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Abstract
To improve the speeds of the traditional nuclear norm minimization methods, a fast tri-factorization method (FTF) was 
recently proposed for matrix completion, and it received widespread attention in the fields of machine learning, image 
processing and signal processing. However, its low convergence accuracy became increasingly obvious, limiting its further 
application. To enhance the accuracy of FTF, a generalized tri-factorization method (GTF) is proposed in this paper. In GTF, 
the nuclear norm minimization model of FTF is improved to a novel L1,p(0 < p < 2) norm minimization model that can be 
optimized very efficiently by using QR decomposition. Since the L1,p norm is a tighter relaxation of the rank function than 
the nuclear norm, the GTF method is much more accurate than the traditional methods. The experimental results demonstrate 
that GTF is more accurate and faster than the state-of-the-art methods.

Keywords Matrix completion · Fast tri-factorization · L1,1 · QR decomposition

1 Introduction

Low-rank matrix completion is a technique of data recov-
ery that completes the missing elements in a matrix and 
has received a wide range of interest from researchers in 
the subfields of machine learning, such as image processing 
[1–3], data mining [4, 5], face recognition [6, 7] and pat-
tern recognition [8–10]. Since the rank function is discrete, 
the earliest rank minimization problems [11, 12] for matrix 
completion are NP-hard and difficult to optimize. Hence, 
the nuclear norm, which is the summation of singular val-
ues, is proposed as a convex relaxation of the rank function 
[13] for improving the speeds of traditional rank minimiza-
tion methods. The representative methods of nuclear norm 

minimization including singular value thresholding (SVT) 
[14] and approximated proximal gradient search [15]. These 
methods are much faster and more accurate than the rank 
minimization-based methods. More recent research findings 
[16–18] show that different singular values contribute dif-
ferently to the recovery results. It is not reasonable to assign 
the same weight to each singular value [16]. Therefore, 
some weighed nuclear norm minimization methods have 
been investigated, such as a Schatten-p norm minimiza-
tion method [17], a Schatten Capped P Norm minimization 
method [5], a truncated nuclear norm minimization method 
(TNNR) [18], and an iteratively reweighted nuclear norm 
minimization method (IRNN) [19]. The weighted nuclear 
norm minimization methods adopt different weighting 
strategies to adjust the singular value thresholds and thus 
improve their convergence accuracy. It is reported that these 
methods are much more accurate than the nuclear norm 
minimization-based methods, such as SVT. Since Singu-
lar Value Decomposition (SVD) is required in the methods 
based on nuclear norm minimization or based on weighted 
nuclear norm minimization, these methods have a common 
shortcoming, that is, they are all computationally demand-
ing, especially for the applications of moving object detec-
tion [28], background subtraction [29], recommendation 
system [30] and so on.

To reduce the computational cost of methods using SVD, 
some methods based on matrix factorization have been 
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developed, such as the low rank matrix fitting (LMaFit) [21], 
matrix bifactorization (MBF) [22] and fast tri-factorization 
(FTF) methods [23]. Since the LMaFit method directly 
replaces the SVD decomposition with the less computa-
tionally intensive QR decomposition, it is much faster than 
the traditional matrix completion methods using SVD. The 
MBF method can be seen as an improvement of the LMaFit 
method. It optimizes the nuclear norm of a submatrix whose 
size is much smaller than the size of the original incom-
plete matrix. Consequently, the computational cost of SVD 
decomposition in its updating steps is not large. A benefit of 
using SVD decomposition, is that it is slightly more accurate 
than the low-rank matrix fitting method.

The FTF method decomposes the underlying low-rank 
matrix X as follows:

where the size of X is m × n(m ≤ n) and the rank of X 
isr(0 < r ≤ m).A is a column orthonormal matrix of size 
m × r, and C is a row orthonormal matrix of sizer × n . 
B(B ∈ Rr×r) is a square matrix. FTF uses QR decomposi-
tion instead of SVD to calculate the eigenvectors of  A andC , 
to reduce its computational cost.

In fact, the FTF method still has some disadvantages. 
First, FTF becomes significantly slow when dealing with 
matrices of complex structures. The main reason is that the 
size of B increases, and the SVD decomposition compu-
tations, at its updating steps, also increases in such cases. 
Second, FTF may not be accurate on some complex images. 
Since FTF is still a nuclear norm minimization method, its 
convergence accuracy is essentially the same as that of SVT, 
and is much lower than that of a weighted nuclear norm 
minimization method, such as the truncated nuclear norm 
minimization method [18].

To improve the speed and accuracy of FTF, Dr. Liu [20] 
proposed an improved FTF method based on the L2,1 norm 
(the summation of Frobenius norms of rows/columns of 
a matrix) and QR decomposition that can be abbreviated 
as LNMQR. The LNMQR method is much faster than the 
FTF, SVT and IRNN methods. And moreover, LNMQR is 
almost as accurate as the IRNN method [19], because it can 
converge to a weighted nuclear norm optimization method.

