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Abstract

Unmanned aerial vehicles (UAVs) are extensively applied in military, rescue operations, and traffic detection fields, result-
ing from their flexibility, low cost, and autonomous flight capabilities. However, due to the drone’s flight height and shoot-
ing angle, the objects in aerial images are smaller, denser, and more complex than those in general images, triggering an
unsatisfactory target detection effect. In this paper, we propose a model for UAV detection called DoubleM-Net, which con-
tains multi-scale spatial pyramid pooling-fast (MS-SPPF) and Multi-Path Adaptive Feature Pyramid Network (MPA-FPN).
DoubleM-Net utilizes the MS-SPPF module to extract feature maps of multiple receptive field sizes. Then, the MPA-FPN
module first fuses features from every two adjacent scales, followed by a level-by-level interactive fusion of features. First,
using the backbone network as the feature extractor, multiple feature maps of different scale ranges are extracted from the
input image. Second, the MS-SPPF uses different pooled kernels to repeat multiple pooled operations at various scales to
achieve rich multi-perceptive field features. Finally, the MPA-FPN module first incorporates semantic information between
each adjacent two-scale layer. The top-level features are then passed back to the bottom level-by-level, and the underlying
features are enhanced, enabling interaction and integration of features at different scales. The experimental results show
that the mAP50-95 ratio of DoubleM-Net on the VisDrone dataset is 27.5%, and that of Doublem-Net on the Drone Vehicle
dataset in RGB and Infrared mode is 55.0% and 60.4%, respectively. Our model demonstrates excellent performance in air-
to-ground image detection tasks, with exceptional results in detecting small objects.
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1 Introduction

In recent years, object detection has made significant pro-
gress in computer vision. This crucial task involves iden-
tifying and localizing different objects in digital images,
including people, animals, and vehicles [1, 2]. With the
development and popularity of drone technologies, they have
zhongxulee18@163.com been widely applied across various domains and generated
Qihan He massive aerial image data. Meanwhile, deep learning-based
qihanhe27@163.com target detection techniques have also made great strides in
effectively parsing image contents. Therefore, researching
target detection algorithms tailored for drone aerial images
enables the integration of both technologies to play an
Fujian Key Laboratory of Granular Computing important role in intelligent transportation [3, 4], environ-
and Application, Minnan Normal University, mental monitoring [5, 6], emergency rescue, and disaster
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relief [7, 8].

One-stage and two-stage detectors are two distinct

research paradigms in object detection. The former directly
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of objects, bypassing the need for a region proposal network.
In contrast, the latter relies on a regional proposal network
to perform object detection. R-CNN [9], a seminal work,
ushers in the era of deep learning in object detection. Due
to its computationally intensive nature and time-consuming
algorithms, SPPNet [10] proposes shared convolutional cal-
culations and pyramid pooling, significantly reducing stor-
age requirements and training time. Faster R-CNN [11] fur-
ther enhances performance by leveraging a Region Proposal
Network to extract and integrate proposals into the overall
network. On the other hand, the Feature Pyramid Network
(FPN) [12] introduces a straightforward and efficient method
for creating a feature pyramid, enabling object detection
across multiple scales. One-stage detectors represent a class
of object detection algorithms that employ convolutional
neural networks to predict objects’ classes and locations
directly. Among the various types of one-stage detectors,
the YOLO series is a leading approach. YOLOv1-3 [13-15]
stand out as groundbreaking algorithms within this series.
Additionally, YOLOv4 [16] divides the network architec-
ture into three components: the backbone, neck, and head. It
leverages bag-of-freebies and bag-of-specials techniques to
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design a framework optimized for training on a single GPU.
Other competitive one-stage object detector algorithms
include YOLOv5-8 [17-20]. Recently, YOLOvV9 [21] has
also made its debut. Typically, one-stage algorithms excel
in speed but may compromise some accuracy, whereas two-
stage algorithms, while slower, can attain higher accuracy.
Unmanned aerial vehicles (commonly known as drones)
occupy a pivotal position in various applications. The appli-
cation of object detection technology to drone-captured sce-
narios has garnered significant attention, primarily due to its
vast array of practical uses. In recent years, object detection
in drone-captured images has garnered widespread atten-
tion, with remarkable progress achieved by utilizing deep
convolutional neural networks on prominent large-scale
benchmark datasets.

However, air-to-ground images differ significantly from
natural images, posing numerous challenges for object
detection in aerial images. The flight altitude of the drone
is tens to hundreds of meters high, resulting in a large field
of view, small target size, varied viewpoints, and dynamic
environments. As shown in Fig. 1, the target scale distri-
bution, target center point distribution, and some picture
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Fig. 1 a—d are the object scale distribution, target center point distribution, and some image samples of the VisDrone, DroneVehicle, COCO,

and VOC datasets, respectively
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samples of the VisDrone, DroneVehicle, COCO, and VOC
datasets are exhibited. Most objects in the aerial images
are smaller than 32 x 32 pixels, with targets throughout the
image. This brings unique difficulties when designing deep
learning-based target detection algorithms. It is imperative
to thoroughly study the characteristics of UAV images, and
devise detection frameworks that can handle small targets
and varied viewpoints, for example, by utilizing multi-scale
feature extraction, fusing high- and low-level semantic
information, etc., to improve target detection performance
on UAV images further.

In this study, we propose an object detection model
for UAV images named DoubleM-Net, which is specially
designed with a multi-scale spatial pyramid pooling-fast
(MS-SPPF) module and multi-path adaptive feature pyra-
mid network (MPA-FPN) module to effectively handle
challenges like large scale variations and complex scenes
in UAV images. Specifically, the backbone network first
extracts multi-scale feature maps from the raw images.
Then, the MS-SPPF module repeatedly conducts pooled
operations at varied scales to form feature maps with rich
multi-scale receptive fields, which can capture information
on different-sized objects and enhance the model’s robust-
ness to scale changes. Moreover, the MPA-FPN module
first fuses semantic information between adjacent scale
layers. Then, it enhances lower-level features by propagat-
ing top-level semantic features down in a multi-path man-
ner to realize interaction and integration of multi-scale
features. This retains fine-grained low-level features while
sufficiently incorporating high-level semantics. By jointly
utilizing MS-SPPF and MPA-FPN modules, DoubleM-Net
can fully exploit multi-scale feature information to detect
small objects in UAV images effectively and improve adapt-
ability to complex scenes, achieving superior detection
performance.

The main contributions of this paper are as follows:

e We construct a novel plug-and-play feature extraction
module MS-SPPF. The module incorporates the ideas
of SPP and SPPF by using pooling kernels of different
sizes (k =5, 9, 13) for multiple pooling operations. This
design enables MS-SPPF to capture spatial features at
different scales simultaneously and enhance the rich-
ness of the features through multiple pooling operations.
MS-SPPF further compensates for the shortcomings of
traditional methods in multi-scale feature extraction and
improves the accuracy of target detection.

e In order to overcome the limitations of traditional feature
pyramid networks in solving the scale change problem,
we propose an original feature pyramid structure called
MPA-FPN. By designing the feature fusion method,
MPA-FPN effectively reduces the information contra-
diction between non-neighboring features and enhances

the interaction between low-level and high-level semantic
information. MPA-FPN not only improves the detection
effect of the model on small targets but also provides new
ideas and methods to cope with the scale change problem
in target detection.

e Based on MS-SPPF and MPA-FPN, we further con-
struct a model called DoubleM-Net. It is validated on
two challenging datasets, VisDrone and DroneVehicle,
and its performance is comprehensively evaluated. The
experimental results show that DoubleM-Net achieves a
mAP50-95 of 27.5% on the VisDrone dataset and 55.0%
and 60.4% on the DroneVehicle dataset in RGB and
Infrared modes, respectively.

The structure of this paper can be outlined as follows.
In Sect. 2, the related literature is discussed. Section 3 pre-
sents the design of the DoubleM-Net model, providing a
comprehensive characterization. Section 4 elaborates on the
implementation of the proposed method, including the setup
and results. Finally, Sect. 5 concludes the paper, highlight-
ing the findings, and proposes potential directions for future
research.

2 Related work

This section provides an overview of notable techniques and
methods in object detection, which serve as the foundation
for developing our proposed DoubleM-Net model. Specifi-
cally, we discuss the YOLO series model, spatial pyramid
pooling, feature pyramid-related technologies, and object
detectors designed for aerial images.

