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Abstract Despite decades of research, obesity and diabetes
remain major health problems in the USA and worldwide.
Among the many complications associated with diabetes is
an increased risk of cardiovascular diseases, including myo-
cardial infarction and heart failure. Recently, microRNAs
have emerged as important players in heart disease and energy
regulation. However, little work has investigated the role of
microRNAs in cardiac energy regulation. Both human and
animal studies have reported a significant increase in circulat-
ing free fatty acids and triacylglycerol, increased cardiac reli-
ance on fatty acid oxidation, and subsequent decrease in glu-
cose oxidation which all contributes to insulin resistance and
lipotoxicity seen in obesity and diabetes. Importantly, MED13
was initially identified as a negative regulator of lipid accu-
mulation in Drosophilia. Various metabolic genes were down-
regulated in MED13 transgenic heart, including sterol regula-
tory element-binding protein. Moreover, miR-33 and miR-
122 have recently revealed as key regulators of lipid metabo-
lism. In this review, wewill focus on the role of microRNAs in
regulation of cardiac and total body energy metabolism. We
wil l a lso discuss the pharmacological and non-

pharmacological interventions that target microRNAs for the
treatment of obesity and diabetes.
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Introduction

Obesity and diabetes are major health concerns that have
reached epidemic proportions in the USA and worldwide
[55]. The presence of obesity and diabetes is usually accom-
panied by cardiovascular complications [20]; among the many
complications is the high risk of ischemic heart diseases [10]
and heart failure (HF) [11]. Myocardial infarction accounts for
approximately half of all deaths in patients with diabetes [34].
MicroRNAs have recently been identified as a potentially im-
portant pathway involved in the control of energy metabolism
[25]. Grueter et al. proposed that miR-208a and its upstream
regulator mediator complex subunit 13 (MED13) can modu-
late heart and total body energy metabolism. Furthermore, it
has been shown that other MicroRNAs such as miR-103,
miR-107, and miR-375 regulate insulin secretion from the
pancreas and insulin sensitivity in peripheral tissues [14, 58].
Interestingly, pharmacological inhibition of miR-208a or
overexpression of MED13 improves cardiac and total body
insulin sensitivity and glucose metabolism in obese and dia-
betic mouse models [9, 25]. Although classical pharmacolog-
ical and non-pharmacological treatment strategies can im-
prove cardiac function and enhance survival chances in pa-
tients with heart disease, these attempts are ultimately inade-
quate to prevent disease progression [12]. Given the large
number of patients with diabetes, it is important to find novel
therapeutic strategies to treat cardiovascular diseases associat-
ed with obesity and diabetes.
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Metabolic alterations and cardiac pathology
in obesity

