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Abstract We have previously described the develop-
ment of substantial, but reversible obesity in Wistar rats
fed with palatable liquid nutrition (Fresubin). In this
study, we investigated changes in serum hormone
levels, glycemia, fat mass, adipocyte size, and gene
expression of adipokines and inflammatory markers in
adipose tissue of Wistar rats fed by Fresubin (i) for
5 months, (ii) up to 90 days of age, or (iii) after 90 days
of age to characterize metabolic alterations and their
reversibility in rats fed with Fresubin. An intra-
peritoneal glucose tolerance test was also performed to
determine levels of serum leptin, adiponectin, insulin,
and C-peptide in 2- and 4-month-old animals. In addi-
tion, mesenteric and epididymal adipose tissue weight,
adipocyte diameter, and gene expression of pro- and
anti-inflammatory adipokines and other markers were
determined at the end of the study. Chronic Fresubin

intake significantly increased adipocyte diameter, re-
duced glucose tolerance, and increased serum leptin,
adiponectin, insulin, and C-peptide levels. Moreover,
gene expression of leptin, adiponectin, CD68, and nu-
clear factor kappa B was significantly increased in mes-
enteric adipose tissue of Fresubin fed rats. Monocyte
chemotactic protein 1 messenger RNA (mRNA) levels
increased in mesenteric adipose tissue only in the group
fed Fresubin during the entire experiment. In epididy-
mal adipose tissue, fatty acid binding protein 4 mRNA
levels were significantly increased in rats fed by
Fresubin during adulthood. In conclusion, chronic
Fresubin intake induced complex metabolic alterations
in Wistar rats characteristic of metabolic syndrome.
However, transition of rats from Fresubin to standard
diet reversed these alterations.

Keywords Adipokines . Fat tissue . Inflammatory
signals . Liquid nutrition . Rat

Introduction

Along with genetics, environmental factors such as an
inappropriate diet and lifestyle habits play a crucial role
in the development of obesity. Specifically, hyperpha-
gia, unbalanced macronutrient profiles [4], energy den-
sity, and post-ingestion effects of diet represent major
factors participating in the development of dietary obe-
sity [31]. The etiopathogenesis of obesity is also tightly
connected to metabolic syndrome, which is defined as a
cluster of components, such as increased waist
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circumference, increased triglyceride levels, reduced
high-density lipoprotein (HDL) cholesterol levels, in-
creased blood pressure, and increased fasting glucose
levels [20].

Rodent models are frequently used for the study of
obesity as they readily gain weight when fed high-fat
diets [11, 31, 48, 77]. One model for the induction of
obesity involves the supplementation of a high-
energy diet with a highly palatable liquid diet
(Ensure) that induces hyperphagia [48] and overrides
the homeostatic control of ingestion by activating
neural systems mediating reward and motivation
[46]. In our previous paper, we described an obesity
model based on feeding of Wistar rats, with the liquid
nutrition (Fresubin). We confirmed that increased
Fresubin intake results in development of marked
obesity in adult rats due to its palatability, liquidity,
and macronutrient composition. Importantly,
transitioning rats fed by Fresubin since weaning to
solid pelleted chow at the age of puberty normalized
their body weight [53]. These findings indicate that
there is flexibility in the mechanisms responsible for
the development of obesity in rats.

The aim of the present study was to characterize
potential metabolic changes induced in obese animals
fed with Fresubin in detail, so as to identify the mech-
anisms involved in the development of obesity in ani-
mals fed by liquid nutrition. We focused on investigat-
ing intervention-related changes in the endocrine sys-
tem, visceral adipose tissue, and whole body glucose
metabolism. We also investigated the effect of chronic
Fresubin intake on hormonal status (concentration of
leptin, adiponectin, insulin, and C-peptide), glucose tol-
erance, adiposity, and gene expression of inflammatory
signals and markers of adipogenesis in different adipose
tissue depots as well as at the systemic level. At the level
of gene expression, we examined leptin, adiponectin,
cluster of differentiation 68 (Cd68), nuclear factor kappa
B (Nfkb), and monocyte chemotactic protein 1 (Mcp1)
in mesenteric adipose tissue. Moreover, in epididymal
adipose tissue, in addition to leptin and adiponectin, we
also examined the expression of glucose transporter 4
(Glut4), peroxisome proliferator-activated receptor γ
(Pparg), and fatty acid binding protein 4 (Fabp4). Fur-
thermore, to study the reversibility of metabolic alter-
ations induced by chronic Fresubin intake, the above-
mentioned parameters were also investigated in rats fed
by Fresubin during either the juvenile period of their
lives or in adulthood, respectively.

Materials and methods

Animals

Male Wistar rats from single dams were purchased
from Charles River (Germany). After weaning on the
21st day, the rats were housed four per cage and
maintained under controlled laboratory conditions
(12 h light–dark cycle, lights on at 6:00 a.m., ambient
temperature 22 ± 1 °C, and 55 ± 10 % humidity). All
experiments were performed between 08:00 and
12:00 h, and all external noises or other stressful
stimuli were strictly avoided. The experiments were
carried out in accordance with the Council Directive
2010/63EU of the European Parliament and the
Council of 22nd September 2010 on the protection
of animals used for scientific purposes.

Experimental design and diets

After weaning on the 21st day, rats were randomly
divided into four experimental groups based on the type
of provided diet: (1) control group (CON, n = 12)
receiving standard pelleted chow during the entire
study (5 months); (2) liquid nutrition group (LN,
n=12) receiving Fresubin during the entire study; (3)
liquid nutrition juvenile group (LNJ, n=12) receiving
Fresubin until the 90th day of age, then transferred to
pelleted chow for the rest of the study; and (4) liquid
nutrition adult group (LNA, n=12) receiving pelleted
chow until the 90th day of age and then transferred to
Fresubin for the rest of the study (Fig. 1). All experi-
mental groups were provided with Fresubin or pelleted
chow (as appropriate) and water ad libitum. Body
weight, food, and water intake were determined three
times per week throughout the study.

