in sham, MI, MI + K, 
and MI + K + CC groups, 
respectively. D Representative 
echocardiographic image of the 
left ventricular 5 weeks after 
MI. E Left ventricular ejection 
fraction 5 weeks after MI. F 
Left ventricular fractional short-
ing 5 weeks after MI. Expres-
sions of ANP (G) and BNP 
(H) mRNA. Five weeks after 
MI, there were 5, 5, 5, and 5 
mice in sham, MI, MI + K, and 
MI + K + CC groups, respec-
tively. Data are mean ± SEM. 
*P < 0.05 vs. sham. #P < 0.05 
vs. MI. &P < 0.05 vs. MI + K. 
MI, myocardial infarction; K, 
Klotho; CC, Compound C; 
ANP, atrial natriuretic peptide; 
BNP, brain natriuretic peptide
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of GPX mRNA than MI and MI + K + CC mice (Fig. 4C). 
Moreover, the effects of Klotho on AMPK/mTOR signal-
ing were investigated. The MI and MI + K + CC groups had 
lower levels of phosphorylated AMPK expression than the 
MI + K and sham groups. The P-AMPK/AMPK ratio was 
consistent with the P-AMPK expression. In addition, the 
P-mTOR/mTOR ratio was lower in the MI + K group than 
the MI and MI + K + CC groups. However, no statistically 
significant differences in AMPK expression were found 
among these four groups (Fig. 4D–H).

Effects of Klotho on cardiac fibrosis and inflammatory 
cytokines in vitro

Furthermore, we explored the effects of Klotho on inflam-
matory cytokines in H9C2 cells and the level of fibrosis 
in CFs. The PCR results showed that the OGD + K group 
had lower levels of inflammatory factors (IL-1β, IL-6, 
TGF-β1, TNF-α, VCAM-1, and ICAM-1) than the OGD 
and OGD + K + CC groups (Fig. 5A, B). Compared to OGD 

and OGD + K + CC groups, the OGD + K group had a lower 
expression of α-SMA (Fig. 5C–E).

Effects of Klotho on ferroptosis and AMPK/mTOR 
signaling in vitro

The effects of Klotho on ferroptosis and AMPK/mTOR 
signaling in H9C2 cells were also investigated. The ASCL4 
expression in the OGD + K group was lower than that in the 
OGD and OGD + K + CC groups. A higher expression of 
GPX4 was observed in the OGD + K group compared to the 
OGD and OGD + K + CC groups (Fig. 6A–C). Furthermore, 
compared with the OGD + K group, there was a decrease in 
P-AMPK expression, and the ratio of P-AMPK to AMPK 
was observed in the OGD and OGD + K + CC groups. 
Additionally, the ratio of P-mTOR to mTOR was lower in 
the OGD + K group than in the OGD and OGD + K + CC 
groups. However, there was no difference in the expression 
of AMPK among these four groups (Fig. 6D–G).

Fig. 2  Effects of Klotho on car-
diac fibrosis in mice with MI. 
A Masson trichrome staining 
of heart tissue. Blue indicates 
fibrotic regions; scale bar: 
50 µm. B Immunohistochem-
istry staining of collagen I in 
heart tissues; scale bar: 20 µm. 
C The ratio of fibrosis area to 
total area. D The ratio of Coll-
1-positive area to total area; 
expressions of Coll-1 (E) and 
Coll-3 (F) mRNA. N = 5, 5, 5, 
and 5 in sham, MI, MI + K, and 
MI + K + CC groups, respec-
tively. Data are mean ± SEM. 
*P < 0.05 vs. sham. #P < 0.05 
vs. MI. &P < 0.05 vs. MI + K. 
MI, myocardial infarction; 
K, Klotho; CC, Compound 
C; Coll-1, collagen I; Coll-3, 
collagen
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Discussion

MI is a serious global disease associated with high mor-
bidity and mortality rates [27, 28]. Klotho has a cardiopro-
tective role in MI patients [29]. However, the underlying 
mechanisms are still unknown. In the present study, we 
established an MI model. We found that (1) Klotho treat-
ment improves cardiac fibrosis, inflammatory cytokines, 
ferroptosis, and oxidative stress in vivo and in vitro and (2) 

the Klotho treatment may exert its beneficial effect through 
the activity of the AMPK/mTOR signaling pathway.

