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Abstract Differential effects of n-3 and n-6 polyunsat-
urated fatty acids (PUFAs) have been demonstrated on
adipose tissue physiology. Facing to the widely recog-
nized beneficial effects of n-3 PUFAs, the n-6 PUFA
effects remain controversial. Thus, we further analyzed
the linoleic acid (LA) influence on adipocyte functions.
To this aim, we treated by LA supplementation at three
distinct doses (1, 2.5, or 5 % of energy intake) rats with
essential fatty acids deficiency (EFAD). PUFA compo-
sition was determined in blood and white adipose tissue
(WAT), while lipolytic and lipogenic activities were
measured in isolated adipocytes. EFAD rats exhibited
reduced WAT mass and increased EFAD biomarkers.
WAT mass was completely recovered after supplemen-
tation, irrespective of LA dose. However, neither body
mass nor EFAD biomarkers returned to control with 1%
LA, while LA abundance doubled in adipocytes from

rats supplemented with 5 % LA. Regarding lipolysis,
2.5 % LA normalized the EFAD-induced alterations. A
trend to decrease the maximal stimulation of lipolysis
was observed with 1 and 5 % LA. Regarding lipogene-
sis, the lower and higher LA doses increased basal
activity and hampered insulin to further stimulate glu-
cose incorporation into lipids whereas 2.5 % LA nor-
malized the basal or insulin-stimulated levels. Our re-
sults show that dietary linoleate at 2.5 % restored ana-
tomical, biochemical, and functional disturbances in-
duced by EFAD. At higher dose, LA tended to reduce
triacylglycerol breakdown, to increase triacylglycerol
assembly, and to provoke insulin resistance. Therefore,
LA influence on adipocyte functions does not appear to
follow a typical dose–response relationship, adding fur-
ther complexity to the definition of its dietary
requirement.
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Introduction

Linoleic acid (C18:2n-6) and alpha-linolenic acid
(C18:3n-3) are essential fatty acids (EFAs) that cannot
be synthesized in animals while they are necessary for
metabolism and must be supplied by an equilibrated
diet. They belong to the families of n-3 and n-6 polyun-
saturated fatty acids (PUFAs), having more than one
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double bond located at the third and sixth carbon atom
from the methyl group. Other unsaturated fatty acids
from the n-7 and n-9 PUFA families can be synthesized
in mammals owing to the delta-9 desaturase and are not
considered to be dependent on nutritional intake. The
absence of EFAs in a diet induces the appearance of
specific manifestations (EFA deficiency): growth retar-
dation, dermatitis, alopecia, decreased cold tolerance,
and increased susceptibility to infection [28, 45, 49].
EFA deficiency can be detected by biochemical indexes
before the appearance of such clinical signs: whatever
the blood lipid fraction considered (cells or plasma),
there are decreased circulating levels of linoleic and
arachidonic acid (C20:4n-6) and increased percentages
of eicosatrienoic acid (C20:3n-9). Thus, a ratio of
C20:3n-9 to C20:4n-6 (also known as ω9/ω6) higher
than 0.2 is a recognized biomarker used to characterize
EFA deficiency [30, 45, 49].

However, the complex metabolism of PUFAs, added
to the recent evolution of human nutrition (dramatic
increase of n-6 PUFA intake resulting from consump-
tion of industrialized foods) [2], has complicated the
guidelines for the definition of a regular PUFA intake
in our diet [32]. For the consumer, it becomes difficult to
maintain the equilibrium between deficiency and ex-
cess. Alongside the cases of EFA deficiency in malnu-
trition, it is the ratio between n-6 and n-3 PUFA intake
that has been the matter of numerous nutritional studies.
Supplementations with n-3 PUFAs are widely recom-
mended, at least for the mitigation of cardiovascular
diseases, and there is clinical evidence that n-3 PUFAs
act as possible therapeutic agents in many other dis-
eases: metabolic, neurological, immunological, etc.
[7]. Therefore, current nutritional recommendations
aim at limiting the commonly called “omega6/omega3
ratio”, by increasing the n-3 PUFA intake (fish oil) and
reducing the excessive n-6 PUFA consumption [19].
Reducing the ω6/ω3 ratio (which can reach 20 in
certain western diets) is claimed for improving the con-
sumer health and to limit the increased n-6 PUFA intake
[1]; however, there is no clear consensus for an optimal
value for such ratio and values between 4/1 and 2/1 have
been successively proposed [19, 38, 43].

