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Abstract Obesity is often characterized by increased
oxidative stress and exacerbated inflammatory out-
comes accompanying infiltration of immune cells in
adipocytes. The oxidative stress machinery and in-
flammatory signaling are not only interrelated, but
their impairment can lead to an inhibition of insulin
responses as well as a higher risk of cardiovascular
diseases and associated features. Mitochondria, in ad-
dition to energy transformation, play a role in apopto-
sis, cellular proliferation, as well as in the cellular
redox state control. Under certain circumstances, pro-
tons are able to re-enter the mitochondrial matrix via
different uncoupling proteins, disturbing free radical
production by mitochondria. Disorders of the mito-
chondrial electron transport chain, over-generation of
reactive oxygen species, and lipoperoxides or altera-
tions in antioxidant defenses have been reported in
situations of obesity and type-2 diabetes. On the other
hand, obesity has been linked to a low grade pro-
inflammatory state, in which impairments in the

oxidative stress and antioxidant mechanism could be
involved. The current scientific evidence highlights
the need of investigating the interplay between oxida-
tive stress and inflammation with obesity/diabetes on-
set as well as the interactions of such factors either as a
cause or consequence of obesity. The signaling medi-
ated by the activation of inflammatory markers or
nuclear factor kappa β and other transcription factors
as central regulators of inflammation are key issues to
understanding oxidative stress responses in obesity.
This review aims at summarizing the main mecha-
nisms and interplay factors between oxidative stress
and inflammation in human obesity according to the
last 10 years of research in the field.
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Introduction

An increase in oxidative stress-derived inflammation
has been hypothesized to be a major mechanism in the
pathogenesis and progression of obesity-related disor-
ders [21]. Additionally, a rise in inflammatory cyto-
kine levels might drive a further increase in oxidative
stress, setting up a vicious cycle [72]. The complex
and intimate association between both increased oxi-
dative stress and increased inflammation, not only in
obesity but also in related disorders such as type-2
diabetes and cardiovascular disease (CVD), makes it
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difficult to establish the temporal sequence of the
relationship. Deciphering the causes of obesity and
related metabolic disorders is a challenge, in part
because so many body systems are affected. Distur-
bances in one organ or tissue can compromise the
function of several others, therefore separating cause
and effect is often difficult [111]. When energy intake
exceeds energy expenditure, the resulting state of nu-
trient excess can trigger responses in many cell types
such hepatocytes, myocytes, adipocytes, endothelial,
and immune cells, giving rise to metabolic dysfunc-
tion [40, 56]. Each of these responses share the ability
to activate signaling pathways (such as the c-Jun N-
terminal kinase and the inhibitor of kappa B kinase
beta pathways) promoting inflammation [111]. Thus,
inflammation appears to be a common endpoint in
human obesity.

This review aims at summarizing the main mecha-
nisms and interplay factors between oxidative stress
and inflammation in human obesity according to the
last 10 years of research in the field.

Inflammation and obesity

Inflammation is a physiological response of the organ-
ism to harmful stimuli, be they physical, chemical, or
biological. The response provided usually results in
the reestablishment of systemic metabolic homeosta-
sis. Obesity is characterized by the activation of an
inflammatory process in metabolically active sites
such as adipose tissue, liver, and immune cells [47].
However, obesity impairs it and, as such, it elicits a
stress response [109]. This response is characterized
by increasing levels of glucocorticoid, a steroid hor-
mone facilitated and needed for the development and
differentiation of preadipocytes. In addition, there is a
sharp increase in circulating levels of proinflammatory
cytokines, adipokines, and other inflammatory
markers [47]. In fact, the secretion of proinflammatory
factors by the adipose tissue, and, most importantly,
the regulation of their secretion by increasing adipos-
ity, substantiates the hypothesis for an ongoing low-
grade inflammatory process during obesity. In this
context, one of the major contributions in the under-
standing of the inflammatory nature of obesity was the
identification of the cytokine tumor necrosis factor-α
(TNF-α) [42]. Later on, elevated circulating levels of
other molecules such as interleukin (IL)-6 [25],