2.1 YOLO-series model

The YOLO object detection framework achieves an excel-
lent balance between speed and accuracy, making it stand
out among various object detection algorithms for efficiently
and accurately detecting objects in images. YOLOv1-v3
[13—15] establish the foundational YOLOs, introducing a
single-stage detection architecture with backbone-neck-head
components. It enabled multi-scale object detection through
branches, becoming a prominent single-stage object detec-
tion model. YOLOv4 [16] utilizes CSPDarknet to improve
computational efficiency. YOLOVS [17] is the first PyTorch
implementation, developing a new CSP-based backbone
and decoupled classification and regression detection heads.
Based on YOLOVS, Xu et al. [22] propose Lite-YOLOVS, an
on-board SAR ship detection model that is both lightweight
and high-performance. It introduces a lightweight cross
stage partial (L-CSP) module combined with network prun-
ing techniques to reduce the computational complexity. In
addition, Lite-YOLOVS has been successfully ported to the
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NVIDIA Jetson TX2 embedded platform, providing robust
support for on-board evaluation. YOLOv6 v3.0 [18] sim-
plifies the Spatial Pyramid Pooling-Fast (SPPF) module in
YOLOVS to SimSPPF, improving accuracy with negligible
change in speed. YOLOvV7 [19] proposes the E-ELAN mod-
ule to accelerate convergence. Alibaba’s DAMO-YOLO [23]
employs automatic neural architecture search to obtain an
efficient backbone and designed a new Efficient RepGFPN
neck structure to fuse multi-scale features through CSP-
Satge. DAMO-YOLO also utilize AlignOTA for dynamic
label assignment and knowledge distillation for further speed
improvements through model compression. YOLOvS [20]
incorporates the C2f component to enhance feature expres-
sion and applied a decoupled anchor-free head design for
multi-task recognition. Subsequently, the Programmable
Gradient Information (PGI) and Generalized Efficient Layer
Aggregation Network (GELAN) architectures in YOLOvV9
[21] introduces a new paradigm for network design and opti-
mization. The PGI allows the model to adaptively regulate
the gradient flow during training, potentially mitigating
problems such as gradient vanishing or gradient explosion.
The GELAN architecture, on the other hand, uses gradient-
based path planning to efficiently aggregate features across
multiple scales and resolutions, improving the model’s abil-
ity to detect targets of different sizes. Through continuous
architectural evolution, YOLO series models have consist-
ently optimized model efficiency and effectiveness, advanc-
ing single-stage real-time recognition technologies.

2.2 Spatial pyramid pooling

The Spatial Pyramid Pool is a network structure that handles
objects at different scales and is designed to capture features
at different scales. He et al. [24] introduce SPP into a deep
convolutional neural network to solve the feature extraction
problem and classify images with different input sizes. The
core idea of SPP is to realize scale invariance by mapping
features of different scales of the input image onto a fixed-
size feature vector through the pyramid pooling layer. Moti-
vated by SPP, the semantic segmentation model DeepLabv?2
[25] proposes Atrous Spatial Pyramid Pooling. The module
uses multiple parallel atrous convolution layers with dif-
ferent sampling rates. The convolution kernel of different
receptive fields is constructed through different atrous rates
to obtain multi-scale object information. From simulating
the receptive field of human vision to enhancing the feature
extraction capability of the network, Liu et al. [26] intro-
duce Inception [27] into the proposed Receptive Field Block
module. The main idea is to add an atrous convolution based
on Inception, thus effectively increasing the receptive field.
YOLOVS5 [17] introduces a novel Spatial Pyramid Pooling-
Fast method built upon SPP to improve speed. It will apply
the maximum pooling of different scales on a feature layer
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of the network, and the pooling kernel is 5 X 5,9 X 9, and
13 x 13, respectively. Finally, 1 X 1 convolution is applied to
channel integration of the feature maps of different scales,
and they are fused into one feature graph. Pooling at dif-
ferent scales can capture a more extensive range of content
and enhance the multi-scale processing capability of the
model. Based on the SPPF, YOLOV6 v3.0 [18] proposes
that the Simplified SPPF. Although it only has one activation
function from SPPF, it is much faster than SPPF. YOLOv7
[19] introduces the idea of a Cross Stage Partial (CSP) Net-
work based on SPP and proposes the SPPCSPC module.
CSP divides the features into two parts: routinely processed,
and the SPP structure processes the other. Finally, the two
parts are combined. Although the calculation amount and
the number of parameters have been improved, they also
gain accuracy. Overall, the development of SPP enables tar-
get detection networks to be more flexible and efficient in
handling targets at different scales, laying the foundation for
subsequent improvement and development.

2.3 Feature pyramid network

Feature pyramid is a crucial component utilized in vari-
ous fields such as object detection, semantic segmenta-
tion, behavior recognition, etc. It plays a significant role in
enhancing the performance of models. Prior to the introduc-
tion of Feature Pyramid Network [12], SSD [28] directly
employs feature maps from different stages to detect objects
of varying scales. FPN is designed as a top-down unidirec-
tional fusion mechanism incorporating features extracted
from the model’s backbone. In this process, due to the
limitation of one-way feature fusion. PANet [29] adds a
bottom-up path based on FPN to enable deep features to
obtain detailed information in shallow features. BiFPN
[30] is an advanced iteration of FPN. It further enhances its
performance by eliminating nodes with a single input edge
and introducing additional edges from the original input at
the same level. Zhang et al. [31] propose a novel quad fea-
ture pyramid network (Quad-FPN) for SAR ship detection.
Made up of four unique FPNs, They are Deformable Con-
volutional FPN, Content-Aware Feature Reassembly FPN,
Path Aggregation Space Attention FPN, and Balance Scale
Global Attention FPN. Generalized-FPN (GFPN) [32] intro-
duces an innovative cross-scale connection method known
as “queen-fusion”, which effectively incorporates hierarchi-
cal features from preceding and current layers. Additionally,
the log, n skip-layer connections are integrated to facilitate
enhanced information transmission and enable the scaling
of deeper networks with greater effectiveness. Xu et al. [33]
propose a new group-wise feature enhancement-and-fusion
network (GWFEFNet) with dual-polarization feature enrich-
ment. It contains four key modules: dual-polarization feature
enrichment, group-wise feature enhancement, group-wise



International Journal of Machine Learning and Cybernetics

feature fusion, and hybrid pooling channel attention. This
leads to better dual-polarized SAR ship detection. DOMO-
YOLO [23] builds upon the foundation of GFPN and intro-
duces an enhanced variant known as Efficient-RepGFPN,
which empowers real-time object detection. Recently, the
Asymptotic Feature Pyramid Network (AFPN) [34] has bro-
ken through the pattern of conventional FPN to avoid sig-
nificant semantic gaps between non-adjacent levels. AFPN
initiates fusion in the first phase for backbone bottom-up fea-
tures by combining two shallow features at different scales.
As we enter the later stage, the deep features are gradually
integrated into the fusion process, and finally the complete
fusion of the top features of the backbone is achieved.

2.4 UAV aerial images object detection methods

In recent years, the field of small object detection has gar-
nered significant research interest, and numerous scholars
have made notable advancements in this domain. Deep
learning-based UAV object detection techniques are evalu-
ated by Saqib et al. [35], who use the migration learning
method to train a pre-trained model for the network with
sparse training samples. Chen et al. [36] have incorporated
adaptive resampling techniques and regression modules into
their RRNet model. These integrations offer superior data
augmentation and precise bounding boxes, effectively tack-
ling the intricacies of detecting diminutive objects within
dense environments. Khan et al. [37] propose a framework
for satellite images with complex backgrounds, arbitrary
viewpoints, and significant variations in object size. The
framework comprises two phases: the first generates multi-
scale object proposals, and the second categorizes each
proposal into different classes. Furthermore, in GDF-Net
[38], dilated convolutions are employed to refine density
features, thereby broadening the network’s receptive field.
This refinement bolsters the model’s efficacy and resilience.
Tian et al. [39] introduce a double neural network verifica-
tion approach, which secondarily identifies overlooked tar-
get regions, ensuring exceptional detection quality for small
targets. DMF [40] model is a detection method based on
difference depth, which solves the problem of low accuracy
of long-distance small-object traffic detection by clustering
the difference maps with different depths and mapping the
different difference regions to two-dimensional candidate
regions. Li et al. [41] propose a novel multi-scale detec-
tion network to reduce the redundant information transfer
between scales. The network divides objects according to
their distance from the viewpoint. A multi-branch architec-
ture is constructed to provide specialized detection for each
scale of objects separately. Ma et al. [42] propose an UAV
tracking control algorithm based on incremental reinforce-
ment learning. The algorithm achieves proper exploration
and efficient learning in new environments by transforming

into a Markov decision process and applying policy mitiga-
tion and importance weighting methods. Zhang et al. [43]
develop an adaptive and dense pyramid network to address
multi-scale challenges in UAV aviation images. The net-
work integrates a pyramid density module and a target
detection module to align density information and instance
recognition features. This alignment improves network per-
formance and detection accuracy. In PETNet [44], a novel
Prior Enhanced Transformer (PET) module and One-to-
Many Feature Fusion (OMFF) mechanism are introduced.
The PET module is designed to capture enhanced global
information, while the OMFF mechanism fuses multiple fea-
tures. These advancements contribute to improved detection
performance.

3 DoubleM-Net

In this section, we thoroughly explain the DoubleM-Net
model, including the process and setup information, as well
as the relevant algorithms and expressions. We describe the
MS-SPPF, ASFF, MPA-FPN, and the loss function, etc. The
complete network architecture of the proposed DoubleM-Net
can be seen in Fig. 2.