Dose-dependent clinical effects of n-3 PUFA have
even been established to depend on the disease to be
treated/prevented [7]. Most of the beneficial effects of n-
3 PUFAs can be obtained by supplementation with
increasing doses of docosahexaenoic acid (C22:6n-3),
which is metabolized into products that are thought to be

relatively anti-inflammatory (e.g., resolvins) [30]. How-
ever, the benefits of increasing n-3 PUFA intake on the
improvement of insulin responsiveness and glucose
handling [39, 46] can be hampered by enhanced LDL
oxidation, at least when increased intake is obtained via
fish oil supplementation in man [40].

On the opposite, no substantial evidence of the thera-
peutic potential of diet supplementation with n-6 PUFA
has been reported [44]. Linoleic acid (LA, C18:2n-6), the
most important member of n-6 PUFA family, is a precur-
sor of arachidonic acid, promoting prostacyclin produc-
tion, thus favoring fat cell development [2], and generat-
ing pro-inflammatory bioactive lipids involved in cardio-
metabolic diseases [36]. Moreover, it has been reported
that excessive dietary LAwould also act as a precursor of
various endocannabinoids (e.g., anandamide) and would
induce orexigenic hyperactivity and promote obesity via
increased food consumption [3]. Anyhow, there is a
controversy about the practical utility of theω6/ω3 ratio
in modifying cardiovascular disease risk, and it must be
reminded that not all epidemiological studies showed an
association of n-6 PUFAs with cardiovascular diseases
[47] or with cancer [18, 44], while n-6 PUFA deficiency
is undeniably prejudicial [49].

In this context, our objective was not to re-examine
recommendations about the ω6/ω3 ratio but to study
the dose dependency of the effects of LA on adipocyte
functions. In fat tissue, the adipose conversion of pre-
cursor cells is highly enhanced by n-6 PUFAs, which
play a key role on gene expression via the prostaglan-
dins they generate [33, 48]. These prostaglandins also
activate membrane receptors in mature fat cells [9]. In
vitro studies showing that LA reduces insulin influence
on adipokine secretion failed to demonstrate a clear-cut
dose dependency of the direct effect of the fatty acid on
mature adipocytes [37]. In fact, in many cell types, both
n-3 and n-6 PUFAs and their metabolites exert pleiotro-
pic actions: they alter membrane fluidity and sensitivity
to physicochemical and hormonal stimuli, while they
also act on membrane and nuclear receptors. This com-
plexity renders very difficult to evidence a relationship
between dose and response, and the situation is even
more complicated when optimal values of PUFA dietary
intake have to be recommended. So we used the model
of LA supplementation at 1, 2.5, or 5 % of energy intake
in EFA-deficient rats to focus our attention on the dose
dependency of the influence of LA on bodyweight gain,
tissue PUFA composition, and on adipocyte lipolytic
and lipogenic activities.
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Materials and methods

Animals, diets, and experimental design

The experiment was conducted with a total of 36 male
Wistar rats purchased from Janvier (Le Genest Saint
Isle, France), with the approval of animal ethics Com-
mittee of Institut National de la Santé et de la Recherche
Médicale (INSERM Midi-Pyrénées). The rats were in-
dividually housed at 21 days of age in cages placed in an
air-conditioned room (20±2 °C). All animals had free
access to water and were initially fed a standard rodent
chow ad libitum for a 5-day adaptation period. At this
stage, rats were randomly allocated to one of the two
semi-synthetic diets (from UAR laboratories,
Villemoisson-Orge, France), the composition of which
is given in Table 1. The diets were isocaloric (1,668 kJ/
100 g) and contained 22 % of the calories as proteins
(casein), 67 % as carbohydrates (dextrose), and 11 % as
lipids. The lipids were under the form of a mixture of
either peanut plus rapeseed oil for control group (n=12)
or saturated fatty acids, stearate, and palmitate for the
EFA-deficient group (n=24), as previously reported
[22]. After 9 weeks, six rats of each group were eutha-
nized for the determination of “supplementation week
0” levels, while the EFA-deficient rats were distributed
in three groups of six rats supplemented with different

amounts of linoleic acid (LA) at 1, 2.5, and 5 % of
calorie intake for 6 weeks. The amounts of added lino-
leate were chosen in agreement with those reported to be
effective in correcting various alterations induced by
EFA deficiency [25] or claimed to modify diverse met-
abolic aspects in rats [12, 41]. The composition of the
diets in LA, given by the supplier, was verified by gas
chromatography analysis of the lipid fraction, and it was
confirmed that the three supplemented diets contained
0.44, 1.1, and 2.2 g of LA/100 g dry chow, correspond-
ing respectively to 1, 2.5, and 5 % of energy, while the
EFA-deficient chow contained only 0.02 % of energy
under the form of LA (Table 1).