fibrinogen, C-reactive protein (CRP) [113], monocyte
chemotactic protein-1 [91], serum amyloid A [116], as
well as plasminogen activator inhibitor-1 (PAI-1) [13]
or resistin [52] in obese states supported the relation
between inflammation and obesity in humans. For
instance, IL-6 seems to impair insulin signaling in part
by down-regulation of insulin receptor substrate 1
(IRS1) and up-regulation of the suppressor of cytokine
signaling (SOCS)-3 [86]. Actually, SOCS-3 belongs to
a family of inflammatory mediators, the SOCSs con-
tributing to obesity-induced insulin resistance, which
constitute a negative feedback pathway in cytokine
signaling [57].

Resistin, which is expressed primarily by macro-
phages in humans, seems to be involved in the recruit-
ment of other immune cells and the secretion of pro-
inflammatory factors, including TNF-α [4]. Human
resistin may interfere with insulin signaling by stimu-
lating the expression of phosphatase and tensin homo-
log deleted on chromosome ten (PTEN), which
dephosphorylates 3-phosphorylated phosphoinositide
(PIP(3)); and many of their inflammatory related func-
tions appear to be regulated by activation of the NFκB
transcription factor [4].

Dysregulated production or secretion of adipokines
owing to adipose tissue dysfunction can then contrib-
ute to the pathogenesis of obesity-linked complica-
tions such as inflammatory phenomena. The
identification of the secreted frizzled-related protein
5 (SFRP5), a new adipokine with anti-inflammatory
properties that has beneficial effects on metabolic dys-
function [76], has opened a new way to understand the
interplay between nutrition and inflammation. SFRP5
was expressed at high levels in mouse white adipose
tissue but was downregulated in the adipose tissue of
various obese rodents, as well as in the visceral adipose
tissue of obese individuals with adipose tissue inflam-
mation and insulin resistance [76].

Various dietary compounds including long chain
omega-3 fatty acids [7], antioxidants [18], prebiotics,
and probiotics [54, 73] have also the potential to
modulate predisposition to inflammatory conditions
and may have a role in their management [8]. These
components act through a variety of mechanisms that
include decreasing inflammatory mediator production
through effects on cell signaling and gene expression.
Lipid mediators, including lipoxins, resolvins, and
protectins, are also major players in dismantling the
inflammatory response, a process called inflammatory
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resolution. A new class of molecules, maresins, has
also been identified in this process, which are pro-
duced by macrophages from the omega-3 fatty acid
DHA, and can diminish neutrophil accumulation at
inflammation sites as well as enhance phagocytosis
in macrophages [93].

However, as pointed out by Calder et al. [8], the
putative effect of nutritional compounds in strength-
ening the regulatory networks controlling inflamma-
tory responses should be studied in more detail using
conditions and models in which a stress is applied to
the homeostatic control of inflammation [22].

In this context, not only epidemiological but also
well-controlled clinical studies have indeed shown
that the Mediterranean Diet or its main components
are associated with a lower inflammatory status and/or
improved endothelial function [6, 22, 23, 38].

Immunity and activation of inflammatory signaling
pathways in obesity

Activation of the immune response in obesity is me-
diated by specific signaling pathways, with Jun N-
terminal kinase (JNK) and IκB kinase β/nuclear factor
κ-light-chain-enhancer of activated B cells being the
most well studied [47, 60].

The transcription factor NF-κB promotes immunity
by controlling the expression of genes involved in
inflammation. NF-κB regulates expression of the in-
flammatory mediators that recruit monocytes, drive
differentiation to macrophages, and direct macrophage
cell fate determination. NF-κB regulated genes direct
the differentiation of distinct immune cell types [3].