3.1 Extracting multi-resolution features

The aerial images captured by drones are first fed into the
backbone network for feature extraction. In the first con-
volution layer of the backbone network, a 3 X 3 kernel is
used with smaller receptive fields to extract low-level fea-
tures from the images, such as edges, textures, and other
detailed features. As the number of network layers increases,
the convolution layers in the backbone network will gradu-
ally downsample the images, using different-sized receptive
fields to perform convolution operations to extract features
of different scales. They cover more expansive areas and
can extract higher-level features, forming more abstract fea-
ture representations such as object parts, shapes, etc. These
features contain more global information and provide rich
and varied features for subsequent feature fusion. In our pro-
posed model, the backbone networks of DoubleM-Net-p6
extract multi-scale features from images, which is denoted
as {C1, C2,C3,C4} as shown in Fig. 2.

3.2 Multi-scale spatial pyramid pooling-fast

Figure 3 shows the structures of SPP and SPPF in (a)
and (b), respectively, while (c¢) shows our proposed MS-
SPPF. In SPP, several pooling kernels of different sizes
k =[5,9, 13] capture spatial features at various scales. In
contrast, SPPF, an evolved version of SPP, uses a single
pooling kernel £ = 5 and simulates the effect of multi-scale
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feature extraction by applying this pooling kernel mul-
tiple times. MS-SPPF fuses the ideas of SPP and SPPF
by using numerous pooling kernels with different sizes
k =15,9,13] and applying multiple times to each pool-
ing kernel to enrich multi-scale feature extraction fur-
ther. First, MS-SPPF performs an initial transformation
of the input feature maps through a SimConv layer. Sub-
sequently, the original feature maps are spliced with the
feature maps processed by different pooling kernels in the
channel dimension to integrate the multi-scale informa-
tion. Finally, the spliced feature maps are again passed
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through a SimConv layer for further feature extraction and
integration to generate the final output feature maps.

The backbone network extracts features at different scales
in a bottom-up fashion. MS-SPPF enhances computational
efficiency through SimConv and captures richer small
objects and multi-scale features through repeated multi-
scale pooling operations. Specifically, we apply SimConv
to convolute the feature vector x € R€!""" extracted from
the backbone network to obtain:

x1 = SimConv(x) € REW-D, (D
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Fig.4 Adaptive spatial feature fusion procedure. a Feature fusion at
two different resolutions; b feature fusion at three different resolu-
tions; but we can use the method with more levels as needed

where ¢ = ¢1/2. Compared with the traditional convolu-
tional, SimConv adopts ReL.U as the default activation func-
tion, and the rest remains unchanged.

Algorithm 1 MS-SPPF algorithm

Then maxpooling is performed on x1 with kernel sizes
of k =5,9,13, respectively. Three pooling operations are
conducted on each branch to obtain feature maps of different
scales. This results in features with different receptive fields:

pi = mp(x1),
g; = mp(p,), )
r; = mpi(q,),

wherei = 1,2, 3 and mp is maxpooling operation. Finally, all
the pooled features p;, g;, r; and the retaining original infor-
mation x1 are concatenated, then the SimConv operation is
performed to obtain the feature vector y:

y = SimConv(Concat(p;, q;,1;,x1) € R(2Zw-) 3)

The detailed procedure for the MS-SPPF structure is shown
in Algorithm 1.

Require: Input feature map (z), shape [c1, h, w];
Ensure: Output feature map (y), shape [¢2, h, w], where ¢2, h, w are channel,

height and width;

1: Pass input z through convolutional layer, output is z1, shape is [¢, h, w]

where ¢ = ¢1/2;

2: Define three maxpooling layers with kernel sizes k = (5,9,13) and stride

1, padding k/2;
3: for i = k do

The maxpooling layer is applied three times on x1, with one feature
vector output for each pooling operation;
Obtain nine outputs, namely p;, ¢;, 75,1 = 1,2, 3;

6: end for

7. Concatenate  p;,q;, i, 1

along

channel dimension, output is

pooled _features, shape is [¢ x 10, h, w];
8: Pass pooled_features through convolutional layer, output feature map y

with shape [¢2, h, w];
9: return Output feature map (y)

@ Springer
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3.3 Adaptive spatial feature fusion

In the field of image processing and computer vision, multi-
scale feature fusion has been a research direction that has
attracted much attention. With the rapid progress of deep
learning technology, how to efficiently integrate feature
information of different scales to enhance the performance of
complex tasks such as target detection and image segmenta-
tion has become a hotspot that researchers are competing to
explore. Feature pyramid representation, as a typical means
to solve the problem of scale variation in object detection,
still has obvious limitations despite certain achievements. In
particular, the inconsistency between different feature scales
becomes a significant challenge for feature pyramid-based
single-shot detectors. To solve this problem, Liu et al. [45]
propose the adaptive spatial feature fusion (ASFF) method.
ASFF effectively suppresses the inconsistency between dif-
ferent feature scales by learning spatial filtering of conflict-
ing information, which significantly improves feature-scale
invariance.

We introduce ASFF to fuse features from different spatial
scales or levels to improve the performance of image analy-
sis and understanding. During multi-scale feature fusion,
ASFF assigns different spatial weights to features at different
scales, enhancing the importance of key levels and alleviat-
ing the influence of information from features across scales.

@ Springer

Let xif_’" denote the feature vector at position (i, j) from

level m to level n. The resulting feature vector is denoted as
y:; obtained by adaptive spatial fusion of multi-scale fea-

tures, defined by a linear combination of feature vectors

xl=n x2 o xm 1 as follows:

i ij ij

no_ . n 1—n no, 2—sn n ., m—n

Vi = al,,- X +a2i/_ X + +(xm'j X (@)

where af ,a) , ...
7 7
different scale features at level n, respectively, subject to the

constraint by:

,a" represent the spatial weights of the m
m;

0"11,., + a;ﬁ + -+ a;’l”_ = l;afu_,ag[l_, ,afnﬁ e[0,1]. )
As shown in Fig. 4a and b, we integrated features from two
and three scales, corresponding to the cases when m = 2 and
m = 3 in Eq. 4. Considering the differences in the number
of fused features at each stage, it is possible to implement
an adaptive spatial fusion module for a specific stage based
on the actual situation.

3.4 Multi-path adaptive feature pyramid network
The paradigm framework of MPA-FPN is shown in Fig. 5.

Like many feature pyramid network based object detec-
tion methods, multi-scale features are extracted from the
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Fig. 6 a is the number of category labels in the training, validation and test datasets in the RGB and Infrared modes in the DroneVehicle dataset.

b is the proportion of labels in a category in the VisDrone dataset

backbone before feature fusion. The last layer features are
extracted from each feature level of the backbone to obtain a
set of multi-scale features denoted as {C Gy, C, }

For feature fusion, a set of features of different scales
obtained in the previous step, each of the two adjacent fea-
tures is integrated into two levels of adaptive spatial, gener-
ating X,,,_, feature representations:

(X%, ... X5 5}

6
= {A,(C}.C,),A(C,, C)), ..., Ay(C,.C,_)) }, ©)

where A, is the case of the adaptive spatial teature fusion
operation shown in Fig. 4a and n = 2 in Eq. 4. Then extract
the {X,.X,. ..., X,,_, } feature to get ¥;:

Y; = Blackbox(X,),i =1,2,...,2n =2, (7)

where Blackbox is a series of feature extraction operations,
such as convolution, C3 and C2f, or an adaptive spatial fea-
ture fusion at the next level. Next, the feature fusion at level
n — lisperformedonY;(i = 1,2, ..., 2n — 2) to obtain feature
maps L;(i=1,2,...,2n = 2):

{LI,LZ, ,LG_z} ={A,_, (Y. Y3, ... Y5, 5),
A, Yy, Yy o Y5, 0), 0, ¢))
An—l(YZH—Z’ an_4s seey Y2)}

It is obvious that {LI,LZ, ,L2n_2} contains all the fea-
tures in {Cl, C,, ..., Cn}, but it is not directly fused. Due
to the semantic gap between non-adjacent hierarchical
features being greater than between adjacent hierarchi-
cal features, especially for the bottom and top features,
directly fusing non-adjacent hierarchical features leads to
poor fusion effects. Therefore, we first fuse adjacent fea-
tures from different scales, then gradually fuse the features
in steps, and finally generate feature maps rich in semantic
information. Some operations on the feature representations
{Ll I Y LG—z} before detection finally yield P;:

Pizf(Li),izl,z,...,Zn—Z, 9)

where f is the method to perform the feature extraction,
generating 2n — 2 feature maps rich in high- and low-level
semantic information. The detailed procedure of MPA-FPN
is shown in Algorithm 2.
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Table 1 Experimental parameters 100
VisDrone
Parameters Value 86.5 85.6 DroneVehicle
- 30 - DroneVehicler
Image size 640 x 640
Batch size 16 < 62.4
S .