In recent years, the L1,1 norm has been widely used in 
sparse coding [31], and low rank representation methods 
[24,25] that always have excellent convergence accuracies. 
Moreover, the L1,1 norm is easier to calculate and optimize 
than the L2,1 norm used in LNMQR. Given these advantages, 
there is every reason to believe that FTF could be modified 
into a L1,1 norm optimization method.

In this paper, a generalized tri-factorization method 
based on the L1,p norm is proposed for accurate matrix 
completion (GTF). In GTF, a L1,p norm minimization 

(1)X = ABC,

model is applied to matrix completion to improve the 
accuracy of FTF, where the L1,1 norm is a special case 
of the L1,p norm. The main contributions of GTF are as 
follows:

• The optimization model of GTF is a generalized weighted 
nuclear norm minimization model, which have much 
better solutions than those of FTF and other weighted 
nuclear norm minimization methods. The main reason 
is that the L1,p norm is a tighter relaxation of matrix rank 
than the nuclear norm when the parameter p ∈ (0, 1).

• A novel thresholding function is designed for the L1,p 
norm used in GTF, which makes GTF more accurate than 
FTF and the other state-of-the-art methods compared in 
this paper.

• The GTF method is much faster than the traditional 
methods using SVD. In GTF, QR decomposition, with 
a speed approximately 7 times [20] that of SVD, is used 
as a replacement of SVD to calculate the eigenvectors of 
incomplete matrices.

2  Related work

A. The Fast Tri-Factorization method (FTF) [23]

Suppose M is a matrix of size m × n with many miss-
ing entries, and X is the underlying low rank matrix. FTF 
decomposes X into the form of a product of three submatri-
ces as in Eq. (1). Then, the FTF method recovers the miss-
ing entries of M by optimizing the following minimization 
model:

where the parameters A , B , C and X are defined in the same 
way as the corresponding ones in Eq. (1), respectively. ‖B‖∗ 
stands for the nuclear norm of B . Ω is the set of locations for 
the known entries of M . For any matrix X , PΩ(X) satisfies

In the FTF method, the variables A and C can be opti-
mized by using QR decomposition [23], which reduces its 
computation complexity. The variable B whose size is r × r 
can be optimized via a singular value thresholding operator 
[14] by using SVD. Since the FTF method can obtain the 
singular values of matrix B directly, it always converge with 
a higher accuracy than LMaFit. Yet, It has been reported 
[20] that the FTF method is not as accurate as a weighted 
nuclear norm minimization based method, such as the IRNN 
and LNMQR methods.

(2)min
A,B,C,X

‖B‖∗, s.t.ABC = X,PΩ(X) = PΩ(M),

(3)
[
PΩ(X)

]
i,j
=

{
Xi,j, if (i, j) ∈ Ω

0, otherwise
.
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B. The  L2,1 Norm Minimization method based on QR 
decomposition (LNMQR) [20]

In order to improve the convergence accuracy of FTF, 
a L2,1 norm minimization model has been proposed in the 
LNMQR method [20] as follows,

where ‖B‖w⋅(2,1) = ∑r

i=1
wi‖Bi⋅‖F is the weighted L2,1 norm of 

B and Bi⋅ is the ith row of B . In fact, the minimization model 
in Eq. (4) is actually a weighted Frobenius norm minimi-
zation model, which indicates the SVD decomposition is 
not required for optimizing the variable B in LNMQR. The 
main computation cost of LNMQR at each iteration is the 
two times of QR decomposition for updating A and C . Since 
the computation cost of QR is much smaller than that of 
SVD, LNMQR is much faster than the methods using SVD, 
such as FTF, SVT and IRNN. And moreover, the LNMQR 
method is much more accurate than FTF, because it can con-
verge to a weighted nuclear norm optimization method. In 
2023, Dr. Liu has proposed an improved version of LNMQR, 
i.e., a Fast Matrix Bi-Factorization method [27], in which 
only one time of QR decomposition is performed. Hence, 
FMBF slightly faster than LNMQR. Nevertheless, LNMQR 
still has an important weakness, i.e., it cannot perform suc-
cessful matrix completion in case of matrices with struc-
tured missing blocks. (please see the experimental results 
in Sect. 4).

C. The Schatten Capped P Norm minimization method 
(SCPN) [5]

In the SCPN method [5], a novel Schatten capped p 
norm minimization model is proposed as follows,

where p > 0 , 𝜏 > 0,‖X‖p
Sp,�

 is the Schatten capped p norm of 
X and ‖X‖p

Sp,�
=
∑m

i=1
min(�i, �)

p.
Since the Schatten capped p norm is not convex, a 

complex multipolar function is employed to regulate the 
weights for singular values. Experimental results shows 
that the SCPN method performs much better than the tradi-
tional weighted nuclear norm minimization methods, such 
as TNNR and IRNN, especially on images with structured 
missing blocks. It is reasonable to assume that a matrix 
norm with p powers of singular values is a better relaxa-
tion of rank function than nuclear norm.