Heart has a high energy demand which depends mainly on
oxidation of fatty acids to produce adenosine triphosphate
(ATP) required for maintenance of its function [44]. The re-
mainder of ATP production is derived from glycolysis, and the
oxidation of glucose, lactate, and ketone bodies [12]. The
presence of obesity and diabetes can markedly alter heart met-
abolic profile, making the heart to be more reliant on fatty acid
oxidation as a source of energy (Fig. 1). The expansion of fatty
acid oxidation is occurring mostly at the expense of glucose
oxidation [11]. This reciprocal relationship between glucose
and fatty acid oxidation was pointed out for the first time by
Philip Randle lab in the 1960s [21]. In humans, positron emis-
sion tomography and 11C-palmitate imaging confirm the in-
crease in cardiac fatty acid oxidation in obese [51] and diabet-
ic patients [28]. High-fat diet-induced obese (DIO) mice de-
veloped left-sided heart hypertrophy and failure after 13weeks
of high fat feeding [50]. Important contributor to this cardiac
malfunction is cardiac efficiency, which is the ratio of work
performed by the heart to total cardiac oxygen consumption
[44]. Fatty acid oxidation can influence cardiac efficiency
[33]. In murine models of obesity and insulin resistance, car-
diac efficiency was decreased as result of increased fatty acid
oxidation [44, 46]. An important enzyme controlling the oxi-
dation of fatty acid at the mitochondrial level is carnitine
palmitoyltransferase-1 (CPT-1), the rate-limiting enzyme for
the uptake of fatty acids. Malonyl-CoA, a potent allosteric
inhibitor of CPT-1 [16], is synthesized by the enzyme
acetyl-CoA carboxylase (ACC). Two isoforms of ACC have
been identified, ACC1 and ACC2, with the later
predominating in the heart [2]. ACC2-deleted hearts have a
marked increase in muscle fatty acid oxidation rate [1].
Interestingly, sterol regulatory element-binding protein-1c
(SREBP-1c) was suggested as a master activator of ACC1
and ACC2 transcription [18]. Moreover, SREBP-1c downreg-
ulation was accompanied by a decrease in levels of both
ACC1 and ACC2 in diet-induced obesity mice treated with
coffee polyphenols which contain caffeoyl quinic acids and
feruloyl quinic acids [48]. SREBP-1c regulation of ACC1 in
the liver is a basic step in the regulation of lipogenisis. In
diabetes, expression of malonyl-CoA decarboxylase (MCD)
is increased resulting in increased mitochondrial fatty acid
uptake and oxidation [44]. Interestingly, MCD−/− mice are
protected from diet-induced obesity [7]. A similar beneficial
effect of MCD inhibition on glucose oxidation and insulin
sensitivity was also recently reported.

Impaired balance between fatty acid uptake and utilization
leads to accumulation of lipid metabolites such as ceramide,
diacylglycerol (DAG), and triacylglycerol (TAG), which can
have a deleterious effect on insulin signaling and cardiac func-
tion [44]. The increased levels of triacylglycerol are seen in

hearts from obese human and rodents [8, 32], and several
genetically modified obese and diabetic murine models [6].
However, the exact role of a TAG-induced lipotoxic cardio-
myopathy is not fully understood. Accumulation of lipid in-
termediates such as diacylglycerol and ceramide in obese and
diabetic heart can activate kinases that have detrimental im-
pact on insulin signaling and cardiac function [19, 61], at the
molecular level, lipotoxicity is due at least in part to the up-
regulation SREBP-1c [27], a transcription factor that upregu-
late genes involved in conversion of glucose to fatty acid and
TAG in high fed state [22, 35]. SREBPs are synthesized as
inactive precursors localized in membranes of endoplasmic
reticulum (ER). Upon activation, SREBPs are cleaved and
translocated into the nucleus [35]. Importantly, SREBP-1c
was strongly correlated with intramyocyte lipid accumulation
in patients with metabolic syndrome [38, 45]. Expression of
the mitochondrial glycerol-3-phosphate acyltransferase
(GPAT), which initiates the first commented step in phospho-
lipid and TAG synthesis, is increased in response to SREBP-
1c hepatic overexpression [41]. Previous studies suggested
that GPAT1 knockout mice are protected from a high-fat di-
et-induced myocardial TAG accumulation. The final step in
TAG biosynthesis is catalyzed by DAG acyltransferase
(DGAT), which has been also suggested to be induced by
SREBP-1c in liver [30] and skeletal muscles [43]. In the heart,
increased DGAT1 mRNA expression was accompanied by
increased myocardial TAG accumulation [68]. Interestingly,
cyclin-dependent kinase 8 (CDK8) was identified as a novel
regulator of SREBP-1c [13]. CDK8 is a nuclear serine-
threonine kinase that is composed of four subunits; MED12
and MED13 compromise the major portion of CDK8
subcomplex [59]. Phosphorylation of SREBP-1c on threonine
residue by CDK8 enhanced SREBP-1c degradation [13, 59].
CDK8 appears to be a highly conserved key inhibitor of de
novo lipogenesis from Drosophila to mammals.