Mosaic 1.0 5 601

. an
Fliplr 0.5 g
HSV-H 0.015 S 40
HSV-S 0.7 8 L
HSV-V 0.4
Learning ratea 0.001 201 10.8 11.2
Weight decay 0.0005 49 57 32
Warmup epochs 3.0 T - T
Momentum 0.937 Small Medium Large
Warmup momentum 0.8

These are specific variables that remain unchanged throughout the
experiment

Algorithm 2 MPA-FPN algorithm

Fig.7 VisDrone and DroneVehicle (RGB and infrared) datasets com-
prise objects categorized based on their sizes into small objects (area
< 32 % 32), medium objects (32 x 32 < area < 96 X 96), and large
objects (area > 96 X 96)

Require: Enter the feature {Cy,Cy, -

network.;

Ensure: Get predictive feature maps {Py, P, - -

-, Cp} extracted from the backbone

: 7P2n—2};

1: Deliver {C1,Cs,---,Cy} to the MPA-FPN network;

2: Carry out adaptive spatial feature fusion at two levels, as illustrated in

Equation 6. Gets a set of feature representations {X1, X, -+, Xo,_2}.
As shown in Equation 7, the next level of spatial adaptive feature fusion
or feature extraction is performed on X; to obtain feature Y;, where i =

1,2, ,2n — 2.

4: Perform feature fusion at level n—1 on {Y7,Y5, - -

-, Y5,_o} using Equation

8 to obtain {Ll, Lg, te ,Lgn_g}.

5. The predictive feature maps P;(i = 1,2,---,2n — 2) is obtained by
Equation 9.

6: return Output feature maps {P;, Pa, -+, Pap—2}

3.5 Loss function

Considering the characteristics of images from the UAV
viewpoint, which often contain many small targets. We
design six detection heads to improve the detection accu-
racy of these small targets. DoubleM-Net achieves accurate
target detection by using the decoupling head to detect dif-
ferent scales of feature maps generated by the neck network.
The decoupling head is delicately conceived to decompose
the detection task into two mutually independent branches:
one specializes in classification prediction to identify the
target class accurately. In contrast, the other branch focuses
on regression prediction to accurately locate the target’s
position.

@ Springer

The loss function plays a crucial role in model training
by quantifying the difference between the model predictions
and the actual values, providing a clear guideline for model
optimization. For the DoubleM-Net model, the loss calcula-
tion covers classification loss and regression loss. The clas-
sification loss is calculated using the binary cross entropy
(BCE) loss function to ensure the model’s accuracy in the
classification task. In contrast, the regression loss combines
the complete IoU (CIoU) loss and the distribution focus
loss (DFL), further improving the model’s target localiza-
tion accuracy. The BCE loss function is defined as shown
in Eq. (10),
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Fig.8 The first two rows and the last two rows are some visualization results of DoubleM-Net(x) on the VisDrone-DET-test-dev and VisDrone-

DET-test-challenge datasets, respectively

Lace =+ =D+ Tog, (o) + (1 =) Tog, (1 = p))]. (10)
i=1

where y; denotes the label value of the i-th sample, which
takes the value of 0 or 1. p; denotes the predicted probability
of the ith sample. Then the CIoU loss function is calculated
by Eq. 11,

2(bP, bt
p-(b’, )JﬁS

T e, an

Ly =1-=1oU +
where ¢ is the weight coefficient. b” and b#' represent the cen-
troids of the predicted and actual boxes. p is the Euclidean
distance calculated between the two centroids, and ¢ denotes
the diagonal distance between the closed regions of the two
rectangular frames. v is used to measure the similarity of the
aspect ratios and is defined as in Eq. 12,

2
8t D
v = % <arctan % — arctan ;11/_17) , (12)

where (w8, h8") and (w”, h”) are the width and height of
the actual and predicted boxes, respectively. Finally, Class

imbalances in data sets are a common challenge. This can
cause the model to favor more numerous categories over less
numerous ones during training. To mitigate this problem,
we introduce distributed focus loss (DFL) to optimize the
classification task, as shown in Eq. 13,

Lpp (Fi Fiyy) = _[(yi+l —y) log (Fi) + (y —y,«) log (Fi+1)]’ (13)

where y is the target label. The global minimum solution of
DFL, i.e, F; = ﬁ, Fipy = yi:iiyi’ can guarantee the esti-
mated regression target y infinitely close to the correspond-
ing label y. DFL helps the model focus more quickly and
accurately on the output distribution near the accurate label
by explicitly enlarging the two probability values y; and y;
adjacent to the target label y. This allows the model to give
proper attention to the categories even when unbalanced.

The overall training loss is a weighted combination of
these three losses, as shown in Eq. 14,

Lam = MLsce + 2%y + 43LopL- (14)
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Fig.9 We compare the effects of DoubleM-Net and YOLOVS,
where the red and green dashed boxes indicate some differences in
the detection effects of these two models. a is the VisDrone dataset;

4 Experiments

In this section, we provide a comprehensive overview of
the implementation steps and conduct a detailed analysis
of the results obtained from our experiment. We evaluate
the object detection performance using standard metrics,
including average precision (AP) and the mean average pre-
cision (mAP). To present these results, we utilize graphs and
tables. The experimental data presented in this section offer
valuable insights into the performance and effectiveness of
our proposed model.

4.1 Dataset and analysis

The VisDrone [46] and DroneVehicle [47] datasets contain
many annotated UAV-view images and videos, providing
strong support for algorithm performance evaluation and
optimization. These datasets specifically focus on target
detection and tracking in real-world environments with UAV
viewpoints, providing an ideal testbed for researchers. By
covering a wide range of environments, lighting conditions,
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b and c¢ the RGB and infrared patterns of the DroneVehicle dataset,
respectively. It is seen from the figure that there are some omissions
in YOLOVS8, but DoubleM-Net can be detected

and UAV models, these datasets are closer to real-world
application scenarios, which helps to improve the algo-
rithm’s generalization ability in real-world applications. In
existing research, VisDrone and DroneVehicle datasets have
been widely used in various fields such as intelligent trans-
portation, disaster response, urban planning, etc., providing
essential data support for developing related applications.

The VisDrone dataset is a comprehensive benchmark
designed explicitly for visual object detection and tracking in
UAV platforms. It consists of images captured from various
UAV platforms across 14 cities in China. The dataset pro-
vides ten categories: pedestrian, people, bicycle, car, truck,
tricycle, awning-tricycle, bus, and motor, and their instance
proportions, as shown in Fig. 6b. These images showed a
high object density, averaging 53 instance objects per image.
This dataset contains 8629 images, of which 6471 are used
for training, 548 for validation, and 1610 for testing.

The DroneVehicle dataset comprises 56,878 images col-
lected by the drone. Out of this total, 50% are RGB images,
while the remaining 50% are infrared images. This data-
set has five categories: car, truck, bus, van, freight car. The
number of objects in the train, validation, and test dataset for
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Table2 We compare the

‘ Model Ped Peo Bic Car Van Truck Tri A-Tri Bus Mo mAP50-95

detection effects of some

classical single-and two-stage FSAF [48] 221 141 56 538 293 215 89 58 309 165 209

networks across ten classes on ATSS [49] 197 65 74 544 310 245 142 87 370 181 2211

the VisDrone dataset
TridentNet [50] 169 105 59 508 28.8 224 144 7.1 330 168 207
CenterNet [51] 173 105 56 483 263 185 84 55 309 155 187
FCOS [52] 173 93 33 513 267 225 86 70 341 96 19.0
DDOD [53] 219 119 74 553 314 254 145 86 372 198 233
TOOD [54] 219 130 86 562 330 260 161 9.1 388 214 244
VFNet [55] 206 9.1 67 553 325 253 147 83 390 192 23.1
Cascade-RCNN [56] 199 123 84 54.1 353 264 174 92 422 196 245
Faster-RCNN [11]  17.6 120 7.2 505 30.1 233 144 89 372 182 219
YOLOX [57] 19.6 143 6.6 534 286 227 147 80 344 210 222
YOLOV3 [15] 220 137 7.1 539 304 250 149 7.6  39.8 18.8 23.3
YOLOV4 [16] 21.0 133 6.0 591 344 305 17.1 11.0 445 200 257
YOLOV5(x) [17] 234 154 78 589 346 309 197 124 465 237 273
YOLOV7 [19] 244 181 84 575 342 281 192 112 429 249 269
YOLOV8(x) [20] 231 155 79 589 354 304 198 128 449 237 272
YOLOV8-p6(n) [20] 12.6 87 19 500 240 157 99 68 282 135 17.1
DoubleM-Net-p6(n) 14.0 100 3.2 519 262 177 123 80 320 151 19.0
YOLOV8-p6(s) [20]  17.5 113 42 550 299 223 141 98 384 17.6 22.0
DoubleM-Net-p6(s)  18.1 129 56 546 30.1 232 158 100 41.8 198 23.2
YOLOv8-p6(m) [20] 20.6 133 6.0 573 329 259 18.1 11.6 428 212 250
DoubleM-Net-p6(m) 209 14.7 7.0 573 322 277 19.6 11.8 452 228 259
YOLOv8-p6(1) [20] 224 143 7.2 582 335 292 189 121 457 233 265
DoubleM-Net-p6(I) 219 152 8.0 582 33.8 292 202 129 448 238 268
YOLOv8-p6(x) [20] 22.8 154 8.0 586 352 30.8 206 122 448 232 272
DoubleM-Net-p6(x) 22.6 16.1 88 58.6 340 283 221 137 464 247 215

Results in the n, s, m, [, and x modes of YOLOv8-p6 and DoubleM-Net-p6 are also shown

both RGB and infrared images is displayed in Fig. 6a. The
images in the DroneVehicle dataset are divided into three
scenarios: day, night, and dark night, with 14,478, 5,468 and
8493 images, respectively. Since the infrared images have
a higher contrast in low-light conditions, they have more
annotation than the RGB images, as evident in Fig. 6a. The
number of photos in this dataset for training, validation, and
testing the dataset in RGB and infrared images is 17,990,
1469, and 8980, respectively. These images show a high
density of objects, with an average of 17 instance objects
per image, with a maximum number of 206.