Recent studies have shown that macrophages are
key mediators of obesity-induced insulin resistance
(IR), with a progressive infiltration of macrophages
into obese adipose tissue [36]. Adipose tissue macro-
phages along with the adipocytes produce a wide
range of mediators to the pro-inflammatory response
[101]. Differentiated macrophages can be categorized
as M1 and M2 activated macrophages. M1 macro-
phages produce cytokines such as IL-1β, IL-6, TNF-
α, creating a proinflammatory environment that
blocks adipocyte insulin action, contributing to the
development of IR and type-2 diabetes mellitus [36].
In contrast, immunoregulatory M2 macrophages se-
crete IL-10, an anti-inflammatory cytokine, which
may protect against inflammation. Therefore, NF-
κB-dependent differentiation of monocytes into either

M1 or M2 macrophages, in response to cytokines
produced by lymphocytes and other immune cells,
seems to be a critical factor in the development of
inflammatory metabolic diseases, including obesity
[59, 75]. Thus, a predominant change in secretion of
macrophage-cytokines takes place from anti-
inflammatory to proinflammatory nature. The latter,
together with non-esterified fatty acids (NEFA), acti-
vate key regulators of inflammation such as c-JNK,
inhibitor of KB kinase β (IKKβ) within insulin target
cells [36]. The activity of both JNK and IKKβ is
increased in obesity, resulting in the further activation
of pro-inflammatory transcription factors including
activator protein 1 (c-Jun/Fos) and NF- κB [81]. This
leads to the serine phosphorylation of the insulin re-
ceptor substrate that interferes with insulin action.
Adipocytes from different body depots may have ma-
jor differences in their inflammatory phenotype, with
visceral fat expressing the more detrimental phenotype
and subcutaneous fat the most benign phenotype [50].

Inflammatory signaling pathways are also modulat-
ed by lipids [71]. Free fatty acids bind innate immune
receptors such as Toll-like receptor (TLR) 4 and
TLR2. These receptors are expressed in adipose tissue
and their expression is induced in obese subjects
[106]. The TLR family plays a role in pathogen rec-
ognition and initiation of the innate immune response
[96]. TLR4 stimulation results in the activation of both
JNK and IKKβ [96].

Interestingly, macrophages may not be the only im-
mune cell to infiltrate the adipose tissue during obesity
[35, 83]. In this sense, the functional role of T cell
accumulation has recently been characterized in adipose
tissue. Among these leucocytes, the helper Tcells can be
divided either in Th1 or Th2. Th1 cells are typically pro-
inflammatory and are induced by interferon (IFN) γ.
These white cells produce obese adipose-expressed pro-
inflammatory cytokines such as IFNγ, IL-12, and TNF-
α. On the contrary, Th2 cells are anti-inflammatory cells
induced by IL-4 and produce lean adipose tissue-
expressed cytokines such as IL-4, 5, 10, and 13 [35]. T
cell accumulation may be indeed a primary event in
adipose tissue inflammation [48].

Other factors shown to link inflammation to obesity
include kinases such as extracellular signal-regulated
kinases (ERK) and mammalian target of rapamycin
(mTOR), genes such as glycogen synthase kinase 3
(GSK3β) and S-phase kinase-associated protein 1
(S6K), whereas nuclear receptors such as PPARs and
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liver X receptors have been shown to inhibit the
activation of inflammatory pathways [41].

The role of the inflammasome in obesity

The NOD-like receptors (NLRs) are a family of mol-
ecules that recognize both pathogen- and danger-
associated molecular patterns and are thus important
sensors of cellular stress that result from infection and
cellular instability [46, 94, 114]. Activation of the
NLR proteins NLRP3, NLRP1, and NLRC4 results
in the recruitment of the inflammasome-adaptor protein
and pro-caspase-1 into a highly regulated protein
complex known as the inflammasome [58]. The inflam-
masome activation initiates downstream inflammatory
cytokine production, mainly IL-1β and IL-18 [17].
Recent studies have identified a unique role for inflam-
masome regulation in the induction and pathogenesis of
multiple autoimmune and inflammatory disorders [67].
In this sense, obesity-related factors and endogenous
markers of cellular stress can lead to unchecked activa-
tion of the inflammasome and provoke inflammation
and subsequent destruction of vital organs [58].

A new study by Wang et al. [107] demonstrated that
monocyte-produced microparticles (MP) contain inflam-
masome componen t s , and tha t those f rom
lipopolysaccharide-treated cells also carry IL-1β. Bind-
ing of these latter MP to endothelial cells leads to acti-
vation of NF-κB and ERK1/2 signaling pathways and
upregulation of adhesion molecules [107]. Further re-
search will be needed to determine if this also occurs in
vivo, and which receptors mediate the MP-endothelial
cell binding event, but so far points out the emerging role
for microparticles in endothelial activation.