The composition of the diets was as follows: (a) for
the standard pelleted chow diet: 11.21 ml of water and
88.79 g of dry substance with 23.04 g of protein, 2.72 g
of fat, and 8.49 g of carbohydrate in 100 g, caloric
density 1329 kJ/100 g dry substance with 33 % of
calories provided as protein, 13 % as lipid, and 9 % as
carbohydrate; (b) for liquid nutrition Fresubin: 84 ml of
water and 23.9 g of dry substance with 3.8 g of protein,
3.4 g of fat and 13.8 g of carbohydrate in 100 ml, caloric
density 1757 kJ/100 g dry substance with 15 % calories
provided as protein, 30 % as lipid, and 55 % as carbo-
hydrate (for details, see [53], or http://www.fresenius-
kabi.co.uk/4824_4889.htm).
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Intra-peritoneal glucose tolerance test

Intra-peritoneal glucose tolerance test (IPGTT) was per-
formed in conscious animals at the age of 2 and 4months
(Fig. 1). Food was withdrawn at 6:00 p.m. on the day
before the test (i.e., 14 h before the procedure). Blood
samples (0.5∼0.8 mL) were obtained from the tip of the
tail, and blood glucose levels were immediately deter-
mined using a glucose reagent strip (One Touch Ultra,
LifeScan, USA) and a standard automated glucometer
(Accu-Check active, Roche Diagnostics, USA). After
baseline blood glucose measurements, animals received
an intra-peritoneal injection of 2.0 g glucose/kg body
weight (30 % glucose solution in saline). Blood samples
(∼0.2 mL) were then collected for measurement of blood
glucose concentrations 15, 30, 60, 90, and 120 min after
glucose administration. Glucose tolerance was assessed
as the area under the glycemic curve (glucose AUC).

Remaining blood samples were kept for 30 min at
room temperature and then centrifuged for 20 min at
3000×g at 4 °C. Obtained serum was stored at −80 °C
until analysis of leptin, adiponectin, insulin, and C-
peptide concentrations by radioimmunoassay.

Blood serum assays

The blood serum acquired during the IPGTT in the age
of 2 and 4 months was used for the assessments of
following parameters by RIA kits: Rat Leptin RIA kit

(Millipore), Rat Adiponectin RIA kit (Millipore), Rat
Insulin RIA kit (Millipore), and Rat C-Peptide RIA kit
(Millipore). Assays were performed according to the
manufacturer’s instructions, and the intra- and inter-
assay variations were below 10 %. Intra- and inter-
assay coefficients of variations for measurements of
leptin and adiponectin were 3.27 and 4.8 %, respectively,
for the former, and 4.09 and 7.31 % for the later. In the
case of insulin assessment, the variations were 2.86 and
9%. The coefficients of variation for C-peptide were less
than 10 % for both intra- and inter-assay variations.

Adipose tissue collection and gene expression analysis

At the end of experiment, all rats were killed by decap-
itation. Mesenteric and epididymal adipose tissue were
rapidly removed, weighed, immediately frozen in liquid
nitrogen, and then stored at −80 °C until RNA extrac-
tion. Total RNA was obtained using TRI REAGENT®
(Molecular Research Center, Inc.) following the manu-
facturer’s protocol. Complementary DNA (cDNA) was
synthesized from 1μg of total RNAusing the RevertAid
H minus First-Strand cDNA Synthesis Kit (Thermo
Fisher Scientific). Semi-quantitative real-time PCR
was set up in a total volume of 25 μL containing
30 ng of template cDNA mixed with 12.5 μL of
FastStart Universal SYBR Green Master Rox (Roche
Diagnostics), 1 μL of specific primer pair set (sequences
of used primers are shown in Table 1), and water. Each
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Fig. 1 A schematic illustration of the experimental design. At the
age of 21 days, pups were weaned and separated into a control
group (CON) fed by pelleted chow for the entire study, b liquid
nutrition group (LN) fed 5 months by Fresubin for the entire study,
c liquid nutrition juvenile group (LNJ) fed 70 days by Fresubin
and then 60 days by pelleted food, and d liquid nutrition adult

group (LNA) fed 70 days by pelleted chow and then 60 days by
Fresubin. At the age of 2 and 4 months, an intra-peritoneal glucose
tolerance test was performed. At the end of the study, rats were
decapitated and blood and adipose tissues were removed for
further biochemical analyses
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sample was amplified on a ABI7900HT Fast real-time
PCR instrument (AppliedBiosystems) under the following
conditions: 1 cycle of 2 min at 50 °C, followed by 1 cycle
of 10 min at 95 °C, and then 40 cycles of 95 °C for 15 s
and 60 °C for 1 min. Data were normalized to
glyceraldehyde-3-phosphate dehydrogenase (Gapdh)
and/or TATA box binding protein (Tbp) levels and
expressed as the relative fold change, calculated using the
ΔΔCt method [49]. A melting curve analysis was per-
formed to confirm the specificity of the amplified products.

Preparation of adipocytes and evaluation of their size

Adipocytes were isolated by collagenase digestion from
epididymal adipose tissue obtained after decapitation.
The tissue was minced in M199 medium (Gibco, Life
Technologies) supplemented with 0.5 % bovine serum
albumin (BSA, Sigma, St. Louis, MO, USA), 3 mM
CaCl2, and 2 mg mL−1 collagenase II (Sigma). After a
30-min collagenase digestion at 37 °C, the digested tissue
was centrifuged for 1 min 100×g at 25 °C and the
stromal-vascular fraction was removed. Floating adipo-
cytes were washed twice inM199 medium supplemented
with 0.5 % BSA and 3 mM CaCl2 by centrifugation at

100×g for 1 min at 25 °C, then filtered through 200-μm
nylon mesh and finally centrifuged at 100×g for 1 min at
25 °C. The cell suspension was placed in a Bürker cell
chamber and examined by light microscopy (for details,
see [76]) using a Leica DMLSmicroscope equipped with
a Power Shot S40 (Canon, Japan). At least ten random
visual fields were photographed for every rat adipocyte
suspension. The diameter of the cells was measured from
the image of their planar surface. At least 100 cells from
each adipocyte suspension were evaluated.