Tissue removal and blood sampling

At the end of experimental period (“supplementation
week 6”), rats were killed after overnight fasting. Blood
samplingwas promptly followed by plasma preparation;
then aliquots were stored at −20 °C until analysis. Three
different white adipose tissues (WAT) were removed
and weighed: inguinal subcutaneous, epididymal, and
retroperitoneal. They were pooled and subjected to col-
lagenase digestion at 37 °C in order to obtain freshly
isolated adipose cells for immediate explorations of
lipolytic and lipogenic activities as in [4]. A portion of

Table 1 Composition of diets (g/100 g dry weight)

Control EFA deficient Supplemented LA 1 % Supplemented LA 2.5 % Supplemented LA 5 %

Casein 22.0 22.0 22.0 22.0 22.0

DL-Methionin 0.13 0.13 0.13 0.13 0.13

Cellulose 2.0 2.0 2.0 2.0 2.0

Dextrose 66.4 66.4 66.4 66.4 66.4

Peanut oil 2.5 – – 2.5 –

Rapeseed oil 2.5 – – 2.5 –

Stearate and palmitate – 5.0 4.3 – 1.5

Sunflower seed oil – – 0.7 – 3.5

Mineral mixturea 3.5 3.5 3.5 3.5 3.5

Vitamin mixtureb 1.0 1.0 1.0 1.0 1.0

Linoleic acidc (2.5 %) (0.02 %) (1 %) (2.5 %) (5 %)

a The mineral mixture provided (in grams per kilogram of diet) Ca (CaHPO4) 3.5, K (KCl) 2.1, Na (NaCl) 1.4, Mg (MgSO4) 0.35, and P
(CaHPO4) 2.7; and (in milligrams per kilogram of diet) Fe (FeSO4) 105, Mn (MnSO4) 28, Cu (CuSO4) 4.4, Zn (ZnSO4) 15.7, and I (KI) 0.2
b The vitamin mixture provided (per kilogram of diet) vitamin A 19,800 IU, D3 2,500 IU, B1 20 mg, B2 15 mg, B6 10 mg, B12 0.05 mg, C
800 mg, E 170 mg, choline chloride 1,360 mg, and biotin 0.3 mg
c Calculated values of linoleic acid content given in parentheses as percentage of energy in the diet and verified after FA determination of the
lipid fraction of the diets
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the washed fat cell suspension was frozen and stored at
−20 °C until biochemical analyses.

Lipolytic activity of rat adipocyte preparations

The chosen index of lipolytic activity was glycerol
release. Briefly, adipocytes isolated by collagenase di-
gestion were washed and resuspended in Krebs–Ringer
salt solution containing 15 mM sodium bicarbonate,
10 mM HEPES, and 3.5 % of serum bovine albumin
(KRBHA) as previously described [34]. For lipolysis
measurement, 5.5 mM glucose was present in the me-
dium and the reference lipolytic agents isoprenaline,
ACTH, adenosine deaminase (ADA), forskolin, or
dibutyryl cAMP (dbcAMP) were tested for 60 min at
37 °C. Then reaction was stopped on ice as described
[14]. Antilipolytic responses were measured under the
same conditions in the presence of 5 μg/mL ADA and
tested antilipolytic agents. A complete antilipolysis was
considered as lowering stimulated levels back to basal
values (set at 100 %), as previously reported [20]. Glyc-
erol release was determined on aliquots of medium by
spectrophotometric measurement at 340 nm, as previ-
ously described [4].

Lipogenic activity of rat adipocyte preparations

Lipogenesis was determined by quantifying the
D-[3-3H]-glucose incorporation into lipids, according to
Moody and co-workers [35]. Fat cells were incubated at
37 °C for 120 min in the same incubation medium as
above, containing 0.6 mM of isotopic glucose dilution as
unique source of carbohydrates. The same vials (Pony
vials from Packard) were used for incubation, for lipid
extraction in an organic mixture for liquid scintillation
not miscible with aqueous solutions, and for counting of
the extracted neo-synthesized lipids, with already report-
ed slight adaptations [11] of the original method of
Moody et al. The mean amount of fat cells distributed
into the incubation vials represented 73.4, 67.5, 79.5, and
71.3 mg cellular lipids in the control, and in the 1, 2.5,
and 5 % LA-supplemented groups, respectively.

Plasma, erythrocyte, and adipocyte fatty acid
composition

Total lipids were extracted from plasma according to the
method of Folch et al. [15]. The erythrocytes were
washed three times with saline and the lipids extracted

as in [10]. The phospholipids (PL) were then separated
by thin-layer chromatography as previously described
[17]. For adipocyte preparations, Folch’s extraction of
total lipids was performed after homogenization. The
neutral lipids were separated from the PL according to
[27]. Then, triglycerides (TG) were separated and the PL
purified by thin-layer chromatography [17].