D. The L1,1 norm minimization used in sparse coding [31]

(4)min
A,B,C,X

‖B‖w⋅(2,1), s.t.X = ABC,PΩ(X) = PΩ(M),

(5)min
X

‖X‖p
Sp,�

, s.t.PΩ(X) = PΩ(M),

In 2013, the L1,1 norm was successfully applied to low 
rank sparse coding and the optimization model was solved 
very efficiently without using SVD [31]. The correspond-
ing subproblem of L1,1 norm minimization is rewritten as 
follows,

where  𝛼 > 0  ,  Z(Z ∈ Rm×n) i s  a  r ea l  ma t r ix , 
‖Z‖1,1 = ∑m

i=1

∑n

j=1

���Zi,j
��� and T(T ∈ Rm×n) is a known tempo-

rary matrix. The problem in Eq.  (6) can be solved as 
follows,

From Eq. (7), it is clear that the computation cost for 
solving the problem in Eq. (6) is much smaller than cal-
culating a SVD decomposition of T  . In this paper, we 
will propose a novel matrix norm, i.e., the summation of 
p powers of absolute values of entries in each row of a 
matrix, to improve the convergence accuracy and speed 
of FTF.

3  Our proposed method

A. A new tri-factorization framework

To improve the recovery accuracy of the FTF, a gener-
alized tri-factorization method is proposed in this section. 
Since the FTF method does not consider the noisy informa-
tion that may be contained in the observations, the matrix X 
in Eq. (1) is factorized as follows:

where the definitions of A , B and C are the same as those 
of the corresponding ones shown in Eq. (1), respectively. 
The variable 𝜆(𝜆 > 0) is a balanced factor that adjusts the 
weights of the low-rank matrix ABC and the noise matrix 
E , where E is a noise matrix with a size of m × n . Therefore, 
the entries of E obey

where t stands for the threshold for noisy information. More 
exactly, t should be predefined according to the tested data. 
In our experiment of this paper, t is set to 255 , because the 
proposed method is tested on images whose values of entries 
are smaller than 255. Hence, it is not difficult to see that the 
elements with values greater than 255 can be considered 
noisy information in image recovery.

(6)min
Z

�‖Z‖1,1 + 1

2
‖Z − T‖2

F
,

(7)Zi,j = sign
(
Ti,j

)
⋅max

(
Ti,j − �, 0

)
.

(8)X =
1

�
ABC + E,

(9)Ei,j =

{
Ei,j, ifEi,j > t

0, otherwise,
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B. The proposed generalized tri-factorization model for 
matrix completion

In this paper, the FTF method is improved by using a 
L1,1 norm and a generalized L1,p norm to further increase 
its convergence accuracy. Suppose the matrix X is decom-
posed into two parts as in Eq. (8) at first. Then, the FTF 
model can be improved to be

where 𝜇 > 0 . Inspired by the core idea of a weighted nuclear 
minimization method [16], i.e., different singular values 
should be treated differently, the L1,1 norm in Eq. (10) is 
generalized to

where ‖Bi⋅‖1 =
∑n

j=1

���Bi,j
��� and p(0 < p < 2) is the power of 

the L1 norms of the rows in B . By regulating the value of p , 
the weight for the L1 norm of each row in B can be adjusted 
appropriately. The reason is that

From Eq.  (12), we see that the weight for ‖Bi⋅‖1 is 
‖Bi⋅‖p−11

 . Consequently, the model in Eq. (10) is further 
improved as follows:

where the variables in Eq. (13) have been defined in Eqs. (2), 
(4) and (8). Since the L1,1 norm is a special case of the L1,p 
norm when p = 1 , the optimization model in Eq. (13) is a 
generalized tri-factorization model based on the L1,p norm, 
which can be abbreviated as the GTF model.

C.  Optimization of the GTF model

The optimization model in Eq. (13) can be solved by 
an alternating direction method, i.e., the variables can be 
updated, one by one, with the rest fixed. Suppose that Xj , 
Aj , Bj , Cj and Ej are the results of the alternating method 
at its jth iteration.