Statistical analysis

All statistical analyses were performed using GraphPad
Prism program version 5.02 (GraphPad Software). Statis-
tical analysis was performed by one-wayANOVA follow-
ed by Bonferroni’s post hoc test to determine significant
differences in adipose tissue mass, adipocyte diameter,
and messenger RNA (mRNA) levels of leptin,
adiponectin, Cd68, Nfkb, Glut4, Pparg, Fabp4, and
Mcp1. Significant differences in body weight gain, serum
leptin, adiponectin, insulin, C-peptide levels, and the re-
sults of the IPGTTwere determined by two-way ANOVA
using factors of time and diet followed by Bonferroni’s

Table 1 Sequences of primers
used for amplification of target
cDNA of leptin, adiponectin,
cluster of differentiation 68
(Cd68), nuclear factor kappa B
(Nfkb), monocyte chemotactic
protein 1 (Mcp1), insulin-
sensitive glucose transporter 4
(Glut4), peroxisome proliferator-
activated receptor γ (Pparg), fatty
acid binding protein 4 (Fabp4),
TATA box binding protein (Tbp),
and glyceraldehyde 3-phosphate
dehydrogenase (Gapdh)

Gene Primer Oligonucleotide sequence

Leptin Forward 5′-AGA CCATTG TCA CCA GGATCA AT-3′

Reverse 5′-CCC GGG AAT GAA GTC CAA A-3′

Adiponectin Forward 5′-GGGAGACGCAGGTGTTCTTG-3′

Reverse 5′-CTGAATGCTGAGTGATACATGTAAGC-3′

Cd68 Forward 5′-TGT TCA GCT CCA AGC CCA AA-3′

Reverse 5′-GCT CTG ATG TCG GTC CTG TTT-3′

Nfkb Forward 5′-AATATT CAC CTG CAC GCC CA-3′

Reverse 5′-GTT TGC AAA GCC AAC CAC CA-3′

Mcp1 Forward 5′-CTG TCT CAG CCA GAT GCA GTT-3′

Reverse 5′-GCT TCT TTG GGA CAC CTG CT-3′

Glut4 Forward 5′-TTTCCAGTATGTTGCGGATG-3′

Reverse 5′-TCAGTCATTCTCATCTGGCC-3′

Pparg Forward 5′-CATTTCTGCTCCACACTATGAA-3′

Reverse 5′-CGGGAAGGACTTTATGTATGAG-3′

Fabp4 Forward 5′-AGCGTAGAAGGGGACTTGGT-3′

Reverse 5′-ATGGTGGTCGACTTTCCATC-3′

Tbp Forward 5′-TTCGTGCCAGAAATGCTGAA-3′

Reverse 5′-GTTCGTGGCTCTCTTATTCTCATG-3′

Gapdh Forward 5′-TGG ACC ACC CAG CCC AGC AAG-3′

Reverse 5′-GGC CCC TCC TGT TGT TAT GGG GT-3′
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post hoc test. The results are expressed as means±SEM
and represent an average of 7–12 animals. P<0.05 was
taken as indicative of statistical significance for the tests.

Results

Body weight, fat mass, and adipocyte size

The body weight of rats was monitored throughout the
experiment. At the age of 2 months (5 weeks after
beginning on Fresubin diet), the liquid nutrition-fed rats
(LN) had significantly lower body weight than the
pelleted chow-fed LNA rats (P<0.05) and a tendency
toward lower body weight was found also in the
Fresubin fed LNJ rats (P>0.05).

Furthermore, the body weight of LN rats increased
over time and was significantly higher than the body
weight of chow-fed CON and LNJ rats (P<0.001) at the
age of 4 months (14 weeks after the beginning of
Fresubin consumption). Similar differences were also
found at the age of 4 months in the LNA group, which
was switched from chow to Fresubin for 1 month at the
age of 90 days (P<0.001). This condition persisted till
the end of the experiment at the age of 5 months (LN vs.
CON P<0.01; LN vs. LNJ P<0.001; LNA vs. CON,
LNJ P<0.001; Fig. 2a).

As we described in our previous study, at the time of
Fresubin consumption, all rats had significantly increased
energy intake, as well as carbohydrate and lipid intake
(P<0.001). In contrast, due to a relatively low protein
content of Fresubin (approximately 15 % compared to
33 % in pellet chow), significantly decreased protein
intake at the time of Fresubin intake was observed in rats
fed with liquid nutrition in comparison with the CON rats
fed with chow diet (P<0.001). For details, see [53].

At the end of the experiment, the amount of mesen-
teric and epididymal adipose tissue was significantly
higher in LN and LNA rats compared to the chow-fed
CON and LNJ rats (P<0.001; Fig. 2b, c). Moreover,
intake of liquid nutrition resulted in a statistically sig-
nificant increase in adipocyte diameter in epididymal
adipose tissue of LN (P<0.001) and LNA (P<0.001)
rats compared to the CON and LNJ groups (Fig. 2d, e).

Intra-peritoneal glucose tolerance test

At the age of 2 months, no significant differences in
fasting plasma glucose concentrations were observed

between the groups. However, in the LN and LNJ rats,
we found a tendency to have a higher area under the
glycemic curve (glucose AUC) suggesting reduced tol-
erance to intra-peritoneal glucose load compared to
CON and LNA groups (P < 0.0001, r = 0.8904;
Fig. 3a, c). We also found a significantly higher rise in
glucose concentrations in the LN and LNJ compared to
CON and LNA rats only during the 15-min interval after
the intra-peritoneal glucose load (LN vs. CON P<0.05;
LN vs. LNA P<0.001; LNJ vs. LNA P<0.01; Fig. 3a).

Also, at the age of 4 months, there was no significance
between group differences in fasting plasma glucose
concentrations. However, after administration of the
intra-peritoneal glucose load, LN rats showed significant-
ly increased glucose concentrations from 15 to 90 min
during the IPGTTcompared to CON (Fig. 3b). Similarly,
the LNA group had increased glucose concentrations
during the whole 2-h test compared to CON (Fig. 3b).
Compared to the LNJ group, significant differences were
found only at the 15-min interval (LN vs. LNJ P<0.01;
LNA vs. LNJ P<0.05; Fig. 3b). Furthermore, both
Fresubin-fed groups (LN, LNA) had a significantly
higher area under the glycemic curve compared to CON
rats as revealed by two-way ANOVA (P<0.01; Fig. 3c).

Hormonal status

At the age of 2 months, the Fresubin-fed LN and LNJ
rats showed lower body weight despite significantly
elevated serum levels of leptin (LN vs. CON P<0.05;
LN vs. LNA P<0.01; LNJ vs. CON, LNA P<0.001)
and adiponectin (LN vs. CON P<0.001; LN vs. LNA
P<0.01; LNJ vs. CON, LNA P<0.001) compared to
the chow-fedCON and LNA groups (Fig. 4a, b). Fasting
serum insulin and C-peptide levels did not differ be-
tween the groups (Fig. 4c, d).