Gas-chromatography analysis

Plasma and erythrocyte PL fractions were transesterified
as well as PL and TG of adipocytes. Fatty acids of each
fraction were then analyzed on gas chromatograph ac-
cording to the method of Hagenfeldt [21], under previ-
ously reported conditions [23]. The relative proportion
of each FAwas expressed as percentage of a total of 13
quantified saturated and mono- or poly-unsaturated fatty
acids (FA), which were C16:0, C16:1n-9, C16:1n-7,
C18:0, C18:1n-9, C18:1n-7, C18:2n-6, C18:3n-6,
C18:3n-3,c20:3n-9, C20:3n-6, C20:4 n-6, and C22:6n-
3. For clarity, only a subset of the analyzed FAs is
reported in “Results”.

Chemicals

(−) Isoprenaline, forskolin, prostaglandin E1 and E2,
insulin, synacthen corresponding to the first 24 amino
acids of adrenocorticotropic hormone (ACTH), and oth-
er reagents were obtained from Sigma-Aldrich (Saint
Quentin Fallavier, France). Brimonidine (UK 14304)
was a generous gift from late Dr. H. Paris (Toulouse,
France). 3H-glucose and InstaFluorPlus were from
PerkinElmer (Boston and Waltham, USA).

Statistical analyses

Results are given as means ± SEM. Statistical signifi-
cance was assessed by use of Student’s t test. NS de-
notes non-significantly different from respective
control.

Results

Influence of the EFA-deficient diet and of LA
supplementation on body mass

Body weight was significantly reduced in rats fed for
9 weeks with the EFA-deficient diet when compared to
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age-matched pair-fed controls. However, the EFA-
deficient rats rapidly recovered body weight when sub-
jected to LA supplementation (Fig. 1). After 6 weeks of
treatment, the mean body weight was no more different
in groups receiving the diets at 2.5 or 5 % LA and in the
group having free access to control diet. Only the group
receiving 1 % LA exhibited a growth retardation at the
end of supplementation period, in spite of a delayed—
but noticeable—increase in body weight gain, which
averaged 48 g during the last 2 weeks of the supplemen-
tation protocol, while the corresponding value in control
was 35 g.

Adiposity of control and treated rats

Figure 2 shows that the sum of the dissectible fat stores
was dramatically reduced in EFA-deficient rats. These
rats exhibited a significant weight reduction in all of the
dissected adipose depots, i.e., epididymal, perirenal,
mesenteric, and subcutaneous. Rats treated for 6 weeks
with diet supplemented in LA showed a complete re-
covery of this altered parameter since a complete return
to control values was reached, irrespective of the LA
dose. To further unravel the mechanisms underlying
such impressive fattening, which corresponded to more than a doubling of each fat padmass (whatever its anatomic

location, not shown), the lipolytic and lipogenic responses
were studied in isolated adipocytes.

Adipocyte lipolytic activity

First, lipolytic activity of isolated adipocytes was deter-
mined in all the six studied groups: control before (cont
0) and after the 6-week supplementation period (cont 6),
EFA-deficient group before (defi 0), and after LA sup-
plementation at 1, 2.5, or 5 % (percent of calorie intake).
Ex vivo basal glycerol release exhibited only limited
variations among the aforementioned groups, with a
trend to be reduced after LA supplementation (Fig. 3).
Lipolysis was further tested in response to activators and
expressed as fold increase over basal.

Lipolytic effects of isoprenaline and non-adrenergic
agents

At 1 μM, isoprenaline induced a clear-cut lipolytic
activation: basal glycerol release was stimulated by 6–
10-fold according to the group, showing that all prepa-
rations were responsive to β-adrenergic activation, with
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Fig. 1 Influence of linoleic acid supplementation on body weight
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the exception of the groups supplemented with 1 or 5 %
LA, which tended to respond less than the control
(Fig. 4). As expected, the maximal β-adrenergic stimu-
lation remained unchanged in the control group when
checked before or after the 6-week supplementation
period. This was also the case for synacthen (1 μg/mL,
acting via direct activation of Gs-coupled ACTH recep-
tor, also known as melanocortin receptor 2) and for
adenosine deaminase (ADA, 5 IU/mL, removing aden-
osine that inhibits lipolysis via activation of Gi-coupled
A1 receptors). There was a trend to observe the highest
response in the EFA-deficient group when lipolysis was
stimulated by ACTH or ADA. A complete normaliza-
tion of such enhanced lipolysis was detected mainly in
the group supplemented with 2.5 % LA, while those
receiving 1 or 5 % LA appeared to be less responsive
than control (Fig. 4). This indicated that LA supplemen-
tation was not following a monotonous (sigmoidal)
dose–response relationship, as far as lipolytic respon-
siveness was considered, but exhibited a maximum at
2.5 % and decreased at the highest dose tested. The
responses to the lipolytic agents forskolin and dbcAMP
(directly acting on adenylyl cyclase or on protein kinase
A, respectively) also exhibited a tendency to be higher
in the EFA-deficient group, which was normalized after

6 weeks of LA supplementation, whatever the dose
given (Fig. 5).