First, Aj+1 can be updated by solving the following 
subproblem:

(10)
min

A,B,C,X,E
‖B‖1,1 + �

2

����X −
1

�
ABC − E

����
2

F

,

s.t.PΩ(X) = PΩ(M),

(11)‖B‖1,p =
m�
i=1

��Bi⋅
��p1,

(12)‖‖Bi⋅
‖‖p1 = ‖‖Bi⋅

‖‖p−11
⋅
‖‖Bi⋅

‖‖1,

(13)
min

A,B,C,X,E
‖B‖1,p + �

2

����X −
1

�
ABC − E

����
2

F

,

s.t.PΩ(X) = PΩ(M),

where 
(
BjCj

)+ is the pseudo inverse matrix of BjCj.
Similarly, it is easy to obtain the updating step for Cj+1 , 

i.e.,

Second, Bj+1 is optimized by solving the following 
problem:

It is easy to see that the problem in Eq. (16) can be rewrit-
ten as follows:

where T = �AT
j+1

(Xj − Ej)C
T
j+1

 is a temporary variable. Obvi-
ously, the problem in Eq. (17) can be rewritten as follows:

where G
�
Bi⋅

�
=
∑r

i=1
[
1

�
‖Bi⋅‖p1 + 1

2
‖Bi⋅ − Ti⋅‖2F] . By letting 

�G

�Bi⋅

 = 0 , we have

From Eq. (19), it is suitable to suppose that Bi⋅ = xTi⋅ , 
where x > 0 . Then, we have

and Eq. (20) can be reformulated into the following form:

where b is equal to

Since it is difficult to obtain the analytical solution of the 
equation in (21), a particular solution at p =

3

2
 is shown as 

follows:

(14)

Aj+1 = argmin
A

‖‖‖Xj −
1

�
ABjCj − Ej

‖‖‖
2

F

= argmin
A

‖‖‖�
(
Xj − Ej

)(
BjCj

)+
− A

‖‖‖
2

F

= qr
((

Xj − Ej

)
CT
j

)
,

(15)

Cj+1 = argmin
C

‖‖‖Xj −
1

�
Aj+1BjC − Ej

‖‖‖
2

F

= argmin
A

‖‖‖�
(
Aj+1Bj

)+(
Xj − Ej

)
− C

‖‖‖
2

F

= qr
(
AT
j+1

(
Xj − Ej

))
.

(16)min
B

1

�
‖B‖1,p + 1

2

����
�
Xj − Ej

�
− Aj+1BCj+1

���
2

F
.

(17)min
B

1

�
‖B‖1,p + 1

2
‖B − T‖2

F
.

(18)min
Bi⋅

G
(
Bi⋅

)
,

(19)
p

�
‖‖Bi⋅

‖‖p−11

Bi⋅

‖‖Bi⋅
‖‖1

+ Bi⋅ − Ti⋅ = 0.

(20)
p

�
⋅ xp−2 ⋅ ‖Ti⋅‖p−21

⋅ xTi⋅ + xTi⋅ − Ti⋅ = 0,

(21)x + b ⋅ xp−1 − 1 = 0,

(22)b =
p

�
⋅
‖‖Ti⋅‖‖p−21

.
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By varying the value of p , we can obtain more solutions 
to the equation in (21). As a consequence, it is suitable to let

where q > 0 . Therefore, the optimal solution to the problem 
in Eq. (18) is

where i = 1, 2, ..., r , Ti⋅ has been defined in Eq.  (17). To 
accelerate the convergence of our proposed method, �j+1 in 
Eq. (22) is updated as follows:

where 0 < 𝜌 < 1 . The strategy of accelerating the conver-
gence by updating the value of � in real time is also com-
monly used in other methods, such as the TNNR and IRNN 
methods.

Finally, Ej+1 and Xj+1 can be updated as follows:

where X̂ =
1

𝜆
Aj+1Bj+1Cj+1 . Notably, the variable Xj+1 in 

Eq. (28) contains noisy information, so the output of the 
proposed method is that Xout = Xj+1 − Ej+1.
Algorithm 1 The updating steps of GTF method

The proposed generalized tri-factorization matrix com-
pletion method is called GTF for convenience, whose updat-
ing steps have been summarized in Algorithm 1.

(23)x
1

2 =
−b +

√
b2 + 4

2
.

(24)x =

�
−b +

√
b2 + 4

2

�q

.

(25)Bj+1(i⋅) =

�
−b +

√
b2 + 4

2

�q

⋅ Ti⋅,

(26)�j+1 =
�j

�
,

(27)Ej+1 = X̂ − Cj,

(28)Xj+1 = X̂ − PΩ

(
X̂
)
+M,

D. Convergence analysis

According to the updating steps in Algorithm 1, it is not 
difficult to see that the proposed GTF model can converge to 
a weighted nuclear norm minimization model. The main rea-
son is that the updating steps of GTF for A and C are consist-
ent with the updating formulas of L and R in the LNMQR 
method [20], respectively. Consequently, the key variable B 
in the GTF model will also inevitably converge to a diagonal 
matrix. In such cases, the L1,p norms of the rows in B satisfy.

For any p , there exists a w such that

where w(w > 0) . Hence, the model in Eq. (30) can be seen 
as a weighted nuclear norm minimization model.

To obtain a deeper understanding of the optimization 
model of GTF shown in Eq. (13), the curves of the L1,p norm 
with different values of p are plotted in Fig. 1.

From Fig. 1, we see that the rank function and the nuclear 
norm are special cases of the L1,p norm with p = 0 and 
p = 1 , respectively. Consequently, the proposed L1,p norm 
minimization under the framework of matrix tri-factoriza-
tion can be called a generalized tri-factorization method.