Further studies have reported that the NLRP3
inflammasome senses obesity-associated molecular
patterns; an important mechanism that participates in
the development of insulin resistance [99, 104, 110].
The influx of macrophages, T cells, and B cells in
adipose tissue in obesity and release of pro-
inflammatory mediators by these cells cause insulin
resistance. The mechanisms that regulate the activa-
tion of these immune cells in adipose tissue are still
largely unclear; however, NLRP3 inflammasome acti-
vation in adipose tissue macrophages may be one of
regulators of immune activation in obesity [17]. In this
sense, inflammasome-mediated caspase-1 activation
in adipose tissue and liver has been shown to impair
insulin-signaling and glucose homeostasis [99].

Studies using knock-in reporter mice suggest that
NLRP3 is largely expressed in myeloid cells [34]. It
appears that the hematopoietic compartment may play
a predominant role in sensing of obesity-related dan-
ger associated molecular patterns and subsequent pro-
duction of IL-1β and IL-18 [104, 110]. As it is known,
obesity is associated with an increase in ceramides,
saturated fatty acids, reactive oxygen species (ROS),
mitochondrial dysfunction, and ATP release from ne-
crotic adipocytes. Interestingly, all these factors have
been shown to activate the NLRP3 inflammasome in
macrophages [53, 99, 104, 110] and its inhibition has
been shown to lower obesity-associated inflammation
and improve insulin sensitivity in animal studies [99,
104]. In addition, a detailed metabolic and molecular
phenotyping of mice deficient in NLRP3 recently
demonstrated that the inflammasome controls energy
expenditure and adipogenic gene expression during
chronic overfeeding [99]. These findings reveal a crit-
ical role of the inflammasome in obesity and insulin
resistance and suggest inhibition of the inflammasome
as a potential therapeutic strategy.

Inflammation and adipose tissue hypoxia

Adipose tissue hypoxia is a potential cause of adipose
tissue inflammation in obesity, resulting from adipo-
cyte hypertrophy. A disproportionate increase in cell
dimensions lengthens the distance oxygen must dif-
fuse, which may lead to a hypoxic state in enlarged
adipocytes [80]. Hypoxia unleashes two responses.
The first is through hypoxia-inducible factor (HIF-
1a) and the second is the unfolded protein response,
which occurs in the endoplasmic reticulum [31, 100].
HIF-1a is a key regulator in the response to alterations
in oxygen tension and modulates the expression of
inflammation-related adipokine genes in human adi-
pocytes, such as leptin, vascular endothelial growth
factor (VEGF), and angiopoietin-like protein 4 [31]. In
addition, the HIF-1a mRNA has been reported to be
overexpressed in morbid obesity [9] and proposed as a
protein marker of hypoxia in human obesity [102]. A
study based on hypoxia-signaling pathway PCR arrays
aiming at obtaining a more global view of hypoxia-
sensitive gene expression in human adipocytes identi-
fied one particular gene, metallothionein-3 (MT-3) as a
highly hypoxia-inducible gene in human adipocytes
[108]. The primary function of this molecule in adi-
pocytes may be protection against hypoxic stress
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The expression of facilitative glucose transporters,
mainly GLUT-1 and GLUT-4, is also induced by low
O2 tension in human adipocytes, and this is accompanied
by a parallel increase in glucose uptake [112].

Furthermore, increased uncoupling protein-1 in the
adipose stromal vascular fraction of obese subjects
[74] suggests that hypoxia may in fact regulate ther-
mogenic and oxidative functions in obesity.