Antilipolytic responses of EFA-deficient
and LA-supplemented adipocytes

To detect putative changes in the antilipolytic responses,
two types of antilipolytic agents were tested on sub-
maximally stimulated lipolysis and their effects were
expressed as percentage of inhibition of stimulated
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Fig. 4 Influence of LA supplementation on receptor-mediated
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(central section), or adenosine deaminase 5 IU/mL (lower sec-
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lipolysis. The prostaglandins PGE1 and PGE2 shared a
strong antilipolytic effect that, at 10 nM, largely im-
paired the stimulation induced by ADA in control. This
was further increased in EFA-deficient adipocytes since
PGE1 and PGE2 totally abolished lipolysis. Such clear-
cut lipolysis inhibition was not deeply altered after LA
supplementation, and there was no more distinguishable
difference in the prostaglandins’ effect between the
studied groups (Fig. 6). The α2-adrenergic agonist UK
14304 (brimonidine) was much less antilipolytic than
prostaglandins since, at 1 μM, it only partially impaired
ADA stimulation, and an even weaker antilipolytic ef-
fect was observed in rats supplemented with 1 or 5 %
LA (Fig. 6).

Adipocyte lipogenic activity

In the context of the impressive fat depot extension
occurring in rats recovering from EFA deficiency, it
was of interest to study the interplay between LA

supplementation level and adipocyte lipogenic activity.
Surprisingly, basal lipogenesis exhibited a large inter-
individual variability and a tendency to be elevated in
the EFA-deficient rats since it was about 2-fold greater
than in control even though this difference did not reach
statistical significance (Fig. 7). Such apparent in vitro
hyper-lipogenic activity disagrees with the limited
in vivo fat accumulation of EFA-deficient rats. In fact,
the expression of lipogenesis on a per 100 mg cellular
lipid basis participated to a somewhat overestimation of
adipocyte activity since at the start of supplementation
period, there was much numerous smaller fat cells per
lipid mass unit in the depleted WAT of EFA-deficient
rats than in control. Such artifactual bias was not appli-
cable at the end of supplementation period since the
mean fat cell size was similar in treated and control
groups (not shown), and since all groups shared the
same WAT mass (see Fig. 2). Consequently, basal
lipogenic activity was much less variable after the sup-
plementation period: it was equivalent in control and in
rats receiving 2.5 % LA, while it remained clearly
higher in LA 1 % and LA 5 % groups (Fig. 7). Then,
insulin responsiveness was expressed in all the experi-
mental groups as fold increase over basal lipogenesis
since such expression is independent of the units used to
quantify activity (per 100 mg lipid or per 106 cells), as
already documented [11]. In these conditions, insulin
increased by approximately 2-fold the spontaneous glu-
cose incorporation into lipids, at least in control before
and after the 6-week treatment period (Fig. 8). The trend
to exhibit an increased insulin responsiveness found in
the EFA-deficient adipocytes totally disappeared in rats
receiving 2.5 % LA. On the opposite, rats challenged
with 1 and 5 % LA displayed a lower responsiveness to
insulin than control (Fig. 8).

Lastly, it was examined how forskolin was altering
lipogenesis. The diterpene deeply impaired basal lipo-
genesis in controls, in EFA-deficient and in 2.5 % LA
group, while it was unable to hamper the elevated basal
lipogenesis of the groups supplemented with 1 or 5 %
LA (Fig. 8).

Influence of EFA deficiency and LA supplementation
on fatty acid composition in plasma and erythrocyte
phospholipids

FA composition of plasma and erythrocyte PL is shown
in Tables 2 and 3, respectively. As expected, we ob-
served in EFA-deficient rats an important decrease of
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C18:2n-6 and C20:4n-6 in both fractions, while the
C20:3n-9 percentage increased. As a consequence, the
EFA deficiency was characterized by a high ω9/ω6
ratio, especially in plasma PL (Table 2). The FA com-
position of plasma PL returned to control values within
6 weeks of LA supplementation at 2.5 and 5 %. By
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of three observations in each of
the indicated groups. Different
from respective control at
*p<0.05
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Fig. 7 Basal lipogenesis in rat adipocytes. Glucose incorporation
into neo-synthesized lipids is given as nmol/100 mg cellular lipids/
120 min for control (closed circles) and EFA-deficient rats (open
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Fig. 8 Influence of LA supplementation on stimulation or inhibi-
tion of de novo lipogenic activity in white adipocytes. Insulin
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contrast, in the group at 1 %, 6 weeks of treatment were
not sufficient to recover these biomarkers: the level
C18:2n-6 remained low, while C20:3n-9 and ω9/ω6
ratio were elevated. In erythrocytes, all the manifesta-
tions of deficiency disappeared after 6 weeks with LA at
5 %. With 2.5 % LA, only the proportion of C20:3n-9
remained elevated (Table 3), while in rats fed with diet at
1 % LA many biomarkers remained indicative of EFA
deficiency.