At the age of 4 months, significantly increased body
weigh in LN rats was accompanied by higher serum
leptin (LN vs. CON, LNJ P<0.001), adiponectin (LN
vs. CON, LNJ P < 0.0001), insulin (LN vs. CON
P<0.05; LN vs. LNJ P<0.01), and C-peptide levels
(LN vs. CON P<0.01; LN vs. LNJ P<0.001) com-
pared to the chow-fed CON and LNJ rats. Similar dif-
ferences were found in Fresubin-fed LNA rats, which
showed significantly increased leptin (LNA vs. CON,
LNJ P < 0.001), adiponectin (LNA vs. CON, LNJ
P < 0.001), insulin (LN vs. LNJ P < 0.05), and C-
peptide levels (LN vs. LNJ P< 0.01) compared to
chow-fed CON and LNJ groups (Fig. 4a–d).
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When comparing values obtained at the age of 2 and
4 months, the diet switch for the LNJ group (from
Fresubin to chow) resulted in a decrease of 13.3 % in
leptin, 41 % in adiponectin, and 29.1 % in insulin, along
with a 10.5 % increase in C-peptide levels. On the other
hand, continual intake of Fresubin in the LN group
caused an increase of 287 % in leptin, 9.7 % in
adiponectin, 281 % in insulin, and 152 % in C-peptide
levels. Similarly, the diet switch (from chow to
Fresubin) in the LNA group resulted in an increase of
453 % in leptin, 55 % in adiponectin, 136 % in insulin,
and 77 % in C-peptide levels.

Gene expression in adipose tissues

The Fresubin-fed LN rats showed significantly in-
creased gene expression of leptin, adiponectin, Cd68,
Nfkb, and Mcp1 genes in mesenteric adipose tissue,
compared to chow-fed CON and LNJ rats (Fig. 5a–e).
In the LNA group, gene expression of leptin,
adiponectin, Cd68, and Nfkb were also significantly
increased (Fig. 5a–c), whereas Mcp1 mRNA levels
showed only a tendency to be increased (Fig. 5e).

A tendency toward an increased expression of leptin
mRNA and a decreased expression ofGlut4mRNAwas
found in epididymal adipose tissue in the LN and LNA

�Fig. 2 Body weight at the age of 2, 4, and 5 months (a), absolute
mass of white (mesenteric and epididymal) adipose tissue at the
age of 2, 4, and 5 months (b), relative mass of white (mesenteric
and epididymal) adipose tissue at the age of 2, 4, and 5 months (c),
diameter of adipocyte isolated from epididymal adipose tissue (d),
and representative photographs of adipocytes (e) isolated from
epididymal adipose tissue of rats fed by pelleted chow (CON),
liquid nutrition (LN), liquid nutrition in juvenility (LNJ), or liquid
nutrition in adulthood (LNA). Each value is displayed as mean
± SEM (n = 12 for each group). Statistical significance between
groups (Bonferroni post-tests) CON vs. LN: **P < 0.01,
***P < 0.001; CON vs. LNA: †††P < 0.001; LN vs. LNJ:
+++P< 0.001; LNAvs. LNJ: ###P< 0.001; LN vs. LNA: ΔP< 0.05

�Fig. 3 Response of plasma glucose levels to intra-peritoneal glucose
tolerance test at the age of 2 months (a), at the age of 4 months (b),
and glucose area under the curve (AUC; mmol min/L) at the
age of 2 and 4 months of rats fed with pelleted chow (CON),
liquid nutrition (LN), liquid nutrition in juvenility (LNJ), or
liquid nutrition in adulthood (LNA). Each value is displayed as
mean ± SEM (n = 12 for each group). Statistical significance
between groups (Bonferroni post-tests) CON vs. LN: *P< 0.05,
**P< 0.01, ***P< 0.001; CON vs. LNA: †P< 0.05, ††P< 0.01,
†††P< 0.001; LN vs. LNJ: ++P< 0.01; LNA vs. LNJ: ##P< 0.01;
LN vs. LNA: ΔΔΔP< 0.001
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groups (Fig. 6a, c) but it did not reach statistical signif-
icance (P>0.05). Furthermore, only a slight reduction
of adiponectin and Pparg mRNA levels was found in
LN group (Fig. 6b, d). Significantly increased levels of
Fabp4 mRNA were found only in the LNA group
compared to the other three experimental groups
(P<0.001; Fig. 6f).

Discussion

In the present study, we investigated the long-term ef-
fects on metabolism of feeding Wistar rats a liquid diet
(Fresubin) by analyzing selected endocrine parameters in
the serum as well as bymeasuring selected morphologic,
metabolic, endocrine, and immune parameters in mesen-
teric and epididymal adipose tissues. Moreover, by in-
cluding a group fed first by Fresubin and then by chow,
we were able to also investigate the reversibility of
metabolic alterations induced by the liquid nutrition diet.

We found that long-term consumption of Fresubin
led to substantial development of obesity with both
increased absolute and relative adipose tissue mass
along with altered adipose tissue morphology as dem-
onstrated by increased adipocyte diameter. We also
found impaired glucose tolerance, increased serum lep-
tin and adiponectin levels, as well as increased gene
expression of leptin, adiponectin, Cd68, Nfkb, and
Mcp1 in adipose tissue, indicating development of sig-
nificant and complex metabolic alterations in response
to Fresubin intake.

Fresubin intake alters plasma levels of adipokines

Several studies have shown that the blood concentration
of many adipokines, hormones, and acute-phase pro-
teins is altered in human obesity [21]. Furthermore,
plasma leptin is elevated, whereas plasma adiponectin
is reduced in obese humans and animal models [14, 22,
62, 75]. Here, we showed that Fresubin consumption

�Fig. 4 Serum leptin (a), adiponectin (b), insulin (c), and C-
peptide (d) concentrations at the age of 2 and 4 months in rats
fed by pelleted chow (CON), liquid nutrition (LN), liquid nutrition
in juvenility (LNJ), or liquid nutrition in adulthood (LNA). Each
value is displayed as mean ± SEM (n = 7–10 for each group).
Statistical significance between groups (Bonferroni post-tests)
CON vs. LN: *P < 0.05, **P < 0.01, ***P < 0.001; CON vs.
LNA: †††P< 0.001; LN vs. LNJ: ++P< 0.01, +++P< 0.001; LNA
vs. LNJ: #P < 0.05, ##P < 0.01, ###P < 0.001; LN vs. LNA:
ΔΔP< 0.01; LNJ vs. CON: ‡‡‡P< 0.001
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leads to significant elevation in circulating leptin and
adiponectin levels as increased levels of both hormones
were detected in all groups of rats during the time
duration of Fresubin consumption.

The diet composition, feeding pattern, and type of
experimental species might influence plasma leptin con-
centrations [66]. In the study of Naderali et al., 16 weeks
of feeding rats a fat-enriched, glucose-enriched diet re-
sulted in pronounced obesity, signified by a 2-fold in-
crease in fat padmasses and a >3-fold increase in plasma
leptin concentrations [57]. Also, in a model of high-fat
diet-induced obesity, Kim and Park observed the accu-
mulation of visceral fats along with hyperleptinemia,
insulin resistance, and overexpression of the leptin gene
in epididymal adipose tissue after 9 weeks of a high-fat
diet in male Sprague–Dawley rats [42].