As shown in Fig. 7, the VisDrone and DroneVehicle
datasets have more than 95% of small (area < 32 x 32) and
medium (32 X 32 <area < 96 X 96) objects. On the contrary,
large (area > 96 X 96) targets account for less than 5%. This
data distribution score reflects the challenges of UAV target
detection in practical applications, especially the urgent need
for small and dense target detection. Therefore, these two
datasets not only enrich the data resources in the field of
UAV visual inspection but also provide strong support for
the optimization of algorithms and practical applications,

which is of great significance in promoting the development
of UAV visual inspection technology.

4.2 Experimental parameters setting

This section presents an overview of the experimental
parameters employed in our study. The experiments are
performed on a system equipped with an NVIDIA GeForce
RTX 3090 GPU and a 15 vCPU Intel(R) Xeon(R) Platinum
8358P CPU @ 2.60GHz processor. Table 1 summarizes the
critical parameters for the DoubleM-Net model. All mod-
els in this paper are trained from scratch on the VisDrone
and DroneVehicle datasets, with each model trained for 100
epochs.

4.3 Evaluation criterion
The primary evaluation metric used in object detection is

the average accuracy (AP), which is calculated based on
four possible outcomes: true positive (TP), false positive
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Table 3 The following table

Model Ped Peo Bic Car Van  Truck Tri A-Tri Bus Mo mAP50
shows the effects of the n, s, m, [
and x models of YOLOVS, YOLOV5(n) 291 232 57 724 333 227 181 93 385 311 283
JoLovs and z‘t’i’;fl\:nde}‘l:“ YOLOVS(n) 306 248 5.6 735 356 245 194 100 419 326 299
experimental results show the DoubleM-Net(n) 323 274 89 75.1 374 285 21,6 124 473 365 327
detection accuracy of our model Improvement +1.7 +2.6 +32 +1.6 +18 +40 +2.2 +23 454 +39 +28
for small targets YOLOV5(s) 386 29.6 94 781 426 324 242 145 4977 402 359
YOLOVS(s) 397 31.0 103 764 408 328 245 140 515 409 362
DoubleM-Net(s) 414 341 139 775 427 358 304 174 562 454 395
Improvement +1.7 +31 +3.6 -06 +01 +3.0 +59 +29 +47 +45 +33
YOLOvV5(m) 44.1 339 132 804 459 373 278 169 577 462 403
YOLOvV8(m) 445 351 142 788 46.0 387 31.1 182 58.6 468 41.2
DoubleM-Net(m) 45.0 369 159 81.3 459 42.1 351 21.0 621 49.6 435
Improvement +0.5 +1.8 +1.7 +09 -0.1 +34 +4.0 +2.8 +35 +2.8 +2.3
YOLOv5(1) 46.7 36.6 15.1 80.1 472 422 341 182 63.0 480 43.1
YOLOvV8(1) 464 364 157 798 48.1 426 347 189 609 488 432
DoubleM-Net(l) 46.1 37.7 183 79.6 474 426 350 21.1 625 500 44.0
Improvement =06 +11 +26 -05 =07 = +03 +22 -05 402 +0.8
YOLOV5(x) 48.8 375 17.7 805 485 451 342 199 609 502 443
YOLOVS(x) 484 376 172 808 49.0 443 349 198 619 503 444
DoubleM-Net(x) 48.1 385 19.0 80.0 482 430 354 215 624 51.6 448
Improvement -0.7 +09 +13 -08 -08 -21 405 +1.6 +0.5 +1.3 +04

Ped, Peo, Bic, Tri, and A-Tri are the abbreviations for Pedestrian, People, Bicycle, Tricycle, and Awning-

Tricycle, respectively

The underline highlights the performance gap between our model and the best results

(FP), true negative (TN), and false negative (FN). The clas-
sification of these outcomes is determined by the predicted
category of the detection model and the actual category of
the object being detected. The AP metric provides valuable
insights into the performance and accuracy of object detec-
tion. The precision rate is calculated using the following
equation:

Precision = L 15
TP+ FP’ (15
The recall rate is defined as:
TP
Recall = ———.
= TPYEN (16)

The AP metric plays a crucial role in assessing the effective-
ness of a learned model for each category. The formula for
calculating AP is shown in Eq. 17.

1
AP = / Precision(Recall)d(Recall), 17
0

where P(R) is a curve based on recall and precision. The
AP value indicates the performance of the model in a par-
ticular category. On the other hand, mAP is the average of
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all AP values in all categories. It provides an assessment of
the overall learning performance of the model and can be
defined as Eq. 18,

1 < .
mAP = ;AP(:), (18)

where 7 is the total number of classes or categories.

4.4 Main results

This section aims to verify the effectiveness of the proposed
DoubleM-Net. We conduct model training and validation
from scratch using the Visdrone and DroneVehicle data-
sets to accomplish this. All experimental results based on
YOLOVS in this paper are conducted under the framework
of YOLOVS.

4.4.1 Experimental results on VisDrone dataset

To validate the object detection performance of DoubleM-
Net technology in UAV scenarios, we compare several clas-
sical single-stage and two-stage object detection methods
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Fig. 10 a-d are the Precision, Recall, mAP 50, and mAP 50-95 for YOLOvS5, YOLOvS8, and DoubleM-Net on the VisDrone dataset, respec-
tively. It can be seen that our model achieves significant results on n, s, m, [, and x

on the VisDrone dataset. It is worth noting that all models
are trained from scratch without utilizing any pre-trained
weights. The detection results of DoubleM-Net on the Vis-
Drone dataset are shown in Fig. 8. The first two rows depict
the visualization of detection results on the VisDrone-DET-
test-dev dataset. In comparison, the last two rows represent
the results on the VisDrone-DET-test-challenge dataset.
From the figure, it can be observed that DoubleM-Net can
accurately recognize and localize medium to large vehi-
cles under different lighting and weather conditions. It also
achieves satisfactory detection results for smaller objects
that can be distinguished by the human eye, such as pedestri-
ans and motors. DoubleM-Net also competes in challenging
scenarios with targets occluded and densely areas. Figure 9a
compares the detection performance between DoubleM-Net
and YOLOVS on the VisDrone dataset. The image shows that
YOLOVS fails to detect the densely packed motors indicated
by the orange dashed box, while DoubleM-Net accurately
recognizes them. Furthermore, the red dashed box highlights

a false detection produced by YOLOvS8, which DoubleM-
Net avoids.

Table 2 presents the comparative results of our pro-
posed model with several classical single-stage and
two-stage networks, demonstrating the advantages of
DoubleM-Net in terms of accuracy across different cat-
egories. Moreover, the detection performance varies across
different categories, with bicycle, tricycle, and awning-
tricycle showing the most significant improvements.
Hence, our method exhibits remarkable effectiveness in
detecting small targets such as bicycles and tricycles.
Although the results may not be the best for other cat-
egories, they still achieve competitive performance on par
with the competing models. Table 3 compares the perfor-
mance of YOLOvS, YOLOvVS, and DoubleM-Net on five
scales: n, s, m, [, and x. It is evident from the table that
both large and small models achieve excellent results for
small targets such as bicycles, tricycles, and motorcycles.
DoubleM-Net’s n, s, and m models demonstrate respec-
tive improvements of 2.8%, 3.3%, and 2.3% in the mAP50
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Fig. 11 We present the visualization results of the DroneVehicle dataset. a—d are the results in the RGB and Infrared mode, respectively

metric. Although the accuracy improvements for the / and
x models are less significant, a slight enhancement is still
observed. Overall, these findings highlight the effective-
ness of DoubleM-Net in capturing small objects across
different scales. In Fig. 10, we contrast the precision,
recall, mAP50, and mAP50-95 of YOLOvS, YOLOVS,
YOLOV8-p6, DoubleM-Net, and DoubleM-Net-p6 across
five different scales. Our model demonstrates significant
performance improvements at the n, s, and m scales, with
slight improvements observed at the other two scales.
Across these four metrics, our model exhibits noticeable
enhancements at the n, s, and m scales, indicating its effec-
tiveness in detecting small targets with higher precision
and recall. While the improvements are less pronounced
for the more significant / and x scales, some enhancement
is still observed. Our model consistently performs well
across different scales, showcasing good detection capabil-
ity and performance levels.
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4.4.2 Experimental results on DroneVehicle dataset

Now, we further showcase the detection performance of
our model on the DroneVehicle dataset. All our models are
trained from scratch without using any pre-trained weights.
This ensures that our model can independently perform
accurate object detection on the DroneVehicle dataset
and validate its generalization capability across multiple
datasets.