LA supplementation and FA composition in adipocyte
phospholipids and triglycerides

In adipocytes (Table 4), FA composition of membrane
PL and stored triglycerides displayed the characteristic
signs of EFA deficiency: important decrease of linoleic
and arachidonic acid (C18:2n-6 and C20:4n-6). More-
over, the increase of C20:3n-9 and ω9/ω6 ratio ap-
peared to be limited in triglycerides, suggesting a buff-
ering action of lipid storage/mobilization relative to
changes in FA composition. For most of the FA

analyzed, a disappearance of the signs of EFA deficien-
cy was evident after 2.5 % LA supplementation. The
higher LA dose allowed a more complete or rapid
recovery, but was also accompanied with intriguing
rebounds such as increased C18:2n-6 proportion in
stored triglycerides (Table 4). Evidently, adipocytes
from 1 % LA supplemented group still revealed bio-
chemical signs of EFA deficiency, as for blood fractions.

Discussion

Our results show that, when supplemented with LA at
2.5 %, EFA-deficient rats exhibited a restoration of all
observed alterations: anatomical (body and adipose tis-
sue mass), functional (adipocyte lipolytic and lipogenic
responses), and biochemical (fatty acid composition). In
deficient rats supplemented with either 1 or 5 % LA, the
adipose mass was completely regained while adipocytes
surprisingly did not completely improve their altered

Table 2 Influence of EFA-deficient diet and of LA supplementation on FA composition of plasma phospholipids

LA supplementation duration:

0 week 6 weeks

Cont 0 Deficient Cont 6 1 % LA 2.5 % LA 5 % LA

C18:2n-6 7.4±0.1 1.8±0.2*** 9.3±0.4 6.8±0.6* 10.0±0.6 9.4±0.5

C20:4n-6 23.2±0.8 4.2±0.6*** 22.5±1.1 20.5±1.2 21.7±1.3 28.1±1.2*

C20:3n-9 0.3±0.0 20.0±1.0*** 0.4±0.1 3.3±0.3*** 0.7±0.2 0.3±0.1

ω9/ω6 0.02±0.00 5.0±0.7*** 0.02±0.00 0.16±0.02** 0.03±0.01 0.01±0.00

Results are expressed as percentage of a total of 13 fatty acids (FA) analyzed in the PL fraction.Mean±SEM of three observations.ω9/ω6 is
the ratio of C20:3n-9/C20:4n-6. Different from control group of the same age at *p<0.05, **p<0.01, and ***p<0.001

Table 3 Influence of EFA-deficient diet and of LA supplementation on FA composition of erythrocyte phospholipids

LA supplementation duration

0 week 6 weeks

Cont 0 Deficient Cont 6 1 % LA 2.5 % LA 5 % LA

C18:2n-6 5.9±0.1 1.2±0.2*** 6.6±0.2 5.1±0.0** 7.2±0.2 7.0±0.8

C20:4n-6 26.4±0.6 12.9±0.9*** 24.2±1.2 22.4±1.8 24.5±1.5 28.3±0.6*

C20:3n-9 0.3±0.1 19.4±2.0*** 0.3±0.0 4.6±0.3*** 1.5±0.2** 1.1±0.3

ω9/ω6 0.01±0.00 1.5±0.2** 0.01±0.00 0.21±0.00*** 0.06±0.01** 0.04±0.01

Results are expressed in percentage of a total of 13 fatty acids (FA) analyzed in the PL fraction. Mean±SEM of three observations. Different
from control of the same age at *p<0.05, **p<0.01, ***p<0.001
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responses and displayed high spontaneous lipogenic
activity.

The EFA-deficient state of the rats used for the LA
supplementation protocol was clearly evidenced by rec-
ognized biomarkers such as decreased n-6 PUFAs and
increased C20:3n-9. Consequently, an increasedω9/ω6
ratio, recognized to be a sign of a lack of dietary EFA
[22, 30], was found in blood fractions: plasma and
erythrocyte phospholipids. This was also the case for
the stored triglycerides and the membrane phospho-
lipids of adipocytes. Such clear-cut biochemical chang-
es were accompanied by only a weak trend to elevate
basal lipogenesis and to increase the responses to lipo-
lytic activators, at least when adipocyte functions were
investigated ex vivo. The moderate tendency to increase
insulin lipogenic effect observed after LA restriction
cannot be considered as surprising since an increased
conversion of glucose to lipids, already observed in rats
subjected to EFA deficiency, has been reported to vary
according to strain differences [5].