Moreover, the curves in Fig. 1 also show that the L1,p 
norm with 0 < p < 1 is a tighter relaxation of the rank func-
tion than the nuclear norm. Hence, a smaller value for the 
parameter p should be set to obtain a higher convergence 
accuracy because the smaller the value of p is, the closer the 
curve of the L1,p norm is to the rank function.

(29)‖‖Bi⋅
‖‖p1 = �i(B)

p

(30)�i(B)
p = w ⋅ �i(B),

Fig. 1  The curves of the F(x, p) function with different p , where the 
F(x, p) function stands for the L1,p norm of x
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In the next section, a sufficient number of experiments are 
conducted to verify the effectiveness and efficiency of our 
proposed GTF method.

4  Experimental results and discussion

In this section, our proposed GTF method for matrix com-
pletion is compared with the following methods, i.e., the 
FTF method [23], the Schatten Capped P Norm minimi-
zation method (SCPN) [5], the Feature and Nuclear Norm 
Minimization method (FNNM) [4], the LNMQR method 
[20] and the Lp norm minimization inpainting method 
(LPMP) [26], respectively.

SCPN and FNNM are representative methods of improved 
weighted nuclear norm minimization and improved nuclear 
norm minimization, respectively. The LNMQR method, 
which is a weighted L2,1 norm minimization method that 
has advantages both on convergence accuracy and CPU 
time, is highly influential on matrix completion. LPMP is a 
matrix completion method based on Lp norm minimization 
that is closely related to our proposed L1,p norm minimiza-
tion based GTF.

The major parameters for GTF that need to be regulated 
by hand include r , � , �0 , � , p and q . The parameter r is set to 
one-fourth of the row number of X , � = 1

8000⋅∥M∥F
 , �0 is equal 

to 0.97 and � is equal to 0.8. The values of p and q need to 
be adjusted according to the different situations of the test 
sets. The key parameter r for FTF is set to one-half of the 
row number of X  according to the suggestion given by Liu 
[23]. The maximum iteration numbers for the six methods 

are all set to 300 and 500 in Section IV. C and IV. D, 
respectively.

The GTF method and the compared methods are tested on 
some commonly used images that are plotted in Fig. 2. Each 
image in Fig. 2 will be masked by a randomized mask, i.e., 
50% of their entries are randomly selected missing entries.

A. The Convergence of Bj

The convergence of Bj generated by GTF is tested first. 
Since the analyses in Sect. 3.4 indicate that the submatrix 
B should converge to a diagonal matrix, the L1 norms of the 
rows in B should be equal to the singular values. To verify 
this conjecture, the intermediate iteration results of GTF for 
Bj (j = 1, 2, ..., Itmax) are plotted in Fig. 3.

Figure 3 shows that the submatrix B is a lower triangular 
matrix when j = 1 , and it can converge to a diagonal matrix 
at the 30th iteration. This result is highly consistent with the 
theoretical analysis in Sect. 3.4, which in turn indicates that 
the GTF method should be much more accurate than FTF 
and other nuclear norm minimization-based matrix comple-
tion methods.

B. The effects of p and q on GTF

The variables p and q are the two most important param-
eters for GTF, and play a very important role in the conver-
gence performance. To facilitate the setting of the param-
eters for GTF, their effects on the convergence accuracy are 
tested, and the PSNR (peak signal-to-noise ratio) [18] is 
used as the evaluation criterion, which is defined as follows:

Fig. 2  The selected original 
images, i.e.,Ia,…, Ih , for our 
experiment in this section. 
These images have been widely 
used in the experiments of 
matrix completion methods, 
such as LMaFit, and TNNR
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where I is the original matrix of M . N is the total number 
of missing entries in the matrix M . Ω is the set of locations 

(31)PSNR = 10 ⋅ log10

⎛⎜⎜⎝
N ⋅ 2552

P
Ω

�
I − Xout

�2
F

⎞⎟⎟⎠

for the missing entries of the matrix M .  Xout stands for the 
output of a matrix completion method.

By fixing q = 0.1 and letting p increase from 0.01 to 0.1, 
the effect of parameter p on GTF is tested. The incomplete 
image tested in this experiment is generated by randomly 
masking one half of the entries from Ia , as shown in Fig. 2. 
The PSNR values of GTF with different p are plotted in 
Fig. 4a, b.

From Fig. 4a, we can see that the PSNR of GTF increases 
obviously when p ∈ (0.01, 0.02) , reaches its optimum 
at p = 0.02 and decreases smoothly and slowly when 
p ∈ [0.02, 0.1) . To analyze the effect of p more comprehen-
sively, the PSNR values of GTF when p is greater than 0.1 
and less than 1 are plotted in Fig. 4b. It is easy to see that 
the accuracy of the GTF decreases rapidly in such cases 
from Fig. 4b.