The detection results of DoubleM-Net on the Dron-
eVehicle dataset are shown in Fig. 11. The figure show-
cases the detection visualizations of both RGB and infra-
red images from the dataset, represented as (a) and (c),
and (b) and (d) respectively, corresponding to different
modalities. It is evident from the images that DoubleM-
Net can accurately identify and localize objects, regard-
less of whether it is day or night. Even for objects located
at the images’ boundaries, DoubleM-Net can recognize



International Journal of Machine Learning and Cybernetics

Table 4 We present the effects

Model Modality Car Truck Bus Van Freight Car mAP50-95
of the n, sand m models of
YOLOv5, YOLOvS and YOLOVS5(n) RGB 62.5 395 646 320 272 45.1
DoubleNl-Ret In both RO YOLOVS(n) RGB 633 421 668 353 293 474
DroneVehicle dataset, and DoubleM-Net(n) RGB 63.8 42.0 67.0 353 29.6 47.6
the experimental results show Improvement - +1.3 =0.1 +0.2 = +2.4 +0.2
that our model significantly YOLOV5(s) RGB 652 476 70.8 404 33.8 51.6
:g';‘é’;ggisn::;zﬁg:;iyof Ao YOLOVS(s) RGB 654 490 709 410 351 523
DoubleM-Net(s) RGB 65.6 50.4 70.1 412 37.0 52.9
Improvement - +0.2 +1.4 =08 +0.2 +1.9 +0.6
YOLOV5(m) RGB 65.8 514 71.8 42.8 37.2 53.8
YOLOV8(m) RGB 66.5 50.8 72.1 44.0 37.6 54.2
DoubleM-Net(m) RGB 66.6 53.4 73.3 445 374 55.0
Improvement - +0.1 +2.0 +1.2 +0.5 =02 +0.8
YOLOV5(n) Infrared 68.0 42.0 71.8 37.7 429 52.5
YOLOV8(n) Infrared 68.6 44.8 73.0 39.3 46.0 54.3
DoubleM-Net(n) Infrared 69.0 47.1 72.5 42.5 46.2 55.5
Improvement - +0.4 +2.3 =0.5 +3.2 +0.2 +1.2
YOLOV5(s) Infrared 70.1 50.7 74.7 45.5 50.9 58.4
YOLOVS(s) Infrared 70.2 52.7 75.0 46.6 52.6 59.4
DoubleM-Net(s) Infrared 70.4 52.5 74.9 46.8 52.8 59.5
Improvement - +0.2 -0.2 =0.1 +0.2 +0.2 +0.1
YOLOVS5(m) Infrared 70.7 52.0 76.2 47.8 52.3 59.8
YOLOv8(m) Infrared 71.1 52.7 76.1 47.4 51.8 59.8
DoubleM-Net(m) Infrared 71.2 54.8 76.2 48.3 51.6 60.4
Improvement - +0.1 +2.1 = +0.5 =0.7 +0.6

The underline highlights the performance gap between our model and the best results

them, albeit with relatively lower confidence scores. Fur-
thermore, DoubleM-Net demonstrates impressive perfor-
mance in challenging scenarios such as occluded targets
and dense regions, showcasing its competitiveness. In
Fig. 9b, we compare the detection performance between
DoubleM-Net and YOLOvS8 on the DroneVehicle dataset
in RGB mode. By examining the image, it is evident that
YOLOVS8 exhibits false positive detections, as indicated
by the orange dashed bounding box, while DoubleM-Net
avoids such false positives. Additionally, we observe that
YOLOVS performs poorly when dealing with occluded
targets, as demonstrated by the red dashed bounding
box, whereas DoubleM-Net provides accurate detections
with a confidence score of 0.25. As depicted in Fig. 9c,
both models demonstrate comparable performance in
Infrared mode. Table 4 presents a comparative analysis
of YOLOvV5, YOLOvVS, and DoubleM-Net in terms of
different scales, namely n, s, and m. The table demon-
strates that in RGB and Infrared modes, these models
achieve excellent results in detecting small objects such
as cars and vans. Remarkably, the n, s, and m models of
DoubleM-Net show a slight improvement in the mAP50-
95 metric compared to the other models. Overall, these
results highlight the capture capability and generalization

performance of DoubleM-Net for small targets on differ-
ent datasets. In the radar Fig. 12, a comparison is made
between YOLOvVS, YOLOvVS, and DoubleM-Net for preci-
sion, recall, mAP50, mAP50-95, and F1 scores on three
different scales (n, s, and m). The results demonstrate
improvements in all five metrics for our model in the
RGB mode, indicating its effectiveness in detecting air-
to-ground images. In the Infrared mode, DoubleM-Net
remains competitive with slight improvements in recall
and precision for the s and m model sizes. Overall, our
model consistently exhibits excellent detection capabili-
ties and performance levels across different scales.

Through the discussion in the above two sections, we
can state that DoubleM-Net demonstrates competitive
detection performance on both datasets, thereby show-
casing the superior capabilities of this model in the field
of aerial image detection. DoubleM-Net proves its effec-
tiveness in detecting small objects, adapting to scale vari-
ations, and performing well in RGB and infrared modes.
These findings highlight the remarkable performance and
generalization ability of DoubleM-Net in aerial image
detection, providing strong support for its application in
related domains.

@ Springer



International Journal of Machine Learning and Cybernetics

—s— YOLOYS 8
78 —+ YOLOW8 3
—— DoubleM-Net (ou)

F1

mAP50-95 mAP50 mAP50-95
(a) RGB, ‘n’ scale
P —=— YOLOVS P
—+ YOLOWS

—=— DoubleM-Net (our)

F1

mAP50-95

mAP50-95 mAP50

(d) Infrared, ‘n’ scale

(b) RGB, ‘s’ scale

(e) Infrared, ‘s’ scale

—a— YOLOvS
—+— YOLOv8
—s— DoubleM-Net (our)

—=a— YOLOvS
—o— YOLOwS
—— DoubleM-Net (our)

mAP50-95 mAP50

(¢) RGB, ‘m’ scale

—=— YOLOvS
—e— YOLOvS
—— DoubleM-Net (cur)

—=— YOLOvS
—— YOLOvS
—— DoubleM-Net (our)

N Y

mAP50

mAP50 mAP50-95

(f) Infrared, ‘m’ scale

Fig. 12 Comparison of Precision, Recall, mAP 50, mAP 50-95 and F1 values for YOLOvVS5, YOLOv8 and DoubleM-Net, in both the RGB and

Infrared modes of the DroneVehicle dataset

SPP

Original image

MS-SPPF

AFPN MPA-FPN

Fig. 13 Ablation visualization. The first row compares feature maps (visualization results) after SPP, SPPF, and MS-SPPF. The second row com-
pares feature maps (visualization results) after PANet, AFPN, and MAP-FPN

4.5 Ablation studies

We systematically validated the contributions of the main
modules included in DoubleM-Net to improve detection.

@ Springer

The following experiments are conducted using the Vis-
Drone dataset. To validate the performance of this method
under different single-stage detectors, we conduct experi-
ments based on YOLOvS5 and YOLOVS.
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Table 5 On the VisDrone
dataset, we conducted ablation