MicroRNAs as an emerging therapeutic target
for obesity

MicroRNAs (miRNAs) are a group of short, non-coding
RNAs that can impress gene expression by repressing trans-
lation or promoting degradation of target mRNAs [59].
MiRNAs are one of the most abundant gene regulators in
humans and have now been linked with a broad range of
physiological and pathological processes, including obesity
and diabetes (Fig. 2). Recent studies have revealed a key role
for miRNAs in diabetes and insulin sensitivity. For example,
miR-103 and miR-107 downregulate insulin sensitivity in pe-
ripheral tissues [58], inhibition of miR-103/107 leads to im-
proved glucose homeostasis and insulin sensitivity in obese
mice. miR-375 inhibits pancreatic insulin secretion in low-
protein fed mice [14], which suggests that antagonizing
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miR-375 may enhance insulin secretion and improve glucose
metabolism in diabetes. MED13 is one of the subunit compo-
nents of mediator complex, which regulate thyroid hormone-
dependent transcription [25]. Recently, cardiac-specific over-
expression of MED13 or pharmacological inhibition of its
upstream target miR-208a improves systemic insulin sensitiv-
ity and glucose tolerance in obese and diabetic mice [9, 25].

Interestingly, a follow-up study by the same group suggested
MED13 as a suppressor of obesity; MED13 enhances fatty
acid oxidation, lipid uptake, and mitochondrial number in
WAT and liver [56]. Furthermore, suppression of miR-208a
by the inhibitor of nutrient sensor kinase mTORC1
(rapamycin) attenuated weight gain and decreased body fat
content through overexpression of cardiac MED13 mRNA
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Fig. 1 Main alterations in energymetabolism-related tissues occurring in
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in Zucker obese rats [62]. Collectively, these findings consol-
idate the theory of metabolic coordination between the heart
and other organs, and it also pave the way for the development
of novel treatment for metabolic disorders, such as obesity and
diabetes. Chen et al. reported important role of mediator com-
plex subunit 1 (MED1), another subunit of mediator complex,
in the regulation of skeletal muscle glucose metabolism and
insulin sensitivity [67]. Muscle-specific MED1 knockout
mice display resistance to high-fat diet-induced obesity, im-
provement in whole body insulin sensitivity, and glucose tol-
erance. Surprisingly, the expression levels of UCP-1 were
upregulated in MED1 knockout brown adipose tissues which
associated with increased energy expenditure and mitochon-
drial content [67]. Interestingly, insulin can affect level of
miRNAs expression in vascular smooth muscle cell; in partic-
ular, miR-208 was increased by insulin [31]. As obesity and
diabetes are associated with myocardial insulin resistance,
treatment of these underlying diseases may improve cardiac
insulin sensitivity and function [70]. Both miR-208a and miR-
451 are known regulators of cardiomyocyte size and both
have been shown to dysregulate glucose metabolism and im-
pair insulin sensitivity in diabetic and obese mice models [25,
40]. In support of this notion, a recent study by Kuwabara
et al. [40] showed that deletion of miR-451 in mice amelio-
rates obesity-induced cardiac hypertrophy via activation of
AMP-activated protein kinase (AMPK).