Myocardial fibrosis plays a significant role in cardiac remode-
ling, contributing to heart failure and death [30]. Moreover, cardiac 
fibrosis is associated with an increase in the incidence of malignant 
arrhythmias, which ultimately increases patient mortality [31, 32]. 
In this study, we found that Klotho could reduce the severity of 
myocardial fibrosis both in vivo and in vitro; this indicates that 
Klotho may reduce the incidence of malignant arrhythmias in MI 

Fig. 3  Effects of Klotho on inflammatory factors and oxidative stress 
in mice with MI and effects of Klotho on the ROS of H9C2 cells. 
A Expression of IL-1β, IL-6, and ICAM-1 mRNA. B Expression of 
TGF-β1, TNF-α, and VCAM-1 mRNA. C Fluorescence images of 
intracellular ROS of H9C2 cells, staining with DHE. D The levels of 
ROS of H9C2 cells. The levels of SOD (E) and MDA (F). G Expres-

sion of SOD-1 mRNA. N = 5, 5, 5, and 5 in sham, MI, MI + K, and 
MI + K + CC groups, respectively. Data are mean ± SEM. *P < 0.05 
vs. sham. #P < 0.05 vs. MI/OGD. &P < 0.05 vs. MI + K/OGD + K. MI, 
myocardial infarction; OGD, oxygen–glucose deprivation; K, Klotho; 
CC, Compound C; ROS, reactive oxygen species; DHE, dihydroeth-
idium; SOD, superoxidase dismutase; MDA, malondialdehyde
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patients. Inflammation significantly affects cardiac remodeling and 
outcome after MI [33]. A previous study showed that the inhibition 
of IL-1β could protect cardiomyocytes from infarction [34]. A high 
IL-6 level has been associated with larger infarcts and decreased 
cardiac function in MI patients [35].

Furthermore, TNF-α may cause myocardial remodeling 
in heart failure [36]. Inhibiting the TGF-β1/Smads pathway 
may help to alleviate heart failure caused by MI [37]. In 
addition, there is a link between lower levels of VCAM-1 
and ICAM-1 and better cardiac function [38]. The present 
study found that Klotho treatment could reduce inflam-
matory cytokines. Thus, Klotho may have the potential to 
improve the prognosis of MI patients.

Ferroptosis is a type of regulated cell death character-
ized by iron overload, resulting in the accumulation of lethal 
levels of lipid hydroperoxides [5]. It was found in a previ-
ous study that ferroptosis was present in cardiomyocytes of 
MI, and inhibiting ferroptosis improved MI pathology [39]. 
ASCL4 and GPX4 were markers representing the ferrop-
tosis levels [40]. An enzyme named ASCL4 is involved in 
phospholipid metabolism. It affects ferroptosis by catalyzing 
the formation of polyunsaturated fatty-acid-acyl-CoA [41], 
which are the major substrates of ferroptotic lipid peroxida-
tion [42]. GPX4 exerts a significant role in the regulation 
of ferroptosis. The inhibition of GPX4 or the synthesis of 
glutathione (GSH) which is an essential cofactor for GPX4 
function could initiate ferroptosis [5]. It was found that 
Klotho could inhibit the ASCL4 expression while increasing 
GPX4 expression; this indicates that Klotho could inhibit 
ferroptosis. It suggests that Klotho could improve cardiac 
remodeling in MI patients. Our results were consistent with 
previous studies [43]. ROS, SOD, and MDA presented the 
levels of oxidative stress. Higher levels of oxidative stress 
have been associated with adverse cardiac remodeling [44]. 
A streptozotocin-induced diabetic rat model shows that 
Klotho suppresses oxidative stress and inflammation in the 
lens, thereby preventing cataract development and progres-
sion [45]. Similarly, in our study, Klotho treatment decreased 
the levels of ROS and MDA and increased the level of SOD, 
which suggests the beneficial effects of Klotho on cardiac 
remodeling in mice with MI.