Model Modules

Evaluation values

experiments on MS-SPPF Scales SPP SPPF MS-SPPF

Ped Peo Bic Car

Van

Tru

Tri

A-Tri

Bus

Mo

mAP50-95

module with YOLOVS as the
baseline n v/

12.4
12.5
12.3
17.7
17.4
17.5
204
20.5
21.0
222
219
224
23.8
23.1
235

8.4

8.6

8.7

11.8
11.5
11.3
13.8
13.7
14.0
15.0
14.9
15.2
15.8
15.5
15.6

2.1
2.1
23
39
4.1
4.2
6.4
6.0
6.4
7.5
6.8
7.0
8.3
7.8
8.0

494
49.5
494
54.5
53.5
539
56.8
56.5
57.6
58.3
579
58.2
59.2
58.9
59.0

234
24.1
232
29.2
28.3
29.0
332
325
33.7
34.8
34.3
34.5
342
35.4
358

15.5
15.5
16.9
222
214
224
25.8
25.1
26.1
30.3
29.0
29.8
30.7
304
31.0

10.1
10.4
10.4
13.8
13.5
14.2
17.5
17.4
17.9
19.7
19.8
19.0
19.8
19.8
20.5

6.5
6.5
6.6
9.4
8.9
9.5
11.1
11.8
11.5
11.9
12.1
12.0
12.4
12.8
12.6

28.5
27.0
29.2
37.5
374
38.2
43.1
42.7
41.8
43.4
44.8
45.3
46.7
44.9
45.4

12.9
13.0
12.6
17.3
17.5
17.5
21.3
212
21.5
22.8
23.0
23.5
239
23.7
23.8

16.9
16.9
17.2
21.7
21.3
21.8
24.9
24.7
25.1
26.6
26.5
26.7
27.5
27.2
27.5

Table 6 On the VisDrone
dataset, we conducted ablation

Model Modules

Evaluation values

experiments on MS-SPPF Scales SPP SPPF MS-SPPF

Ped

Peo

Bic Car

Van

Tru

Tri

A-Tri

Bus

Mo

mAP50-95

module with YOLOVS as the
baseline n v

11.5
11.6
11.6
16.7
16.8
17.0
20.1
20.1
20.2
22.0
21.8
22.0
23.4
23.4
234

8.0

7.9

7.8

10.9
10.9
11.4
13.3
13.0
13.4
14.6
14.2
14.8
15.1
154
15.1

1.8
2.2
2.0
3.8
3.6
3.8
5.5
5.4
5.7
6.7
6.4
6.6
7.5
7.8
8.4

48.3
48.2
48.6
54.5
54.5
544
57.6
572
57.6
58.2
58.1
59.6
59.3
58.9
59.2

22.9
22.7
23.0
29.5
29.8
29.6
32.6
323
334
34.3
33.7
352
355
34.6
35.5

14.6
14.5
13.8
21.6
20.8
214
26.0
25.0
254
28.9
29.3
28.8
30.7
30.9
29.9

9.5

9.2

10.0
13.9
12.8
14.2
16.6
15.6
16.3
18.9
18.8
18.0
19.7
19.7
20.4

6.3
5.5
6.7
8.6
9.0
8.2
10.5
10.4
11.4
11.7
11.3
11.1
12.2
12.4
12.5

26.4
25.0
26.4
38.8
34.6
37.7
41.6
41.3
41.5
44.1
46.4
45.7
46.8
46.5
46.5

11.8
12.0
12.0
16.5
16.7
17.1
20.0
20.1
20.6
224
22.1
22.5
24.1
237
23.9

16.1
15.9
16.2
21.5
21.0
21.5
24.4
24.0
24.6
26.2
26.2
26.4
27.4
27.3
27.5

4.5.1 Effect of MS-SPPF

The proposed MS-SPPF module in this paper leverages
multi-scale pooling operations with repeated application
of different-sized pooling kernels to extract critical infor-
mation and multi-scale features of small targets. Ablation
studies are conducted on the VisDrone dataset to evaluate
the effectiveness of this module. Tables 5 and 6 present
the advantages of MS-SPPF on baseline YOLOv8 and
YOLOVS, respectively. According to the experimental
results, both YOLOv8 and YOLOvVS5 showed a certain
degree of improvement in mAP50-95 on different model
sizes n, s, m, [, and x. These tables show that MS-SPPF

outperforms SPP and SPPF in detecting small objects
such as tricycles and awning-tricycles. Moreover, our
model demonstrates competitive performance in other
categories as well. These findings highlight the signifi-
cant advantage of the MS-SPPF module in enhancing the
detection of small objects and underscore the competitive-
ness of our model across multiple target categories. By
comparing Tables 7 and 8, the influence of different pool-
ing kernels (5, 5, 5), (9,9, 9), (13, 13, 13), and (5, 9, 13)
on precision, recall, mAP50, and mAP50-95 metrics in
the MS-SPPF module can be observed. Tables 7 and 8§ are
based on YOLOvV8 and YOLOVS, respectively. From the
data in these tables, it can be concluded that, for different
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2;2':;:; v?:ct:rfdzicst]zgi;lteion Model MS-SPPF Evaluation values
experiments on the MS-SPPF Scales (5,5,5) (9,9,9) (13,13,13) (5,9,13) Param GFLOPs P R mAP50 mAP50-95 Time
module with different pooling
kernels using YOLOVS as the n v/ 32 8.4 39.9 299 29.2 16.5 3.1
baseline v 32 8.4 40.3 30.0 29.5 16.7 2.1
v 32 8.4 414 30.5 29.8 16.9 2.0
v 32 8.4 41.6 30.6 299 17.2 5.1
s v 119 293 48.0 35.8 37.1 21.8 9.0
v 119 293 48.2 36.3 37.0 21.8 8.9
v 119 293 46.6 36.5 36.8 21.7 8.7
v 119 293 47.6 364 373 22.0 8.8
m v 26.8 79.3 52.6 404 415 25.1 13.0
v 26.8 79.3 52.1 394 413 25.0 11.0
v 26.8 79.3 51.3 399 415 25.1 12.1
v 26.8 79.3 52.8 40.6 41.7 25.2 10.8
1 v 444 166.1 547 419 43.6 26.7 24.6
v 444  166.1 55.1 41.3 435 26.7 27.6
v 444  166.1 546 41.8 434 26.4 31.5
v 444  166.1 547 42.3 437 26.9 24.4
X v 69.3 2592 56.7 42.8 44.7 27.6 332
v 69.3 2592 55.8 42.5 445 27.3 34.1
v 69.3 2592 54.0 437 44.8 27.5 329
v 69.3  259.2 564 427 449 27.8 30.3

Param. in the table is the number of parameters (in M). P and R are precision and recall, respectively. Time
is the inference time (in ms). The same is true for Tables 8, 10 and 11 below

Table 8 On the VisDrone

. Model MS-SPPF Evaluation values
dataset, we conducted ablation
experiments on the MS-SPPF Scales (5,5,5) (9,9,9) (13,13,13) (5,9,13) Param GFLOPs P R mAP50 mAP50-95 Time
module with different pooling
kernels using YOLOVS as the n v 2.7 7.3 38.5 28.9 28.2 16.0 3.5
baseline v 2.7 7.3 39.2 29.1 284 16.1 3.1
v 2.7 7.3 394 29.0 28.1 16.0 35
v 2.7 7.3 38.8 29.5 284 16.2 34
s v 9.9 24.7 46.7 36.0 36.3 21.3 4.1
v 9.9 24.7 46.5 36.1 364 21.2 4.0
v 9.9 24.7 46.0 35.6 35.8 21.1 4.3
v 9.9 24.7 46.7 36.1 36.5 21.5 4.6
m v 26.8 65.8 50.3 40.1 40.7 24.5 7.0
v 26.8 65.8 50.8 39.0 40.2 24.2 7.2
v 26.8 65.8 51.7 39.6 40.7 24.4 7.1
v 26.8  65.8 51.7 39.7 409 24.6 7.2
1 v 56.3 137.8 53.8 41.1 429 26.1 15.8
v 56.3 137.8 54.8 419 438 26.3 14.4
v 56.3  137.8 53.5 41.7 432 26.1 15.9
v 56.3  137.8 54.6 41.8 434 26.6 13.5
X v 102.1 2509 554 429 445 27.3 17.9
v 102.1 2509 55.8 42.5 447 27.5 16.2
v 102.1 250.9 55.6 42.6 443 27.2 17.1
v 102.1 2509 55.7 43.1 449 27.5 16.3
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Table 9 Comparing the

o YOLOvV8 Modules Ped Peo Bic Car Van Truck Tri A-tri Bus Mo Precision
precision results of MS-SPPF
and MPA-FPN ablation n Baseline 40.8 47.0 223 61.6 426 386 314 207 520 441 40.1
experiments on the VisDrone +MS-SPPF 398 485 229 619 425 402 397 264 486 451 416
dataset for ten categories, with
YOLOVS as the baseline +MPA-FPN 437 51.5 264 65.1 454 444 384 286 533 504 447
s Baseline 48.1 53.6 279 706 466 465 395 278 604 526 474
+MS-SPPF 472 527 239 69.9 48.1 484 395 264 574 523 466
+MPA-FPN 532 584 298 72.6 485 49.6 460 352 66.6 58.1 518
m Baseline 556 592 304 759 504 529 454 314 647 569 523
+MS-SPPF 544 582 289 746 51.1 528 464 332 633 575 520
+MPA-FPN 558 587 31.1 763 51.0 532 49.6 341 69.5 61.5 54.1
1 Baseline 57.1 593 31.1 77.8 525 505 475 337 717 587 54.0
+MS-SPPF 567 60.3 32.8 76.1 53.8 525 47.0 340 70.1 57.7 54.1
+MPA-FPN 589 603 38.1 78.6 523 564 498 344 683 628 56.0
X Baseline 60.7 61.7 33.1 789 512 556 496 337 724 602 557
+MS-SPPF 59.8 614 332 79.5 535 575 529 337 713 613 564
+MPA-FPN 612 622 374 794 534 582 499 368 714 64.1 574
Table 10 Considering YOLOVS  yo10y5  Modules Param  GFLOPs P R mMAPS0  mAP50-95  Time
as the baseline, the precision,
recall, mAPS0, and mAP50-95 n Baseline 25 7.2 398 287 283 15.9 3.6
;nlﬂelglz;;l(;fig/r[)s;;:i: rr?:r?t Sl\geA' +MS-SPPF 2.7 73 388 295 284 16.2 34
compared on different model +MPA-FPN 49 21.7 434 308 315 18.2 5.3
sizes (1, 5, m, I, and x) on the s Baseline 9.1 24.1 464 355 359 21.0 42
VisDrone dataset +MS-SPPF 9.9 247 467 361 365 21.5 46
+MPA-FPN 187 79.9 500 375 386 23.0 15.5
m Baseline 25.1 64.4 512 392 403 24.0 7.6
+MS-SPPF 268 65.8 517 397 409 24.6 7.2
+MPA-FPN 4738 201.7 540 405 419 25.6 17.9
1 Baseline 53.2 1353 543 417 43.1 26.2 12.9
+MS-SPPF 563 137.8 546 418 434 26.6 13.5
+MPA-FPN  95.2 398.6 547 419 435 26.8 43.9
X Baseline 97.2 246.9 558 424 444 27.3 18.7
+MS-SPPF 102.1  250.9 55.7 431 449 275 16.3
+MPA-FPN 1647  685.9 558 433 447 27.6 58.1

model sizes, the pooling kernel (5, 9, 13) exhibits a sig-
nificant advantage. All four metrics improve using the
(5, 9, 13) kernel. This highlights the crucial role of select-
ing an appropriate pooling kernel size in enhancing detec-
tion performance. The first row of Fig. 13 shows that the
feature maps processed by MS-SPPF have a more signifi-
cant effect in presenting the contours and shapes of the
objects compared to SPP and SPPF. Even when facing
objects of irregular size and shape, MS-SPPF can still
effectively capture and emphasize their key features.