Impairment of the endoplasmatic reticulum function

Inflammation may be also a response to endoplasmic
reticulum (ER) stress [33, 47]. The ER is a cytosolic
organelle that participates in the regulation of lipid,
glucose, cholesterol, and protein metabolism, apart from
being the site of TG droplet formation. In some cells,
nutrient excess impairs ER functioning, activating the
“unfolded protein response” (UPR). Like ROS, this
response can induce inflammation [90]. ER stress and
the unfolded protein response are linked to major in-
flammatory and stress-signaling networks through the
three stress-sensing proteins found in the ERmembrane.
They are inositol requiring enzyme 1 (IRE-1), pancreat-
ic ER kinase (PERK), and activating transcriptor factor-
6 (ATF-6) [90]. The activation of those mediators
attenuates the cellular workload, decreasing protein
translation, clearance, and degradation of excess pro-
teins from the ER lumen; and induces repair, by induc-
ing an antioxidant response and chaperone transcription
to assist with unfolded proteins; and ER biogenesis,
towards recovery and survival of the cell [60]. However,
if the ER stress is not relieved, the UPRmay also induce
cell death via apoptosis and subsequent activation of
inflammation by the UPR [115].

Viral infections and obesity

An understanding of any possible contribution of
causal factors is essential for the proper management
of obesity. In this sense, viral infections have been
considered as a possible cause of obesity [1] alongside
other traditionally recognized causes. Despite the four
viruses: canine distemper virus [61], Rous-associated
virus-7 [11], Borna disease virus, and Scrapie agent
[10] have been reported to induce the so called “infec-
tobesity” in animal models, the interest for the viral
etiology of human obesity appeared with the adenovi-
rus family [19]. Fifty human adenovirus serotypes
have been so far described. The virus can be

transmitted very easily via respiratory, droplet, vene-
real, and fecal-oral routes. Interestingly, adenovirus-36
(Ad-36) infection has been linked with obesity in
animal models [19, 77] and in humans [2]. Both in
vitro and ex vivo studies in rats demonstrated that Ad-
36 modulates adipocyte differentiation, leptin produc-
tion, and glucose metabolism [105]. Symptoms in the
human studies on Ad-36 included an increase in adi-
pose tissue combined with low levels of serum cho-
lesterol and triglycerides [2, 19]. The underlying
mechanism causing these symptoms remains un-
known, but it has been hypothesized that obesity in
Ad-36 infected individuals may be caused by changes
in brain chemistry, in liver, and may stimulate the
differentiation of preadipocytes as a reaction to viral
infection [1].

However, further epidemiologic studies are needed
to establish a causal link between the viral infections
and human obesity, to determine whether these results
can be used in future management and prevention of
obesity [70].

Oxidative stress and obesity

The production of ROS is considered one of several
adverse cellular responses to nutrient excess in obesity.
These molecules are ubiquitous, highly reactive, short-
lived derivatives of oxygen metabolism produced in all
biological systems that react with surroundingmolecules
at the site of formation [87]. ROS are generated during
glucose or free fatty acids oxidation bymitochondria and
from metabolic processes elsewhere in the cell. These
species include mainly superoxide radical, hydroxyl rad-
ical, and hydrogen peroxide. In physiological conditions,
cells exhibit a self-protective antioxidant activity against
oxidative damage made up of enzymatic (ex. superoxide
dismutase, catalase, glutathione peroxidase) and non-
enzymatic (ex. vitamins E and C) components [103].
When ROS production is increased the disturbed balance
between oxidant and antioxidant factors results in a pro-
oxidative condition [39]. This oxidative stress can then
damage cellular structures and triggers an inflammatory
response [40, 87]. Oxidative stress has been associated
with adiposity, insulin resistance, and metabolic syn-
drome [29, 68], suggesting that oxidative stress could
be an early event in the pathology of these chronic
diseases [12]. Advanced oxidized plasma proteins
(AOPPs), which are indicators of nitrosative stress, have
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been reported to be higher in obese than in lean adoles-
cents, with the highest levels in subjects with co-ocurring
metabolic syndrome [51]. AOPPs are positively corre-
lated with visceral adiposity, TG, lipid peroxidation, and
insulin levels and inversely with the degree of bodymass
reduction [39].Moreover, diverse studies have reported a
positive association of total body fat and waist
circumference with oxidative stress-mediated endothelial
dysfunction [78], and more recently with vascular endo-
thelial cell NADPH oxidase activity [26, 95].