Role of miR-33 in lipid metabolism

miR-33 is the most abundant miRNA in lipoprotein particles,
and it is widely suggested as a key regulator of lipid metabo-
lism [49, 65]. The family of miR-33 sub grouped to miR-33a
and miR-33b. Both miR-33a and miR-33b are located in in-
tron 16 of human SREBP-2 and SREBP-1, respectively [23].
Goedeke et al. showed that miR-33 targets key enzymes of
fatty acid uptake and metabolism including CPT-1, AMPK,
and β-hydroxyacyl-CoA dehydrogenase (β-HAD).
Furthermore, transfection of hepatic cells (Huh7) incubated
in oleic acid with miR-33 significantly inhibits cellular fatty
acid oxidation [53]. Consistent with this, previous studies
from the same lab and others have shed the light on miR-33
as a novel treatment of obesity and diabetes [36, 54] (Fig. 3).
In a more recent study, Karunakaran et al. [37] demonstrated
that anti-miR33 therapy downregulates genes that enhance
mitochondrial oxidative capacity and ATP production. This
is maybe important to promote macrophage cholesterol efflux
and therefore reduce atherosclerosis. However, inhibition of
mitochondrial oxidative capacity in other tissues such as heart
and skeletal muscles is detrimental which raises concerns
about the efficiency of using anti-miR33 in the treatment of
obesity and diabetes. In support, a subsequent study by the
same group [57] proposed that therapeutic inhibition of miR-

33 does not mend metabolic dysfunction in high-fat diet-in-
duced obesitymicemodel.Anti-miR33 treatment for 20weeks
increased AMPK gene expression but did not affect mice
body weight. These results suggest that targeting miR-33
may alter fatty acid metabolism without affecting metabolic
dysregulation.

Role of miR-122 in lipid metabolism

miR-122 is a highly ample liver-specific miRNA that regu-
lates lipid metabolism [29]. Its pharmacological inhibition or
genetic deletion markedly reduced systemic and hepatic cho-
lesterol and triglyceride (TG) accumulation. Furthermore,
in vivo antisense targeting of miR-122 resulted in a marked
overexpression of hepatic AMPK and activation of fatty acid
β-oxidation [26]. In a recent clinical study, circulating miR-
122 levels were more than threefold higher in obese young
adults compared to lean subjects [52]. Levels of miR-122 in
the serum were correlated with body weight, TG, and whole
body insulin insensitivity [52]. However, another case-control
study showed that liver miR-122 expressionwas tenfold lower
in non-alcoholic steatohepatitis patients compared to control,
and that overexpression of miR-112 in vitro improves hepatic
cell function [5]. Furthermore, mRNA expression of β-
oxidation genes LCAD and CPT1 were downregulated in
obese dam breeds concomitant with a marked decrease in
miR-122 expression [3]. In rats, 3-week treatment with
proanthocyanidin significantly repressed miR-122 expression
and improved postprandial TG serum levels in a dose-
dependent manner [17]. Collectively, these results suggest
antimiR-122 as an attractive therapeutic target for metabolic
diseases, however, further in vivo investigations to dissect the
pathways of miR-122 regulation has to be fully studied.

Role of miR-208a in cardiac diseases

Ischemic heart disease is a major chronic complication of
obesity and diabetes. In particular, myocardial infarction ac-
counts for approximately half of all deaths in patients with
diabetes. Moreover, ischemia/reperfusion (I/R) injury in-
creased the mortality rate twice in diabetic patients compared
to nondiabetics [24, 42]. I/R injury is the cellular damage after
blood supply returns to a previously viable ischemic tissue.
Although multiple underlying mechanisms contribute to I/R
injury, there is a strong interconnection between contractile
malfunction and energy substrates used by the heart [60].
Following ischemia and during reperfusion, a greater reliance
on fatty acids as a substrate for energy exacerbates cardiac
function and ischemic injury [15]. In addition, glucose oxida-
tion is significantly decreased secondary to the increase in
fatty acid oxidation [15, 44]. During ischemia, glycolytic rate
is increased and glycolysis is uncoupled from the
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mitochondrial oxidation of glucose, thereby increasing the
production of protons, lactate and decreasing cardiac efficien-
cy [15]. Preclinical and clinical studies suggested that
miRNAs are correlated with ischemic heart diseases, includ-
ing myocardial infarction. In particular, miR-208a was signif-
icantly increased in hearts from humans with stable coronary
disease [64, 69]. In humans, plasma levels of miR-208 were
increased 5-day postmyocardial infarction and remained ele-
vated up to 3 months [47]. Furthermore, results from miRNA
analysis revealed that miR-208 was upregulated in rat hearts
24 h after I/R injury. Moreover, cardiac miR-208a level was
increased 2 days after reperfusion in C57BL mice.
Interestingly, therapeutic targeting of miR-15, miR-24, and
miR-320 improves cardiac function and reduces infarct size
after ischemic injury. In rat hearts, miR-208 was specifically
downregulated in postconditiong which suggests a potential
therapeutic value of antimiR-208 against reperfusion injury
[4].