Interestingly, we observed increased leptin concen-
trations even in the 2-month-old LNJ (99 % higher
leptin levels compared to CON) and LN (72 % higher
leptin levels compared to CON) rats, which had slightly
lower body weight than did the chow-fed CON and
LNA rats. It is known that circulating leptin levels
reflect the energy and nutritional state of the organism.
In a previous study, Archer et al. focused on juvenile
diet-induced obesity, using 4-week-old rats fed a solid,
high-energy diet and observed an unexpected phenotype
of reduced body weight but with increased adiposity.
They speculated that ingestion of a high-energy pelleted
diet that is energy-dense but with relatively low protein
content (15 %) leads to overconsumption so as to meet
the demands of growing rats. According to them, when
given an appropriate choice, rats select a diet that con-
tains at least 17 % of proteins [3]. Also, Hariri and
Thibault pointed out the importance of maintaining the
animals’ minimal nutrient requirements, especially for
protein, vitamins, and minerals, so as to eliminate the
possibility of overconsumption to fulfill these nutrient
needs [31]. The Fresubin used in our study has a protein
content of 15 %, thus we can hypothesize that the
phenotype and body composition of our juvenile rats
was the same as in the above-mentioned study of
Archers.

Based on results of several studies, it is generally
accepted that in obese humans, particularly those with
visceral obesity, levels of plasma adiponectin are re-
duced, and this reduction is greater in men than in
women [30, 35, 38, 69]. Several factors may participate
in these findings, including the pro-inflammatory fac-
tors such as TNF-α, IL-6, as well as hypoxia which

suppress the expression of adiponectin in adipocytes,
resulting in decreased adiponectin levels in obese and/or
diabetic rodents and humans as well as in the obese
rhesus monkey model [38, 44, 57]. Despite the afore-
mentioned facts, there are published data showing par-
adoxical hyperadiponectinemia in states resembling
metabolic syndrome, e.g., in states of severe insulin
resistance due to genetically defective insulin receptors
[72], in patients with Laron syndrome, a growth hor-
mone insensitivity characterized by dwarfism, profound
obesity, and hyperlipidemia [40], as well as in the spon-
taneously hypertensive rat (SHR) characterized by ex-
cessive weight, dyslipidemia, glucose intolerance, and
insulin resistance [68].

Unexpectedly, our findings also point toward
persisting hyperadiponectinemia even in the obese state,
as in the 4-month-old obese LN rats (Fresubin consump-
tion for 14 weeks) show 136 % higher adiponectin
levels and how our obese LNA rats (Fresubin consump-
tion for 1 month) show 106 % higher adiponectin levels
when compared to CON rats. As adiponectin is a unique
hormone with anti-diabetic, anti-inflammatory, and anti-
atherogenic effects, the observed hypersecretion of
adiponectin in the obese hyperinsulinemic Fresubin-
fed rats may represent a compensatory response main-
taining systemic insulin sensitivity as suggested by
Semple et al. [72] and/or it could result from the diet
composition itself.

On the basis of their study, Naderali et al. proposed
that the lipid profile of the plasma and/or the constitu-
ents of the diet consumed by rats might contribute to
adiponectin levels more than obesity per se [57]. In their
study, Wistar rats were fed either standard laboratory
chow or given a fat and glucose-enriched diet (diet-fed)
for either 2 days or 16 weeks. After 2 days, total body
weight, fat pad masses, and plasma levels of leptin were
comparable between the two groups. However, there
was a significant decrease in plasma adiponectin levels.
After 16 weeks, diet-fed rats had significantly higher
body weight, fat pad mass, and plasma levels of leptin
and adiponectin compared with chow-fed controls. The
authors confirmed the presence of increased expression
of the leptin gene in the epididymal fat, but on the other
hand, there was significantly decreased expression of
adiponectinmRNA. According to the authors, an unex-
pected higher level of plasma adiponectin in the face of
decreased adiponectin mRNA levels in dietary-obese
rats suggests the possible existence of post-
transcriptional control mechanism(s) for circulating
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adiponectin levels in obese rats. This may involve de-
creased metabolism and/or excretion of circulating
adiponectin protein under non-physiological conditions
such as obesity [57]. Similar conclusions were also
deduced in the study of Rodriguez et al. who confirmed
hyperadiponectinemia, overexpression of adiponectin
in adipose tissue, and increased mRNA levels of
adiponectin receptors in skeletal muscle of overweight,
hypertensive, hyperglycemic, and hyperinsulinemic
SHR rats [68]. The authors suggest that the mechanism
responsible for the elevated circulating adiponectin con-
centrations includes decreased renal adiponectin clear-
ance, or an elevated synthesis in adipose tissue pointing
toward the presence of an adiponectin-resistant state.
Similarly, recent studies have reported adiponectin re-
sistance as a consequence of impaired adiponectin re-
sponse due to defective AMP-activated protein kinase
(AMPK) signaling in the liver and muscle of high-fat
diet-fed rodents [6, 56], and in the skeletal muscle of
obese and diabetic subjects [5, 9], which contributes to
the development of insulin resistance [68]. To summa-
rize, the increased expression rate of the adiponectin
gene and circulating adiponectin concentrations in the
liquid nutrition-fed obese, hyperleptinemic and
hyperinsulinemic rats probably reflects the consequence
of impaired adiponectin functions. Furthermore, it can
be hypothesized that hyperadiponectinemia could be a
compensatory mechanism preserving proper oxidation
of lipids and maintaining insulin sensitivity.

Some dietary factors, such as soy protein, fish oils,
and linoleic acid, are suggested to increase plasma
adiponectin levels [38]. As Fresubin contains soy pro-
tein and mono- and polyunsaturated fatty acids, it could
contribute to the increased adiponectin levels, even after
obesity onset. Also, Naderali et al. reported that either
plasma triacyglycerol and non-esterified fatty acid levels
or the composition of the diet might affect adipose
tissue, thereby dysregulating adiponectin production
and/or its clearance [57].