Altered mitochondrial function

Mithochondria are double-membraned cell organelles
specialized in converting energy-yielding macronu-
trients into ATP via oxidative phosphorylation [37].
This process is very efficient, but a small percentage of
electrons may prematurely reduce oxygen forming
toxic free radicals potentially impairing the mitho-
chondria function [65]. Growing body of research
demonstrates that altered mitochondrial energy pro-
duction, particularly in skeletal muscles, is a major
anomaly capable of setting off a chain of metabolic
events leading to obesity [89]. The failure of the
skeletal muscle mitochondria to oxidize fat properly
leads to increased triglyceride synthesis and ectopic
lipid deposits [87,89]. The accumulation of long-chain
fatty acyl coenzyme A molecules, which are fatty acid
derivatives ordinarily oxidized by mitochondria to
generate adenosine 5´-triphosphate, which is essential
for many cellular processes, is one of the cellular
responses to nutrient excess [111]. Together with a
decreased mitochondrial activity, a vicious cycle is
created by further raising the concentration of these
fatty acid derivatives [111]. Cellular infiltration by
excess triglycerides can impair cellular function and
can also lead to oxidative stress through increased
ceramide formation, increased byproducts of lipid per-
oxidation, increased nitric oxide synthase, and inflam-
matory cytokine production and excess ROS
formation [43,89]. Disruption of mitochondrial func-
tion as seen in obesity can increase the production of
these unstable molecules, resulting in additional cellu-
lar injury by damaging lipid membranes, nuclear and
mitochondrial nucleic acids, and proteins, especially
essential respiratory chain enzymes, creating a vicious
cycle of impaired beta-oxidation [89].

Under certain conditions, protons can also reenter the
mitochondrial matrix through different uncoupling

proteins (UCPs), which leads to heat dissipation without
contributing to ATP formation, but affects the control of
free radicals production by mitochondria [85]. Later
studies have shown that UCPs have an important role
in the pathogenesis of various metabolic disorders, in-
cluding obesity and diabetes [15, 98]. These mitochon-
drial membrane transporters might play a major role in
the energetic metabolism and thermogenesis. Overall,
UCP2 could be of interest because of its ubiquitous
expression and its important expression in adipose and
skeletal tissues [98]. Polymorphisms of the UCP2 gene
have been described in various case–control studies in
different populations [44, 88]. In this context, two poly-
morphisms of the UCP2 gene (rs660339 and rs659366)
were recently associated with body fat distribution and
risk of abdominal obesity in a cross-sectional study with
Spanish population [66].

An examination of mitochondrial factors revealed
that loss of uncoupling protein 5 (UCP5) modifies the
energy balance and increases free radicals through up-
regulation of uncoupling protein 3 (UCP3). The in-
creased superoxide content induces c-Jun N-terminal
kinase 1 (JNK1) kinase activity, which in turn affects
Forkhead transcription factors (FOXO) localization
through a compensatory dephosphorylation of Akt
[92]. The resulting nuclear FOXO increases expres-
sion of target genes, including mitochondrial superoxide
dismutase.

Studies of gene variants related to inflammation,
oxidative stress, and obesity

The expression of genes is highly dependent on, and
regulated by, nutrients and dietary bioactive com-
pounds found in food [14]. A variety of dietary com-
ponents can alter gene expression, as well as the
genetic makeup of an individual may coordinate its
response to diet [64]. Research in gene–environment
interactions have identified genetic polymorphisms
associated with individual susceptibility to obesity,
inflammation, and oxidative stress. The relation be-
tween diet and single-nucleotide polymorphisms
(SNPs) that impact on inflammation and oxidative
status has been recently reviewed by Curti et al. [14].