The biomarker alterations such as increased ω9/ω6
ratio were recovered after 6-week supplementation with
LA in a typical dose-dependent manner. Our study show
that even the FA composition of lipids stored in fat cells
was sensitive to dietary n-6 PUFAs. This confirmed that
ingested LA can accumulate in fat tissues, as already
demonstrated by kinetic studies using stable isotope
tracers [31]. The restoration of the FA composition

found in diverse lipid fractions also demonstrated that
the percentages of LA in the supplemented diets were
adequately chosen. Among the three different levels of
LA, the lower set at 1 % of energy can be considered as
insufficient, and that at 2.5 % close to the recommended
levels. Notably, the 5 % level provoked an LA accumu-
lation in fat cell droplets that exceeded normal values.
Indeed, recommendations for daily LA human intake
vary from 2 to 3 % of total energy for adequate intake to
assure good growth, development, and biological func-
tions [44]. An upper limit has been fixed to 4–6 % of
energy, considering the risk of inflammation or obesity
linked with significant LA consumption as non-
negligible [44]. Accordingly, the supplementation at
2.5 % of LAwas sufficient in our model to allow body
weight, biomarkers, and most of the adipocyte re-
sponses to return to control values. By contrast, 6 weeks
of supplementation at 1 % LAwere not sufficient for a
total recovery of body mass and of most of biochemical
markers, except the C20:4n-6 blood levels. Neverthe-
less, the lower LA dose surprisingly allowed a complete
recovery of fat depot mass (subcutaneous, epididymal,
and retroperitoneal). The elevated basal lipogenesis,
together with the impaired antilipolysis (at least that of
α2-adrenergic nature) and the blunted lipolytic capacity
(lowered maximal responses to isoprenaline or ADA)
found in adipocytes from the 1 % LA group, indicated
that WATwas still recovering from the EFA deficiency-

Table 4 FA composition of adipocyte membrane phospholipids and of fat droplet triglycerides

LA supplementation duration

0 week 6 weeks

Cont 0 Deficient Cont 6 1 % LA 2.5 % LA 5 % LA

Adipocyte membrane phospholipids:

C18:2n-6 11.5±0.2 4.7±1.4** 7.8±2.3 4.5±0.4 9.6±2.7 9.8±1.3

C20:4n-6 3.7±0.7 1.5±0.1* 3.3±0.1 1.4±0.5* 2.9±0.7 3.8±0.9

C20:3n-9 0.3±0.0 2.6±0.1*** 0.3±0.1 3.9±1.0* 0.7±0.5 0.2±0.1

ω9/ω6 0.08±0.01 1.8±0.3*** 0.08±0.01 2.6±0.1*** 0.3±0.2 0.07±0.02

Fat droplet triglycerides:

C18:2n-6 6.8±0.7 0.5±0.1*** 8.8±0.8 2.1±0.2*** 6.2±0.6 14.8±1.8*

C20:4n-6 0.14±0.01 0.07±0.02* 0.2±0.0 0.01±0.00*** 0.12±0.02 0.2±0.0

C20:3n-9 0.2±0.1 0.2±0.1 0.3±0.1 0.5±0.1 0.5±0.1 0.5±0.1

ω9/ω6 1.2±0.3 2.4±0.6 2.1±0.1 8.2±2.0*** 5.7±2.3 2.3±0.5

Results are expressed as percentage of FA of a total of 13 FA analyzed in the corresponding fraction. Mean±SEM of four and three
observations for before (week 0) and after LA supplementation, respectively. Different from same age control at *p<0.05, **p<0.01,
***p<0.001
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induced disturbances by exaggerating mechanisms that
favor lipid storage. Undoubtedly, upon LA administra-
tion, WAT was the site of an intense anabolism leading
to fat store repletion. The supply of only 1 % LA was
probably moderating such adipose store repletion,
though leading to a complete recovery in 6 weeks, while
one can suppose that a shorter period was necessary
with 2.5 or 5 % supplementation. More intriguingly,
the higher LA dose of 5 % induced a state of adipocyte
responsiveness that was resembling that found in rats
supplemented with 1 % LA. With the lower and the
higher doses, there was a tendency to reduce maximal
lipolysis and to increase lipogenesis up to a state that
was resistant to further stimulation by insulin. The insu-
lin resistance found at the higher LA dose deals with that
previously analyzed in 3T3 adipocytes challenged with
300 μM LA [16]. Indeed, the higher dose of dietary LA
(5 % of energy) resulted in an impressive accumulation
of LA in fat cell triglycerides that was twice that found
in control. This is likely a sign of LA overload. In this
case, the deleterious effect of excessive n-6 PUFAs on
insulin resistance originally proposed by Simopoulos on
the basis of clinical observations [42] was confirmed by
our model. Nevertheless, high intake of LA has been
implicated in the impressiveWAT development through
several mechanisms that compensated for this apparent
decreased insulin responsiveness. It is accepted that high
LA levels raise arachidonate abundance in adipose tis-
sue, which, in turn, increases prostacyclin production
and stimulates signaling pathways implicated in adipo-
genesis [33, 36]. Finally, the exaggerated lipid deposi-
tion and the increased lipogenesis we found in WAT of
rats treated with n-6 PUFA was perfectly mirroring the
opposite effects of n-3 PUFAs, which activate lipid
oxidation and reduce lipogenesis in liver [8].

The inability of forskolin to reduce the elevated basal
lipogenesis in the 1 and 5 % LA groups remains unclear
but underlines how elevated was the spontaneous tri-
glyceride synthesis under these conditions. Forskolin
was used to inhibit lipogenesis not as a direct adenylyl
cyclase activator but rather as a glucose uptake blocker
since it binds to cell-surface glucose transporters and
impairs their function [24]. Such blockade was blunting
the glucose incorporation into lipids in the control, EFA-
deficient, and 2.5 % LA-supplemented groups, but ap-
peared inoperative in rats exhibiting an exaggerated
spontaneous lipogenesis (1 and 5 % LA). Probably the
elevated activity of the intracellular enzymes involved in
triglyceride assembly, as already reported for animals

fed LA-enriched diets [29], has rendered less limiting
the transport step in the pathway of glucose incorpora-
tion into lipids. The exact nature of the acceleration of
the glucose incorporation into neo-synthesized cellular
lipids in the fat cells after 1 and 5 % LA supply remains
to be determined. In spite of the absence of any mech-
anistic demonstration, our observations are in total ac-
cordance with the concept that not only dietary fat
amount but also dietary fat composition influence adi-
pose tissue metabolism via perturbations of membrane
functions and cellular metabolic processes [13].

Regarding lipolysis, EFA-deficient rats displayed an
increased sensitivity to activation by various lipolytic
agents, irrespective of their mechanism of action. This
apparently contrasts with the loss of sensitivity reported
for epinephrine-stimulated lipase in similarly deficient
rats [26], but likely fits with the need tomobilize most of
the PUFAs stored in the adipocytes to limit the impact of
EFA deficiency. As with other troubles, these increased
lipolytic responses were recovered with LA supplemen-
tation. The α2-adrenergic antilipolytic component,
known to be larger in obese than in lean rats [6], was
almost unaltered by EFA deficiency, but limited in the
groups supplemented with the low and the high LA
doses, indicating either an incomplete recovery from
deficiency or a dysregulation by excess of n-6 PUFAs.

Since LA has been reported to be a precursor of
prostaglandins [25], it was of special interest to test the
effects of a few prostaglandins on mature adipocyte
lipolysis. We observed that PGE1 and PGE2 induced
antilipolytic effects that were slightly more important in
EFA-deficient adipocytes, an alteration that was
corrected by LA supplementation, independently of
the PUFA dose.

Lastly, our observations were unable to demonstrate
a typical dose dependency of the effects of LA on
several adipocyte functions. They agree with a study
in which linoleate decreased basal adiponectin secretion
and insulin-stimulated leptin secretion when tested
in vitro with rat adipocytes for 96 h [37]. This study
brought evidence that the LA was acting directly on
adipocytes, but raised a concern about the dose depen-
dency of the n-6 PUFA since the effects obtained at 1
and 200 μMwere almost similar. Thus, adipocyte func-
tions (related to lipid handling or to adipokine secretion)
do not seem to follow a typical, sigmoidal, dose–response
curve in the presence of LA. Based on the three LA
supplementation levels we tested, it appeared that the
maximal effect was not induced by the highest tested
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dose. Although limited to a reduced number of observa-
tions, and in spite of possible changes in the proportion of
dietary fatty acids other than LA among the different
experimental semi-synthetic diets we compared in this
study, our findings support that a dietary intake of LA at
5% of energy supply is not an optimal dose for adipocyte
functions. Taken together, our results bring evidence that
dietary LA exquisitely influences lipolytic and lipogenic
activities and that incomplete or excessive intake of this
n-6 PUFA may rapidly promote deleterious effects on
adipose tissue.
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