In this study, we measured mRNA expression of
leptin and adiponectin in two types of adipose depots,
mesenteric and epididymal. In the mesenteric adipose
depots of LN and LNA rats, we found significantly
enhanced transcription of both genes compared to the
control diet-fed CON and LNJ. These increased tran-
scription rates probably contributed to the elevated cir-
culating plasma leptin and adiponectin levels. We can
hypothesize that this increased transcription could be
related to enhanced adipocyte differentiation and hyper-
trophy of adipocytes. In the epididymal depots, no sig-
nificant differences in leptin and adiponectin expression
were found between groups. This is in agreement with
other authors showing that as a heterogenous organ,
adipose tissue is distributed in different anatomical sites,
with different features and functions. This might be
associated with a different pattern of expression of genes
involved in lipid metabolism [28, 59]. According to
Reseland et al., leptin mRNA levels vary in different
adipose depots in rodents [66]. Also in their study carried
out on the Zucker fatty rat, Krskova et al. [43] reported
differences in adiponectin and leptin gene expression in
epididymal and retroperitoneal adipose tissue. They as-
sumed that this might be related to the different ratios of
hypertrophic to hyperplastic adipocyte content in these
two fat depots. Palou et al. carried out a study on 3-
month-old rats and characterized the patterns of expres-
sion of key genes involved in lipogenesis, lipolysis, and
fatty acid oxidation. They found different patterns of
expression related to the morphologic and metabolic
differences between internal adipose tissue depots [59].

Fresubin intake induced insulin resistance

Several authors have reported elevated basal plasma
insulin levels and resistance to the metabolic effects of
insulin in obesity [17, 31]. Independent of obesity, high-
fat feeding in-and-of-itself contributes to impaired glu-
cose tolerance and insulin resistance, which has been
shown in both human and animal studies [31, 67, 78,
79]. Several studies confirmed that a cafeteria diet (high-
salt, high-sugar, high-fat, low-fiber, energy-dense, and
palatable food) promotes voluntary hyperphagia, which
results in rapid weight gain, increased fat pad mass, and
pre-diabetic parameters such as glucose and insulin
intolerance [12, 33, 54, 70]. In our study, the IPGTT
was carried out twice during the experiment, at which
time both glycemia and the levels of circulating insulin
were assessed. The IPGTT at 2 months revealed no

�Fig. 5 Gene expression of leptin (a) and adiponectin (b), cluster
of differentiation 68 (Cd68; c), nuclear factor kappa B (Nfkb; d),
and monocyte chemotactic protein 1 (Mcp1; e) in mesenteric
adipose tissue of rats fed by pelleted chow (CON), liquid
nutrition (LN), liquid nutrition in juvenility (LNJ), or liquid
nutrition in adulthood (LNA). Each value is displayed as mean
± SEM (n= 7–10 for each group). Statistical significance between
groups (Bonferroni post-tests) CON vs. LN: **P < 0.01,
***P < 0.001; CON vs. LNA: †P < 0.05, †††P < 0.001; LN vs.
LNJ: ++P < 0.01, +++P < 0.001; LNA vs. LNJ: #P < 0.05,
##P< 0.01, ###P< 0.001
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significant differences among the dietary groups. How-
ever, in 4-month-old rats, the increased glycemia and
AUC levels clearly indicate a progression of impaired
glucose tolerance in the Fresubin-fed LN and LNA rats.
This could be the result of progressing weight gain, and
obesity is accompanied by low-grade inflammation and
insulin resistance. Several studies demonstrated that
diet-induced obesity (DIO) rats on a high-fat diet are
characterized by a decline in glucose tolerance and
insulin secretion. They also showed that glucose intol-
erance in these rats deteriorated with age; however, they
never developed frank diabetes [50, 61]. The absence of
diabetes was also noted in Wistar rats during long-term
fat feeding [15]. Levin and Dunn-Meynel reported ele-
vated insulin levels in DIO rats after either consuming a
high-energy diet or a high-energy diet supplemented
with the palatable liquid nutrition Ensure for 10 weeks
[47]. In a short-term study of Yang et al. in C57BL/6J
mice, a high-fat, high-sucrose diet consumed for 2 or
4 weeks caused a significant 2.2- and 1.1-fold increase
in plasma insulin levels, respectively, compared to the
control group [82]. Our data related to insulinemia
showed that at the age of 2 months (5 weeks of Fresubin
consumption), no differences in circulating insulin
levels were found between the chow-fed and liquid
nutrition-fed rats. However, at the age of 4 months, the
LN rats (consuming Fresubin for 14 weeks) had 173 %
higher plasma insulin levels and the LNA rats (consum-
ing Fresubin for 1 month) had 116 % higher insulin
levels than chow-fed control rats. This observed
hyperinsulinemia could represent a compensatory
mechanism in order to counteract any decreased insulin
sensitivity.

We suggest that the simultaneous occurrence of
hyperleptinemia, hyperinsulinemia, and impaired glu-
cose tolerance in obese adult LN and LNA rats could
be explained by the theories of leptin resistance and
dysregulated adipo-insular axis [41]. It is possible that
chronically elevated leptin levels led to the development
of leptin resistance with the breakdown of leptin

signaling in the hypothalamus and pancreatic β cells.
This led along with disinhibition of food intake and
subsequent hyperphagia, to the dysregulation of the
adipo-insular axis and to the failure of leptin’s suppres-
sive effect on insulin secretion, resulting in chronic
hyperinsulinemia. Additionally, hyperinsulinemia exac-
erbates adipogenesis, thereby increasing leptin produc-
tion. This positive leptin–insulin feedback loop may,
according to Kieffer and Habener (2000), be an impor-
tant factor in the pathogenesis of obesity-associated
diabetes mellitus [41].

We have also assessed the circulating levels of C-
peptide, which is formed in the biosynthesis of insulin in
the pancreatic β cells of Langerhans and released in
equimolar amounts to the portal circulation [27, 84].
The levels of C-peptide reflected insulin levels during
the assessments at 2 and 4 months. These data are in
agreement with the observed impaired glucose tolerance
in adult liquid nutrition-fed rats (LN, LNA), as it was
shown that patients with insulin resistance and early
type 2 diabetes exhibit elevated levels of C-peptide
[8]. Altogether, these results show that there are age-
dependent differences affecting circulating insulin levels
and the progression of glucose intolerance and/or insulin
resistance in our model of liquid nutrition-induced obe-
sity in rats.