Obesity, metabolism, and cardiac disease: clinical
implications

miRNAs are key transcriptional regulators of cellular signal-
ing and metabolism, which make them promising targets for
potential treatment of obesity and diabetes. Pharmacological
inhibition of pathological mRNAs or activation of beneficial
mRNAs by complementary oligonucleotides represents an in-
teresting mean in clinical practice. Indeed, mice treated with
antimiR-33 showed increased plasma HDL levels as a result
of upregulation of ATP-binding cassette transporter ABCA1
expression [36, 54].Moreover, inhibition of miR-33 by 2-F, 2-
fluoro, o-methoxyethyl mixmer decreases VLDL and in-
creases HDL in non-human primates [36]. These results show

the promise of using antimiR-33 as a novel treatment of ath-
erosclerosis. To increase stability, antagomir complementary
to the mature targeted miRNA conjugated to cholesterol is
used to enhance cellular uptake and stability [63].
Interestingly, inhibition of miR-122, which is another key
player in liver lipid metabolism, by antagomir results in a
significant decrease of triglyceride and fat accumulation in
mice liver [26]. The use of antimiR-122 in humans as an
attempt to treat hepatitis C virus infection proved to be safe
in a recent clinical trial [39]. However, both the atherogenic
LDL and the beneficial HDL were decreased in mice treated
with antimiR-122, which raises concern about the safety of
using antimiR-122 in the management of obesity-induced car-
diovascular diseases in humans. Currently, there is a lack of
knowledge about the cellular uptake and mechanisms of ac-
tion of antimiRs. Consequently, antimiRs toxicity that raises
from the off-target effect or undesirable gene changes under-
scores the challenges associated with antimiRs development.
In this regard, previous studies suggested that inhibition of
miR-208 enhanced cardiac function and reduced fibrosis in
obesity-induced cardiac hypertrophy mice and rat models
[63, 66]. However, unexpectedly, treatment with anti-
miR208a protects mice from high-fat diet-induced obesity
[9]. This is a perfect example that shows diversity of actions
of miRNAs, which can range from regulation of myosin
switching to modulation of energy metabolism.

Summary and conclusions

Obesity and diabetes are key risk factors for the development
of ischemic heart disease and heart failure. There is a growing
body of evidence demonstrating that metabolic abnormalities
that accompany these diseases contribute to deleterious
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progression of cardiac function. Increased reliance on fatty
acid oxidation along with decreased rate of glucose oxidation
is the hallmark of diabetes and obesity. Increased fatty acid
uptake and oxidation result in accumulation of lipid interme-
diates such as TAG and DAG, which can have an abstruse
influence on insulin sensitivity and cardiac function. There is
ongoing effort to validate metabolic modulators as a novel
therapeutic approach for treatment of diabetes and obesity as
well as heart diseases. Interestingly, MED13 and its upstream
regulator miR-208a were suggested as a novel systemic regu-
lator of energy metabolism which can control cardiac remod-
eling and obesity. Moreover, targeting other microRNAs such
as miR-122 and miR-33 represents a promising treatment for
atherosclerosis and steatohepatitis (Table 1). However, dis-
secting the precise genetic targets of microRNAs and the
downstream effects of microRNAs modulation on the activity
of key enzymes involved in fatty acid and glucose oxidation
will clarify the potential for the use of microRNAs modulators
as a new exciting therapeutic tool, as well as the feasibility of
translating into clinical practice.
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