The AMPK/mTOR signaling pathway, which regu-
lates cell growth, autophagy, and metabolism [46–48], is 
important in MI development [13, 49]. There are lots of 

studies showing that the AMPK/mTOR signaling pathway 
is associated with cardiac function, fibrosis, inflammatory 
factors, ferroptosis, and oxidative stress. Yan et al. revealed 
that spermidine improved MI-induced cardiac dysfunction, 
cardiac fibrosis, cardiac oxidative stress, and inflammatory 
reaction by promoting AMPK/mTOR mediated autophagic 
flux [16]. Besides, dexmedetomidine could attenuate fer-
roptosis induced by myocardial ischemia/reperfusion via 
AMPK signaling [50]. In addition, Klotho could protect 
against diabetic kidney disease via AMPK signaling [51]. 
However, there was no study on Klotho improving cardiac 
remodeling after MI via AMPK/mTOR signaling. In this 
study, we found that Klotho had a protective effect on myo-
cardial remodeling after myocardial infarction by regulat-
ing the AMPK/mTOR signaling pathway. However, this 
protective effect was then abolished after co-treatment with 
Compound C. It is possible that Klotho could improve car-
diac function, fibrosis, inflammatory factors, ferroptosis, and 
oxidative stress in vivo and in vitro via the AMPK/mTOR 
signaling pathway.

Klotho’s effect on cardiac remodeling in mice with MI could 
be explained by its regulation of AMPK/mTOR signaling. In 
contrast to our previous study [12], this study started Klotho 
treatment 1 week after MI, confirming that the mouse model 
had been successfully established. The treatment time we chose 
was more clinically appropriate. In addition, this study was the 
first to use an AMPK signaling pathway inhibitor to investigate 
the effects of Klotho on ferroptosis and oxidative stress. This 
study provided an alternative perspective regarding Klotho’s 
mechanism of improving cardiac remodeling after MI.

Limitations

The present study has some limitations. On the one hand, 
the sample size was relatively small. On the other hand, the 
optimal dose of Klotho and Compound C has not been deter-
mined. Therefore, further studies are required to increase the 
sample size and to determine the optimal dose of Klotho and 
Compound C. Lastly, Compound C inhibits numerous other 
kinases other than AMPK with similar or greater potency. 
Further studies are needed to strengthen the conclusion that 
Klotho protects against cardiac dysfunction by regulating 
AMPK/mTOR signaling.

Conclusions

In conclusion, Klotho potentially improves cardiac remod-
eling in MI mice by regulating AMPK/mTOR signaling. 
These findings demonstrate Klotho as an effective MI thera-
peutic agent.

Fig. 4  Effects of Klotho on ferroptosis and AMPK/mTOR signal-
ing in mice with MI. A, B Western blot analysis of the expressions 
of ASCL4 and GPX4. C Expressions of ASCL4 and GPX4 mRNA. 
D–H Western blot analysis of the expressions of AMPK/mTOR 
signaling. N = 5, 5, 5, and 5 in sham, MI, MI + K, and MI + K + CC 
groups, respectively. Data are mean ± SEM. *P < 0.05 vs. sham. 
#P < 0.05 vs. MI. &P < 0.05 vs. MI + K. MI, myocardial infarction; K, 
Klotho; CC, Compound C

◂
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Fig. 5  Effects of Klotho on cardiac fibrosis and inflammatory 
cytokines in  vitro. A Expressions of IL-1β, IL-6, and ICAM-1 
mRNA. B Expressions of TGF-β1, TNF-α, and VCAM-1 mRNA. 
C Immunofluorescence staining of a-SMA in CFs. Scale bar: 
20 µm. Expressions of Coll-1 (D) and Coll-3 (E) mRNA in CFs. 

Data are mean ± SEM. *P < 0.05 vs. sham. #P < 0.05 vs. OGD. 
&P < 0.05 vs. OGD + K. CFs, cardiac fibroblasts; Coll-1, colla-
gen I; Coll-3, collagen III; OGD, oxygen–glucose deprivation; K, 
Klotho; CC, Compound C
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