4.5.2 Effect of MPA-FPN

In this section, we similarly explore the effectiveness of
the MPA-FPN module on the VisDrone dataset. Taking

YOLOVS as the baseline, we gradually introduce the MS-
SPPF and MPA-FPN module, comparing their precision on
the ten categories, as shown in Table 9. Encouragingly, we
observe a significant improvement in precision after incorpo-
rating the MPA-FPN module. Whether it is for small objects
such as tricycles or easily confusable objects like cars, vans,
and buses, impressive detection results are achieved. Con-
tinuing with the YOLOVS5 baseline, we repeat the process by
introducing the MS-SPPF module first and then incorporat-
ing the MPA-FPN module. We analyze the precision, recall,
mAP50, and mAP50-95 metrics at each step, as presented
in Table 10. It is evident from the results that the integration
of the MPA-FPN module led to substantial improvements
in precision, recall, and mAP values. This underscores the
significance of the MPA-FPN module in enhancing object
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Table 11 This table shows the

. . Model Param GFLOPs P R mAP50 mAP50-95 Time

object detection results of the

l())thelr) ltalr\j%[elt\l detectgri and I:he YOLOVS5(n) 25 72 39.8 28.7 28.3 15.9 3.6

ViOSL]‘)rsne Va‘ﬁ;;‘goﬁ d‘;‘:;g; YOLOVS(s) 9.1 24.1 464 355 359 21.0 4.2
YOLOV5(m) 25.1 64.4 51.2 39.2 403 24.0 7.6
YOLOVS5(1) 53.2 1353 53.9 417 43.1 26.2 12.9
YOLOV8(n) 3.1 8.9 40.1 30.6 29.9 16.9 3.1
YOLOVS(s) 112 28.8 474 35.9 36.2 21.3 8.9
YOLOV8(m) 25.9 79.3 52.3 39.6 412 24.7 112
YOLOVS(I) 437 165.7 54.0 420 432 26.5 27.7
YOLOv9 60.5 264.0 54.5 417 438 26.7 31.6
YOLOV9-c 50.7 236.7 55.4 423 445 27.2 33.3
YOLOV9-e 68.8 240.8 54.5 422 439 26.9 415
DoubleM-Net(n) 55 23.7 447 32.0 32.7 19.1 5.2
DoubleM-Net(s) 20.9 88.5 51.8 38.0 39.5 23.6 15.2
DoubleM-Net(m) 53.5 238.8 54.1 413 435 26.5 25.7
DoubleM-Net(l) 104.0 4937 56.0 44.6 447 275 49.7

All models in the table are trained from scratch using the original images.YOLOVS is trained in the frame-

work of YOLOvVS

Fig. 14 DoubleM-Net has some
limitations in its process-

ing effectiveness in different
datasets and modes. Specifi-
cally, a in the VisDrone dataset,
DoubleM-Net is ineffective in
processing images in blurred
and nighttime environments;

b in the RGB mode of the Dron-
eVehicle dataset, DoubleM-
Net also faces the problem of
ineffective processing in blurred
and nighttime environments;

¢ for the infrared mode of the
DroneVehicle dataset, Dou-
bleM-Net also exhibits a lack of
processing power in blurred and
nighttime environments. These
limitations are identified in the
red dashed box in Fig.

detection performance. Based on the findings from these
ablation experiments, it is evident that incorporating the
MPA-FPN module, whether in YOLOvVS8 or YOLOVS, sig-
nificantly improves the accuracy and effectiveness of object
detection. This further substantiates the efficacy and com-
petitiveness of the MPA-FPN module in multi-scale object
detection. The second row of Fig. 13 shows that the feature
maps processed by MPA-FPN show a more outstanding
ability to highlight the contours and shapes of the objects
compared with PANet and AFPN. MPA-FPN cannot only
accurately locate the object’s exact position in the image

@ Springer

but also effectively identify the size and shape features of
the object. In addition, for small targets, the effect of MPA-
FPN is superior and can capture and present their detailed
features more accurately.

4.6 Limitation analysis

Although the DoubleM-Net model exhibits good detection
performance on the VisDrone and DroneVehicle datasets,
it is still insufficient in complex scenarios such as blur and
nighttime, which is visualized in Fig. 14. Specifically, as
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shown in Fig. 14a, in the VisDrone dataset, DoubleM-Net’s
recognition ability is significantly affected when dealing
with images in blurred and nighttime environments, result-
ing in poor detection results; in Fig. 14b, when facing RGB-
mode images in the DroneVehicle dataset, DoubleM-Net
similarly faces the problem of poor processing in blur and
nighttime environments. Figure 14c further shows that Dou-
bleM-Net’s processing ability in blur and nighttime environ-
ments also appears to be stretched when confronted with the
infrared mode of the DroneVehicle dataset. These limita-
tions are clearly labeled in the red dashed box in Fig. 14.

The lack of information and unclear details in blurred
images significantly challenge the model’s recognition. Due
to the blurred images, the model is limited in extracting fea-
tures and performing recognition, making it challenging
to accurately capture essential information in the images.
Meanwhile, images in nighttime environments often suf-
fer from insufficient lighting, which leads to reduced image
contrast and detailed information becoming difficult to
distinguish, thus further increasing the difficulty of model
processing. In addition, the noise and interference factors
that may exist in nighttime environments can also adversely
affect the model’s performance. Therefore, in-depth study
and optimization of these limitations are needed in the fol-
lowing research work to improve further the DoubleM-Net
model’s detection effect in complex environments such as
blurred and nighttime environments.

Table 11 compares the DoubleM-Net model with other
target detectors on key performance metrics, such as the
number of parameters, GFLOPs, precision, recall, mAP50,
mAP50-95, and inference time. By analyzing these data in
depth, we can find that although the DoubleM-Net model
exhibits notable detection performance, it is also accompa-
nied by some significant limitations. First, the number of
parameters of the DoubleM-Net model is relatively large,
which means that the model requires more computational
resources and storage space during training and deploy-
ment. Second, the increase in GFLOPs also indicates that the
model requires higher computational effort in performing
forward propagation, which may lead to slower inference in
practical applications, especially in scenarios with high real-
time requirements. In addition, the extended inference time
further limits the application of the DoubleM-Net model in
real-time scenarios.

Despite these limitations, the DoubleM-Net(m) model
is still comparable to YOLOv8(l), YOLOV9, YOLOV9-c,
and YOLOV9-¢e in terms of detection effectiveness, which
to some extent proves the superiority of its detection perfor-
mance. Nevertheless, while pursuing high detection accu-
racy, there is also a need to weigh the number of param-
eters and computational complexity. Reducing the number
of parameters and computational complexity of the model

under the premise of guaranteeing the detection accuracy is
the current direction of further optimization and improve-
ment of the DoubleM-Net model.

5 Conclusion

Dynamic environments and numerous small targets often
lead to low object detection accuracy in aerial scenes.
In this paper, we propose an innovative approach called
DoubleM-Net to optimize the detection performance in
UAV scenarios. The method consists of two key modules
we designed, MS-SPPF and MPA-FPN. Among them, MS-
SPPF performs multiple pooling operations using pool-
ing kernels of different sizes (k = 5, 9, 13), effectively
capturing spatial features at different scales. Second, to
overcome the limitations of feature pyramid networks in
solving scale-varying problems, we construct an original
MPA-FPN structure. By optimizing the feature fusion
method, MPA-FPN effectively reduces the information
contradiction between non-adjacent features and enhances
the interaction between low-level and high-level semantic
information. A new approach is provided to solve the scale
change problem in object detection. The experimental
results show that the mAP50-95 of DoubleM-Net is 27.5%
on the VisDrone dataset. In contrast, on the DroneVehi-
cle dataset, the mAP50-95 of DoubleM-Net is 55.0% and
60.4% in RGB and IR modes, respectively. In addition, our
model performs well in the air-to-ground image detection
task and excels in detecting small objects.

Improving the detection accuracy comes at the cost of
significantly increasing the computational requirements.
doubleM-Net puts pressure on computational resources,
which will be a significant challenge for future work. There-
fore, we will carry out the following work in the future:

1. To maintain high accuracy, mitigate the number of
detector parameters and computations.

2. Explore distillation and pruning techniques to optimize
the lightweight detector design.

3. Explore the detection effect in complex situations such
as blurring and nighttime.
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