Then, the effect of q on GTF is tested. Let p = 0.02 and 
q increase from 0.1 to 1 with a step size equal to 0.1. The 
PSNR values of GTF with these values are tested and plot-
ted in Fig. 5.

The PSNR curve of GTF in Fig. 5 shows that GTF reaches 
its optimal PSNR at q = 0.7 . By comparing the PSNR curves 
in Figs. 4 and 5, it is easy to see that the GTF method is 
more sensitive to the parameter p than to the parameter q. In 
addition, the proposed GTF method has a good convergence 
accuracy performance when the parameter p ∈ [0.02, 0.1) 
and q ∈ [0.4, 0.8].

(a) (b)

(c) (d)

Fig. 3  The partial intermediate results of the matrices Bj in GTF. a Bj , 
j = 1 . b Bj , j = 10 . c Bj , j = 20 . d Bj , j = 30.The tested incomplete 
image for this experiment is generated by randomly masking one half 
of the entries from Ia shown in Fig. 2. The size of  B is 128 × 128.

(a)                    (b)

Fig. 4  The PSNR values of GTF with different values of p . a The PSNR values of GTF with p increases from 0.01 to 0.1. b The PSNR values of 
GTF with p is greater than 0.1 and less than 1
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C. Matrix completion results on images with random miss-
ing entries

The incomplete images tested in this section are con-
structed by randomly selecting 50% of the elements from 
the original images (in Fig. 2.), i.e., Ia , Ib , …, Ih , are missing 
elements that are set to 0. The incomplete images, whose 
labels are M0.5

a
 , M0.5

b
,…, M0.5

h
 , are plotted in Fig. 6.

First, the convergence accuracy of GTF is tested. Let 
p = 0.02 and q = 0.7 for the GTF method. Using these 
values, the GTF method is tested and compared with the 
FTF method and other conventional methods, i.e., FNNM, 
LPMP, LNMQR, and SCPN. The convergence accuracies, 
i.e., PSNR, of the tested methods are shown in Table 1.

The PSNR values in Table 1 show that GTF is the most 
accurate among the six matrix completion methods. Since 
FTF is a nuclear norm minimization-based matrix comple-
tion method, its convergence accuracy is smaller than that Fig. 5  The effect of parameter q on the accuracy of GTF. The param-

eter q increases from 0.1 to 1

Fig. 6  The tested incomplete 
images, whose 50% entries 
have randomly been initialized 
to 0, for our experiment in this 
section

Table 1  The convergence 
accuracies (PSNRs) of the six 
methods

The bold values stand for the best PSNR values of the tested images
The incomplete images used in this experiment, i.e., M0.5

a
,…, M0.5

h
 , are generated by randomly masking 

50% of the entries from the original images, i.e., I
a
 , · · ·, I

h
 , respectively

Images FNNM LPMP SCPN LNMQR FTF GTF

M0.5

a
36.15 35.53 36.29 37.65 34.87 38.29

M0.5

b
34.32 33.74 34.56 35.26 33.28 35.88

M0.5

c
36.47 35.46 36.73 39.58 34.96 40.06

M0.5

d
30.29 29.83 30.51 31.42 29.28 31.67

M0.5

e
28.58 27.84 28.76 28.79 27.69 29.78

M0.5

f
30.67 30.32 31.11 31.73 29.78 33.03

M0.5

g
32.08 30.96 31.88 33.79 30.27 34.28

M0.5

h
29.31 28.98 29.26 29.36 28.19 29.83
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of a weighted nuclear norm minimization method, such 
as the LPMP method. The main reason is that the LPMP 
method can dynamically adjust the weights of the singular 
values by a nonconvex thresholding function. Similarly, the 
SCPN method also converges much more accurate than the 
FTF method does. Although the FNNM is also a nuclear-
norm-based method, it is much more accurate than the FTF 
method. It might be because that the side matrices designed 
in FNNM make the incomplete matrices to be recovered 
easily.

The LNMQR method is much more accurate than the 
FNNM, LPMP and SCPN methods, because it has been 
proven to converge to an iteratively re-weighted nuclear 
norm minimization method. The PSNR of LNMQR in 
Table 1 also shows that LNMQR is much more accurate 
than FTF, which indicates that LNMQR is a very successful 
improvement of FTF.

Compared with the LNMQR method, the GTF method 
proposed in this paper performs much better in convergence 
accuracy, i.e., the PSNR of the latter is obviously larger than 
that of the former. The main reason is that the optimization 
model of GTF is easier to optimize by its updating step than 
that of LNMQR.

Second, the speed of GTF is compared with those of the 
other five conventional methods. To study the convergence 
process of the GTF method in more depth, the curves of 
PSNR versus the iteration number of the six methods are 
plotted in Fig. 7.