As it is well-known, PPARγ is a nuclear hormone
receptor, regulator of adipocytes-specific genes contrib-
uting to adipocytes differentiation, susceptibility to obe-
sity, and insulin sensitivity [45]. The most prevalent
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SNP variant related to PPARγ gene is the Pro12Ala,
which is associated with type 2 diabetes, obesity, and
other clinical disorders [16, 28]. However, there are stud-
ies where no association of this SNP variant has been
found with obesity [30, 63]. The associations between
common variations in the IL-6 gene and obesity have
also been examined in a number of studies [5, 49].
Among the SNPs in the promoter region, −174 G/C
(rs1800795) is the most prevalent and of greatest biolog-
ical importance [32]. The presence of C allele has been
related with a higher risk of obesity, high BMI, and high
waist circumference [5, 79]. Carriers of the CC genotype
had lower energy expenditure and insulin sensitivity,
hence implying a causative role in IR and obesity. In a
Spanish study, after a 3-year intervention with a
Mediterranean-style diet conducted in a high CVD risk
population, CC individuals with the −174 G/C polymor-
phism were predicted to have the greatest reduction in
body weight. At baseline, these individuals had the high-
est BW and BMI [84].

Monocyte chemoattractant protein-2 (CCL2) is a
multifunctional chemokine implicated as a potential
target in many disease states. CCL2 was first identi-
fied by its ability to regulate monocytes, macrophages,
and other inflammatory cells at sites of inflammation,
but it has recently been shown to be a major compo-
nent of insulin resistance in obese mice [62]. Further-
more, CCL2 is an insulin responsive gene that
decreases insulin-stimulated glucose uptake and
increases the expression of adipogenic genes [62, 91].

However, it has to be pointed out that relevance and
magnitude of nutrient–gene interaction needs to be
further elucidated by emphasizing the study of the
combined effect of SNPs in different genes, as well
as haplotypes.

Given the estimated heritability of BMI, genetic
approaches can be a useful tool with which to dissect
the mechanisms involved in weight regulation and
understand the susceptibility to obesity. To date, the
main experimental approaches used to identify human
obesity-associated genes include linkage studies, as-
sociation studies, and candidate gene studies [82].

By genotyping on average 350,000–500,000 SNPs
covering more than 75% of the genome, genome-wide
association studies (GWASs) conducted in population-
based cohorts assessed for BMI or in case–control
designs for obesity have led to the identification of
several interesting genetic loci. The first loci detected
were variants in the fat mass and obesity associated

(FTO) gene [20, 27] and variants approximately
200 kb downstream of melanocortin 4 receptor
(MC4R) [55]. Altogether, more than 20 genetic loci
relevant for body weight regulation have been identi-
fied by GWAS approaches [97]. Nevertheless, the
common variants uncovered in GWASs are character-
ized by modest effect sizes (per-allele odds ratios
between 1.2 and 1.5), and the proportion of variability
explained by GWAS-identified loci to date remains
relatively modest (<10%). Therefore, there is the pos-
sibility that the heritability of obesity-related pheno-
types may have been overestimated. In fact, it is
difficult to distinguish between purely environmental
effects and interactions between the environment and
epigenetic factors. However, recent genome-wide
measurement of epigenetic variation using techniques
such as DNA methylation-specific microarrays [24,
69] might help to find the missing heritability in
human obesity in the following decade.

Conclusions

Inflammation status and oxidative stress phenomena
appear to be narrowly interacting in the obese condi-
tion. Thus, the activation of inflammatory cytokines
such as TNF-α, IL-6, and inflammatory-related mole-
cules such as NFκβ and other transcription factors is
commonly found in obesity either as a trigger or as a
consequence of obesity. Glucocorticoids overproduc-
tion in obese subjects has been also associated with the
interplay of obesity and inflammation.

The role of immunity in the activation of inflamma-
tory responses mediated by macrophages and mono-
cytes is another field of interactions with an excessive
body fat deposition, where fatty acids and immune cells
might be important actors. The involvement of the
inflammasome in obesity is another contributor to ex-
plain some of the adverse metabolic features associated
to the accumulation of adipose tissue and the interac-
tions between proinflammatory resources and metabolic
stress. Furthermore, the hypoxia situation in the adipose
tissue of obese subjects and the impairment of endoplas-
matic reticulum functions have been claimed to mediate
in the inflammation and oxidative stress interactions,
probably accompanying mitochondrial alterations and
ROS overproduction.

Finally, some implications of “infecto-obesity” on
inflammatory processes have been reported, while
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elegant investigations concerning the importance of
carrying SNP on genes influencing both obesity and
inflammation such as PPAR and IL6 are the way to
confirm the mutual impact between inflammation and
oxidative status on obesity.
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