Fresubin intake induced pro-inflammatory milieu
in the adipose tissue

Adipose tissue can expand through adipocyte hypertro-
phy and/or hyperplasia [31]. During the progression of
obesity, adipocyte hypertrophy precedes hyperplasia for
the requirement of additional energy storage [32, 65,
76]. Marked increase in adipocyte size in response to
Fresubin was observed also in our study. There is evi-
dence that adipocyte hypertrophy is a strong predictor of
the adipose tissue macrophage content. However, the
mechanisms underlying the potential relationship be-
tween adipocyte size and macrophage infiltration seem
to be multifactorial [32]. Hypertrophied adipocytes are
characterized by higher lipolytic activity [52], which
might be the trigger for macrophage infiltration [32].
As stated by Jernas et al., larger adipocytes display an
altered adipokine profile toward increased secretion of
chemoattractant and immune-related proteins, which
could promote macrophage activation and migration
into adipose tissue [37]. In our study, significantly
higher levels of Cd68, Mcp1, and Nfkb mRNA, the

�Fig. 6 Gene expression of leptin (a), adiponectin (b), glucose
transporter 4 (Glut4; c), peroxisome proliferator-activated receptor
γ (Pparg; d), and fatty acid binding protein (Fabp4; e) in
epididymal adipose tissue of rats fed by pelleted chow (CON),
liquid nutrition (LN), liquid nutrition in juvenility (LNJ), or liquid
nutrition in adulthood (LNA). Each value is displayed as mean
± SEM (n= 7–10 for each group). Statistical significance between
groups (Bonferroni post-tests) CON vs. LNA: †††P< 0.001; LNA
vs. LNJ: ###P< 0.001; LNA vs. LN: ΔΔΔP< 0.001
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markers of pro-inflammatory M1 macrophages, were
found in the mesenteric adipose tissue of rats fed by
Fresubin throughout the entire study (19 weeks). In
addition, in LN rats we found increased gene expression
of Emr-1 (protein expressed on macrophages; data not
shown) in fat tissue, indicating macrophage infiltration.
In the LNA rats, which consumed Fresubin only during
adulthood (for 9 weeks), we found a significant increase
in the expression of Cd68 and Nfkb and a trend toward
an increase in Mcp1 levels. Therefore, we suppose that
in our model of Fresubin-induced obesity, a low-grade
inflammation may be present in the hypertrophied adi-
pose tissue; however, the onset (weaning in LN and LNJ
group vs. adulthood in LNA group) and duration of
Fresubin intake (9 weeks in LNJ/LNA group vs.
19 weeks in LN group) are crucial factors. This is in
accordance with the findings of Yu et al. in male
C57BL/6 mice fed a high-fat diet for 12 weeks. They
examined the expression of chemokines and macro-
phage markers and found that the expression of Mcp1
and Cd68 mRNA significantly increased in all types of
adipose tissue (mesenteric, epididymal, renal, and sub-
cutaneous) of the obese mice compared with non-obese
counterparts [85]. Also, Xu et al. reported a dramatic up-
regulation ofMcp1 expression in the epididymal fat pad
in mice after 16 weeks on a high-fat diet [81]. Similarly,
Chen et al. reported an elevated adipose expression of
Mcp1 in response to high-fat diet [16]. An increase in
the MCP-1 levels in the visceral fat tissue has also been
found in obese humans [10]. It is known that leptin
activates some pro-inflammatory pathways, including
a stimulatory effect on the production of MCP-1 [44].
Therefore, we suggest that the increased leptin expres-
sion, as well as circulating leptin levels, might have a
stimulatory effect onMcp1 expression in adipocytes. To
examine the role of adipose tissue macrophages in in-
sulin resistance, Di Gregorio et al. examined expression
ofCd68 in human adipose tissue and found a significant
inverse relation between Cd68 mRNA and insulin sen-
sitivity [19]. Elevated Cd68 mRNA levels found in LN
and LNA groups are in accordance with these findings.

Many studies have characterized obesity, metabolic
syndrome, and diabetes as a state of metabolically driv-
en low-grade chronic inflammation [23, 24, 64]. Accu-
mulated macrophages are important sources of many
cytokines in adipose tissue [19, 23]. Numerous theories
have been proposed that may explain macrophage re-
cruitment into adipose tissue in the obese state, includ-
ing increased adipocyte size and necrosis, local hypoxia,

and nutritional endotoxemia [32]. There is also evidence
that chronic inflammation promotes the development of
insulin resistance and other metabolic disturbances by
stimulating NF-κB pathways in adipocytes and liver
[29, 34]. Another contributing factor might be the in-
creased levels of free fatty acids (FFA) released from
enlarged adipocytes in obesity. It has been demonstrated
that saturated fatty acids can act as ligands for toll-like
receptor 4 and induce the activation of the NF-κB path-
way, which is accompanied by a release of inflammatory
cytokines from macrophages [26]. Increased gene ex-
pression of Nfkb found in mesenteric adipose tissue of
LN and LNA groups support the role of adipose-derived
inflammation as a factor contributing to alteration of
glucose tolerance in obese individuals.

Fresubin intake alters metabolism in adipose tissue

We also focused on the expression of selected markers
of adipogenesis, namely Glut4, Pparg, and Fabp4 in
epididymal adipose depot. A slightly reduced
expression of the Glut4 and Pparg genes was found in
both liquid nutrition-fed groups of rats (LN and LNA),
while in the case of Fabp4, we detected a significant up-
regulation of gene expression in LNA rats. Our findings
concerningGlut4 are in accordance with several studies.
For example, a reduction in the GLUT4 content of
insulin-sensitive tissues has been reported in several
models of genetically [39, 71] or pharmacologically
[60] treated obese animals [73]. The same results have
been achieved in diet-induced obesity models. High-fat
feeding is known to cause insulin resistance and
reduction of Glut4 expression in adipose tissue and
skeletal muscle [74] and it is dependent on both the
composition and initiation of the diet [36]. We can
hypothesize that longer Fresubin consumption could
have an even more pronounced impact on Glut4
expression while playing a significant role in the
physical deterioration associated with obesity by
insulin resistance and of course, aging.