From Fig. 7, we see that the LNMQR and FTF meth-
ods can converge to their optimal solutions in the first 80 
iterations. The SCPN, GTF and LPMP methods take 100 

iterations, 110 iterations and 200 iterations to converge, 
respectively. The FNNM method, which takes 250 iterations 
to converge, is the slowest one among the six tested methods. 
Although the proposed GTF method takes more iterations to 
converge than the FTF method takes, the CPU time of GTF 
is smaller than that of FTF.

The CPU times of GTF, SCPN, LNMQR and FTF are 
plotted in Fig. 8. The CPU times of FNNM and LPMP are 
not reported in this section, because FNNM and LPMP take 
much more iterations to converge than the SCPN method 
takes, their CPU times should be as large as two times of 
that of SCPN or more. From Fig. 8, it is easy to see that the 
SCPN method is the slowest one among the four methods 
compared because of its multiple SVD iterations.

The curves in Fig. 8 shows that the proposed GTF method 
is almost as fast as two times of FTF. The main reason is 
that the computational cost of FTF is larger than that of 
GTF, i.e., the former takes more time to perform the SVD 
decomposition at each iteration than the latter does. In view 
of the PSNR values in Table 1 and the curves in Fig. 8, the 
proposed GTF method is much faster than the SCPN and 
FTF methods and is more accurate than the FTF, SCPN, 
LPMP, LNMQR and FNNM methods. The curves in Fig. 8 
still shows that GTF takes 1–2 s more CPU time to con-
verge than LNMQR takes, because the former performs 
more iterations to converge than the latter. Hence, we will 
further improve GTF to reduce its number of iterations for 
increasing its speed.

Third, the convergence performance of GTF on images 
with a low observation rate is tested. From the previous 
experimental results, it is clear that the proposed GTF 
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Fig. 7  The curves of PSNR versus the iteration number of the six 
tested methods
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Fig. 8  The CPU times of GTF, SCPN, FTF and LNMQR. The CPU 
times of LPMP and SVT are not reported because their convergence 
accuracies are obviously smaller than the accuracy of GTF
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method is more accurate and faster than the FNNM, LPMP, 
FTF, LNMQR and SCPN methods. In fact, the GTF method 
still has advantages over the traditional methods in the case 
of images with low observation rates. We randomly select 
70% of the elements from the eight original images in Fig. 1 
as missing elements for generating incomplete images, 
which are labeled M0.7

a
 , …, M0.7

h
 . The PSNR values of GTF, 

FTF, SCPN, FNNM, LPMP and LNMQR on these incom-
plete images are reported in Table 2.

From Table 2, it is clear that the GTF method is the most 
accurate among the tested matrix completion methods. 
The SCPN method is a bit more accurate than the FNNM 

method. The PSNR value of FTF is obviously smaller than 
those of LNMQR, FNNM and SCPN. Therefore, the GTF 
method is ideally suitable for application cases with low 
observation rates.

To visually demonstrate the differences between the six 
matrix completion methods, some recovered images are dis-
played in Fig. 9.

The recovered images given by the six tested methods in 
Fig. 9 show that the output of the FTF is not clear because 
there is considerable visible noise randomly distributed in 
the image shown in Fig. 9D. The output of LPMP shown in 
(C) is much better than that of FTF. However, it is clearly 

Table 2  The PSNR values of 
GTF, FTF, SCPN, FNNM, 
LPMP and LNMQR

The bold values stand for the best PSNR values of the tested images
The incomplete images used in this experiment are generated by randomly masking 70% of the entries 
from the original images

Images FNNM LPMP SCPN LNMQR FTF GTF

M0.7

a
31.42 28.85 32.31 32.55 25.72 33.61

M0.7

b
30.11 27.37 31.20 31.52 22.41 31.85

M0.7

c
29.25 24.83 31.42 32.17 24.51 33.06

M0.7

d
25.42 23.27 27.22 27.29 24.18 27.83

M0.7

e
25.11 24.07 25.60 25.53 22.49 25.84

M0.7

f
25.26 22.20 26.74 25.75 23.89 27.22

M0.7

g
26.29 24.97 28.12 27.87 24.83 28.58

M0.7

h
25.45 24.83 25.91 25.73 24.04 26.16

(A) Original Image ( ) (B) Incomplete Image (C) LPMP (D)  FTF

(E) FNNM (F) SCPN (G) LNMQR (H) GTF

Fig. 9  The recovered images given by the GTF, FTF, FNNM, 
LNMQR, LPMP and SCPN methods. A An original image. B The 
tested incomplete image whose 70% entries are randomly miss-
ing. C The output of LPMP, PSNR = 27.37. D The output of FTF, 

PSNR = 22.41. E The output of FNNM, PSNR = 30.11. F The output 
of SCPN, PSNR = 31.20. G The output of LNMQR, PSNR = 31.52. 
(H) The output of GTF, PSNR = 31.85
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and visually still very different from the original image 
shown in (A). The result given by FNNM shown in (E) is 
clearer than the recovered image shown in (C). However, 
there is considerable visible noise randomly distributed in 
(E). The SCPN, LNMQR and GTF methods can recover the 
incomplete image accurately because the images in (F), (G) 
and (H) are almost as clear as the original image.

D. Matrix completion results on images with structured 
missing blocks

In this section, three types of structured missing blocks 
are added to the tested images, i.e., the triangular missing 
block, the square missing blocks and the large square miss-
ing block. The original images and the incomplete images 
have been shown in Fig. 10. By using these three incomplete 
images, the GTF method is tested and its convergence speed, 
CPU time and PSNR value are compared with those of FTF, 
SCPN, LNMQR, and FNNM.

From Fig. 10, it is not easy to see that the FTF method 
cannot recover the three incomplete images with structured 
missing blocks accurately, because the recovery results 
shown in (F1)–(F3) are significantly different from the 
original images plotted in (A1)–(A3), respectively. Although 
the LNMQR method has a good convergence accuracy on 
images with random missing values, it fails to recover the 
tested images arranged with structured missing blocks in this 
section. It’s clear that the images given by LNMQR shown in 
(C1)–(C3) have many distorted pixels. The recovered images 

given by FNNM are much better than those of LNMQR and 
FTF. However, the recovered images of FNNM shown in 
(D1)–(D3) are still visibly different from the original images. 
The recovered images given by SCPN are clearer than those 
of FNNM, FTF and LNMQR. However, the colors of some 
pixels in the recovered images in (E1) ~ (E3) are quite dif-
ferent from those of the original images. It might be because 
that the SCPN method is very sensitive to its parameters and 
it cannot recover the three channels of incomplete images 
with the same fixed set of parameters. The recovered images 
of our proposed GTF method are much better than the cor-
responding ones of FTF, SCPN, FNNM and LNMQR, which 
indicates that the convergence accuracy of GTF should be 
much larger than those of other four methods.

In order to compare the convergence performances of 
GTF, FTF, SCPN, FNNM and LNMQR in more detail, the 
PSNR values, iteration numbers and CPU times of these 
methods on the three incomplete images in Fig. 10, i.e., 
(B1), (B2) and (B3), are reported in Table 3.

Table 3 shows that FTF is the fastest among the five 
matrix completion methods and it also has the smallest 
convergence accuracy. Although the LNMQR method 
takes more iterations than the FNNM and SCPN methods 
do, its CPU time is smaller than those of the latter. The 
main reason is that the LNMQR method does not require 
the usage of SVD decomposition at each iteration. The 
FNNM and SCPN methods are much slower than the GTF 

(A1) (B1) (C1) (D1) (E1) (F1) (G1)

(A2) (B2) (C2) (D2) (E2) (F2) (G2)

(A3) (B3) (C3) (D3) (E3) (F3) (G3)

Fig. 10  The tested incomplete images and the results given by 
GTF, FTF, SCPN, FNNM and LNMQR. A1–A3 Three original 
images. B1–B3 The incomplete images. C1–C3 The results given 
by LNMQR. (D1) ~ (D3): the results given by FNNM. E1–E3 The 

results given by SCPN. F1–F3 The results given by FTF. G1–G3 The 
results given by GTF. The maximum iteration numbers for these five 
methods are all equal to 500
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method, because their CPU times are about 5 ~ 6 times of 
that of GTF. According to the iteration numbers and the 
CPU times of the five methods, it is not difficult to see that 
the GTF method is about as fast as 2.1 times, 6.2 times and 
5.5 times of LNMQR, FNNM and SCPN, respectively. 
Although the GTF method takes 1 ~ 3 s longer to converge 
than FTF takes, its convergence accuracy is much better 
than that of FTF.

In view of the results in Section IV. C and IV. D, it is 
clear that the FTF, SCPN and FNNM methods are less accu-
rate than the LNMQR and GTF. The GTF method is suit-
able for matrix completion tasks with high requirements for 
convergence accuracy and CPU time both on matrices with 
missing random missing entries and with structured miss-
ing blocks. The LNMQR method, which might not suitable 
for the applications with missing blocks, is suitable for the 
cases with random missing entries of high requirements for 
CPU time.

5  Conclusion

A generalized tri-factorization method for matrix completion 
is proposed in this paper (GTF). In this method, a general-
ized L1,p norm optimization model, which can be optimized 
by an alternating direction method very efficiently, is inves-
tigated to improve the convergence accuracy of the tradi-
tional FTF method. On the one hand, since the L1,p norm is 
a tighter relaxation of the matrix rank than the nuclear norm 
and can converge to a weighted nuclear norm, the proposed 
GTF method is much more accurate than the FTF method 
and the other state-of-the-art methods. On the other hand, 
the GTF method is much faster than the traditional matrix 
completion methods that use SVD decomposition because it 
uses QR decomposition as a replacement for SVD. Numer-
ous experimental results show that GTF is more accurate and 
much faster than the traditional FTF method and the other 
compared methods.
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