PPAR-γ is generally accepted as a master transcrip-
tional regulator of lipid as well as glucose metabolism
[7, 83]. Inhibition of PPAR-γ function by inflammatory
cytokines such as TNF-α may contribute to pathogene-
sis of many diseases, such as insulin resistance, athero-
sclerosis, and inflammation [83]. There is an interesting
evidence that the nuclear receptor PPAR-γ might be
affected by the composition of fatty acids in the diet,
as n-3 and n-6 fatty acids are ligands for PPAR-α and
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PPAR-γ [18, 66]. However, the existing data are still
controversial, as it seems that polyunsaturated fatty
acids of the n-6 and n-3 series are not equipotent in
promoting adipogenesis in vitro and adipose tissue
development in vivo [1]. There are specific differences
in the action of n-3 and n-6 fatty acids when applied in
different cell lines or different fat depots of the body.
According to Muhlhausler et al., polyunsaturated fatty
acids (PUFAs) of the n-3 and n-6 classes have the ability
to influence the rate of lipid accumulation, while n-3
PUFAs inhibit and n-6 PUFAs promote lipid accumula-
tion [55]. This effect results from modulation of the
expression of the key lipogenic transcription factor,
sterol regulatory element binding protein 1-c
(SREBP1c), which is inversely related to the concentra-
tion of n-3 PUFAs, and positively related to n-6 PUFA
concentration. Importantly, it was found that fat depots
in different anatomical locations have different degrees
of responsiveness to altered levels of n-3 and n-6 ratio in
the body, with effects being more pronounced in the
omental adipose tissue compared to the visceral retro-
peritoneal depot. Interestingly, they did not find any
differences in the expression of Pparg mRNA between
the dietary treatments [55]. The activation of the
proadipogenic transcription factor, Pparg, and thereby
stimulation of adipocyte differentiation/proliferation
through n-6 arachidonic acid was also demonstrated
by Massiera et al. in their study [51]. Some of the below
discussed studies found a reduction of Pparg expression
after n-3 administration, and on the contrary, others
confirmed increased expression of this gene. Reseland
et al. observed a reduction in Pparg expression in cell
cultures of the human trophoblast cell line (BeWo)
incubated with n-3 polyunsaturated fatty acids (EPA,
DHA) that was also accompanied by a reduction in
leptin expression [66]. It was also found that n-3 fatty
acids suppress PPAR responses in MCF-7 human breast
cancer cells, whereas the same n-3 fatty acids stimulate
trans-activation of a PPAR response element in HepG2
tumor cells [45]. Also, the previous findings of Al-
Hasani and Joost suggest that the n-3 fatty acids act to
increase PPAR-γ activity in white adipose tissue, and
that this is associated with increased insulin sensitivity
[2]. We can hypothesize that the reduction of Pparg
mRNA seen in the LN and LNA rats was triggered
due to the fatty acid composition of Fresubin, of which
saturated fatty acids make up 8.8 %, monounsaturated
fatty acids make up 64.7 %, and polyunsaturated fatty
acids 26.5 % (members of n-3 represented by α-

linolenic acid, eicosapentaenoic acid, docosahexaenoic
acid, and one member of n-6 linoleic acid). The ratio of
n-6/n-3 in Fresubin was 2.3/1. Some studies indicated
that the balance of n-3 and n-6 fatty acids in the diet is
most likely a very important factor, as there is the
possibility that n-3 fatty acids could act to suppress the
adipogenic and lipogenic effects of n-6 fatty acids [1].
Whether this was the case also in our experiment re-
mains questionable, as this issue was not the main
objective of the study. Beside the effect of PUFAs, the
inhibitory effect of inflammation (increased expression
of inflammatory markers MCP-1, CD68, TNF-α, and
NF-κB) on Pparg expression and adipocyte differentia-
tion seems more significant.

Fabp4 is expressed in adipocytes and macrophages,
andmodulates the inflammatory andmetabolic response
[87]. Expression of Fabp4 is highly induced during
adipocyte differentiation and is transcriptionally
controlled by PPAR-γ agonists, fatty acids, and insulin.
It has been reported that increased circulating FABP4
levels are associated with obesity, insulin resistance,
type-2 diabetes, hypertension, cardiac dysfunction, and
atherosclerosis [24, 58, 80]. In obese humans, FABP4
levels are significantly increased compared to the lean
controls, and serum FABP4 levels are positively
correlated with waist circumference, blood pressure,
and insulin resistance [80]. Deficiency of FABP4
partially protects mice against the development of
insulin resistance associated with genetic or diet-
induced obesity [13, 25]. In our study, significantly
elevated Fabp4 mRNA levels were found solely in the
Fresubin fed LNA rats. We can hypothesize that this
increased expression of Fabp4 results from the marked
obesity accompanied by the increased fat mass and
adipocyte hypertrophy in LNA rats. As the function of
FABP4 is to carry the fatty acids from the cytoplasm to
the nucleus where they act as PPAR-γ ligands, the
increased fatty acid metabolism should be considered
significant [43]. Our data indicate that the age at which
Fresubin intake started as well as duration of Fresubin
intake are crucial factors responsible for observed in-
crease of Fabp4 mRNA levels. However, this issue
needs further elucidation. The trend toward Bdown-
regulation^ of Fabp4 expression found in the obese
LN group could, according to Queipo-Ortuno et al.,
result from possible adipose tissue dysfunction leading
to metabolic disorders [63]. These authors found down-
regulation of Fabp4 mRNA in obese patients and spec-
ulate that low Fabp4 expression in adipose tissue could
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lead to lower free fatty acid transport to β-oxidation,
resulting in FFA accumulation that may exceed the
adipose tissue storage capacity. This excess fat is then
transported to non-adipose tissues such as the liver,
where the initial response is to facilitate storage in the
form of triacylglycerides, but the limited capacity quick-
ly becomes saturated. As lipid excess produces toxic
reactive species promoting lipotoxicity [63], high adi-
pose tissue Fabp4 expression may have a protective
role, controlling the availability of FFA and their me-
tabolites in the cytoplasm [63, 86].

Conclusions

To the best of our knowledge, this is the first study
investigating the metabolic effects of liquid nutrition used
as a full replacement for solid, pelleted food in rats. Our
long-term study has demonstrated that liquid nutrition
Fresubin fed Wistar rats develop marked visceral obesity
with adipocyte hypertrophy accompanied by impaired
glucose tolerance, hyperleptinemia, hyperinsulinemia,
hyperadiponectinemia, increased C-peptide levels, and
an altered gene expression profile of visceral adipose
tissue marked by up-regulated expression of inflammato-
ry markers (Cd68,Mcp1, Nfkb) and altered expression of
selected markers of adipogenesis (Glut4, Pparg, Fabp4)
indicating the development of metabolic syndrome. The
observed hyperadiponectinemia represents an interesting
finding and points toward the possibility of adiponectin
resistance in Fresubin-fed obese rats. The attributes of
Fresubin, such as palatability, fluidity, macronutrient
composition, lower caloric density than the solid chow
diet, along with ease of ingestion, digestion, and absorp-
tion play an important role in the development of the
above-mentioned phenotype and the hyperphagia.
Chronic Fresubin feeding may therefore represent a suit-
able model of metabolic syndrome. Importantly,
Fresubin-induced metabolic alterations are reversible as
the transition from Fresubin to standard pelleted chow is
accompanied by normalization of values of determined
factors and metabolic alterations clearly showing a high
flexibility of metabolism depending on the type of con-
sumed diet.
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